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Groundwater, possibly originated from subducted
sediments, in Joban and Hamadori areas,
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Abstract

We studied the origin of deep groundwater in the Joban and Hamadori areas in southern Tohoku, Japan, based on
δD, δ18O, 129I/I, 36Cl/Cl, and 3H concentrations. Deep groundwater was collected from the basement rocks
(Cretaceous granite) and from the margin of the Joban sedimentary basin (latest Cretaceous to Quaternary
sedimentary rocks deposited on the basement rocks). We sampled groundwater pumped from depths ranging
from 350 to 1,600 m in these areas. A hypothetical end-member of deep groundwater was estimated from the
relationship between δ18O and Cl concentrations, and our data reveal a much higher iodine concentration and
lower Br and Cl concentrations than found in seawater. The iodine ages inferred from 129I/I are quite uniform and
are about 40 Ma and 36Cl/Cl almost reached the secular equilibrium. The relationship between iodine and Cl can be
explained by mixing a hypothetical end-member with meteoric water or seawater. Moreover, the I/Cl ratio increases
linearly with increasing water temperature. The water temperature was high in Joban, with a maximum of 78°C at a
depth of 1,100 m. The geothermal gradient in the Joban basin is 18°C km−1, and the temperature even at a depth
of 3 km in the basin was not high enough to supply thermal water to the sampling sites. Thus, sedimentary rocks
in the Joban basin are unlikely to be the source of iodine in the deep groundwater. Several active faults such as the
Futaba Fault are developed in and around the studied areas. The Iwaki earthquake occurred 1 month after the 2011
Tohoku-oki earthquake, and normal-fault type surface ruptures formed and discharged hot groundwater in Joban. The
deep groundwater we studied probably came up through the basement rocks from greater depths. There are no
sedimentary rocks younger than Tertiary age beneath the pre-Cretaceous basement rocks, and the subducted
sediments in the Japan Trench are a possible source of iodine in the groundwater. The Joban and Hamadori areas
may be an ideal window to look into the water circulation in the forearc of the Tohoku subduction zone.

Keywords: Iodine age; 36Cl/Cl; Source of iodine; Subducted sediments; Halogen; Joban; Hamadori; Tohoku
Background
The cosmogenic isotopes 129I and 36Cl have been used
to investigate the origin of water, such as water found in
crustal fluids, oil fields, and geothermal fluids. The
half-lives of 129I and 36Cl are 15.7 and 0.3 million years,
respectively. According to Muramatsu and Wedepohl
(1998), the largest reservoir of iodine in the earth's
crust is in ocean sediments. Iodine-rich brine is often
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generated in forearc and back-arc areas and passive
continental margins (Muramatsu et al. 2001; Tomaru
et al. 2007a, b, c, 2009a, b; Fehn et al. 2003, 2007a, b;
Fehn 2012). Fehn (2012) reported that the iodine-rich
fluids in the forearc regions in several subduction
zones have iodine ages of about 40 to 60 Ma regardless
of the ages of the subducting slab and proposed that
the ages represent ‘a global pattern of migration of
fluids from deep, old layers located in the upper plates.’
On the other hand, Muramatsu et al. (2001) proposed
that iodine-rich brine produced in Chiba Prefecture,
Japan was derived from subducted marine sediments,
because the iodine ages are considerably older than the
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ages of the host formations. They also suggested that
the recycling of iodine could occur in forearc areas and
that this process should be considered for the marine
iodine budget. Iodine is a biophilic element and is
strongly enriched in organic matters (Elderfield and
Truesdale 1980). Sediments on continental margins are
enriched with iodine because of higher organic content
and higher depositional rates than in open oceans
(Martin et al. 1993; Fehn et al. 2007b). Thus, subducted
marine sediments in the open ocean may not provide iod-
ine to the forearc regions. However, Premuzic et al. (1982)
and Klauda and Sandler (2005) report fairly high organic
carbon in surface sediments over a wide area of the north-
western margin of the Pacific Plate (several times as high
as in open oceans), even far east of the outer rise in the
Japan Trench. Thus, we do not consider that ‘subducted
sediments’ are excluded as possible iodine sources, at least
in the Tohoku subduction zone.
We searched for the origin of iodine in deep groundwater

collected from hot springs in the Joban and Hamadori
areas in southern Tohoku, Japan, by measuring the 129I/I,
36Cl/Cl, δD, δ18O, and 3H concentrations. Most of our
samples are hot spring water pumped from the Cretaceous
granite (Figure 1a). There are no sedimentary rocks
(possible sources of iodine) younger than the Tertiary
beneath the granitic basement, and geologically this is
a unique aspect of the study area. We also sampled
groundwater pumped from sedimentary rocks at the margin
of the Joban sedimentary basin where the latest Cretaceous
to Quaternary sedimentary sequences were deposited on
the basement rocks (Figure 1b; Inaba et al. 2009). Natural
gas was produced in the Joban basin until 2007 at Iwaki-oki
gas field, located at the central part of the basin. This paper
compares deep groundwater with different host rocks and
discusses the source of iodine contained in the water.
Both Joban and Hamadori are located along the Pacific

coast of Ibaraki and Fukushima Prefectures in southern
Tohoku where several active faults, including the Futaba
Fault, are distributed (Figure 1a; The Research Group for
Active Faults of Japan 1991; GeomapNavi 2014). The
temperature of the hot spring water we sampled in
Joban is high, with a maximum of 78°C at a depth of
1,100 m, probably because the areas are tectonically
active (there are no nearby active volcanoes). Moreover,
the 11 April 2011 Iwaki earthquake (Mw 6.6), an aftershock
of the 2011 Tohoku-oki earthquake (Mw 9.0), occurred in
Iwaki City (Fukushima et al. 2013), and the surface ruptures
and crustal deformation with normal displacements formed
along the Itozawa and Yunodake Faults (Kobayashi et al.
2012; Toda and Tsutsumi 2013) near our sampling sites
in Joban (Figure 1a). The earthquake discharged thermal
water in the city with a flow rate reaching about
10,000 m3 day−1 in May 2011 (Sato et al. 2011; Kazahaya
et al. 2013). The massive discharge of water suggests that
the tectonic activity promotes upward movement of deep
groundwater in the areas. We examine the origin of deep
groundwater in both Joban and Hamadori areas in view
of their geological and tectonic settings, as well as their
isotope compositions.

Methods
Geological settings and water samples
The Joban and Hamadori areas are located in the
northeastern part of Ibaraki Prefecture and the south-
eastern part of Fukushima Prefecture, Japan (Figure 1a).
The Joban sedimentary basin is located offshore and
consists of a nearly continuous sequence of sedimentary
rocks of about 5,000-m maximum thickness that has been
deposited on the basement rocks since late the Cretaceous
(Figure 1b; Inaba et al. 2009). The Maastrichtian-Paleogene
coals and coaly mudstones are the most likely sources
of natural gas (Iwata et al. 2002). Inaba et al. (2009)
demonstrated that the Cretaceous argillaceous rocks in
the basin can potentially generate petroleum if there is
abundant marine organic matter deposited in an anoxic en-
vironment. The Abukuma belt is located west of the Joban
basin and consists of metamorphic rocks and Cretaceous
granite (e.g., Hiroi et al. 1998). The Hatagawa Fault is con-
sidered to be the boundary between the Abukuma and
Southern Kitakami Belts (e.g., Tomita et al. 2002). However,
we treat basements rocks in the two belts and those be-
neath the Joban basin as ‘pre-Cretaceous basement rocks’
in this study. Coastal areas, including our sampling sites,
are covered with thin Tertiary sedimentary rocks and
Quaternary sediments (green and white areas, respect-
ively, in Figure 1a; GeomapNavi 2014). Those sediment-
ary rocks cover the pre-Cretaceous basement rocks and
constitute the western margin of the Joban basin. Active
faults are shown with red lines in Figure 1a.
We sampled deep groundwater at ten hot spring wells in

areas A and B in Hamadori, and in areas C and D in Joban,
and river water at two locations in area E in Hamadori
(Figure 1a; numbers 1 to 12 indicate sampling localities).
We also use the sampling localities as sample numbers
(Table 1, column 2). Hot spring drill holes penetrate
through surface sediments into granitic basement in
areas A, C, and D and into sedimentary rocks of the
Joban basin in area B. The depth of the basement granite
was about 800 m in a drill hole very close to locality 2
(Yanagisawa et al. 1989) and 1,100 to 1,200 m at the
western part of Fukushima First and Second Nuclear
Power Plant sites (FNPP1 and FNPP2 in Figure 1a;
Tokyo Electric Company 2012). The pumping depths
in area A are 1,200 to 1,600 m (Table 1, column 3), and
our groundwater samples in area A were collected from
the upper part of the granite basement. According to the
information on drilling at a hot spring (locality 5), the hot
spring water in area B is pumped from the Oligocene
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Figure 1 Geological setting. (a) A simplified geological and geographical map of the Fukushima-Ibaraki area and sampling localities 1 to 12;
an inset figure shows the location of the study area (box), southern Tohoku, Japan, with plate configurations. On-land geological map is simplified
from GeomapNavi (2014). Miocene volcanic rocks are widely distributed in the Abukuma belt but are not shown in (a) to highlight the basement
rocks. The sampling area is divided into areas A to E, and an asterisk indicates the epicenter of the Iwaki Earthquake (Japan Meteorological
Agency 2011). The Fukushima First and Second Nuclear Power Plants are located at FNPP1 and FNPP2, respectively, in area A. (b) A schematic
geologic cross section across the offshore Joban basin after Inaba et al. (2009). Ages of sediments are given on each formation.
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Iwaki formation in the landward margin of the Joban
basin (cf. Figure 1b). The drilling depths for hot springs in
area C are not clear, but we obtained information at a hot
spring facility that the water is pumped from the basement
granite. The depth of the basement metamorphic rocks is
about 800 m in area D, but those rocks are thermally meta-
morphosed and may be close to granite (Kasai 2008). Thus,
Table 1 List of water samples and their chemical and isotopic

Area Sampling
number

Depth
(m)

Sampling date Temperature
(°C)

Chlorine
(mM)

Bro
(μ

A 1 1,600 10 December 2003 31.6 374 4

2 1,500 10 December 2003 41.1 285 3

16 March 2010 38.5 270 3

3 1,200 10 December 2003 40.4 335 5

B 4 - 3 July 2007 17.6 34.4 5

20 November 2012 16.1 37.1 5

5 1,500 3 July 2007 44.1 434 6

20 November 2012 44.2 392 5

6 1,500 3 July 2007 39.3 79.2 1

20 November 2012 38.6 57.9 7

C 7 - 3 July 2007 58.8 17.6 2

28 April 2011 58.3 19.8 2

23 October 2012 57.9 18.0 2

8 - 18 May 2011 56.1 38.3 5

22 February 2012 62.4 35.7 5

23 October 2012 63.8 34.2 5

D 9 880 11 December 2003 35.7 203 3

10 1,100 11 December 2003 77.8 185 2

19 December 2012 76.2 187 2

1,100 11 December 2003 64.5 211 3

19 December 2012 67.3 220 3

350 11 December 2003 38.5 41.4 6

19 December 2012 36.9 44.7 7

E 11 River 19 May 2008 11.6 0.17

12 River 19 May 2008 13.8 0.12

Seawatere 550 8

Meteoric
waterf

0.28 0

a3H concentrations in groundwater samples were measured using liquid scintillation
Taylor 2009), dLSC-LB5); eelemental concentration data for seawater were taken from
for meteoric water were taken from Tagami and Uchida (2006). Sampling localities
depths from which hot groundwater was pumped out, date of sampling, and water
we consider that the groundwater in area D was sampled
from metamorphic or granitic basement rocks. However,
groundwater sampled at a depth of 350 m was collected
from sedimentary rocks in the Joban basin.
We sampled the hot spring water pumped from the

depths shown in the third column of Table 1. Because of
the limited sample volumes during the first sampling,
compositions

mine
M)

Iodine
(μM)

129I/I ratio
(×10−15)

I age
(Ma)

36Cl/Cl ratio
(×10−15)

3H
(TU)a

δD
(‰)

δ18O
(‰)

72 20 388 ± 25 31 6.1 ± 1.1 <0.53b −28 −4.3

55 69 218 ± 12 44 - - −32 −3.2

80 - - - 15.7 ± 2.0 - −33 −3.5

75 49 255 ± 18 40 22.9 ± 2.4 <0.40b −25 −3.2

6.3 - - - 2.1 ± 0.8 <0.04c −50 −7.6

3.0 3.0 281 ± 25 38 - - −49 −7.7

95 - - - 6.5 ± 1.4 <0.04c −13 −3.2

77 44 247 ± 23 41 - - −14 −3.4

20 - - - 7.1 ± 1.2 0.12 ± 0.02c −36 −6.0

0.7 6.4 232 ± 36 42 - - −37 −6.5

7.5 - - - 16.5 ± 4.9 1.74 ± 0.05c −47 −7.3

9.4 - - - - 1.28 ± 0.04c −47 −7.4

5.6 3.1 5840 ± 132 - - - −47 −7.5

6.3 - - - 27.8 ± 2.7 0.63 ± 0.03c −44 −6.9

1.3 - - - 36.5 ± 3.1 0.6 ± 0.1d - -

0.1 6.0 1790 ± 80 - - - −45 −7.2

19 57 257 ± 14 40 7.3 ± 1.1 <0.41b −25 −3.5

87 - - - 7.3 ± 1.2 <0.53b −27 −3.8

78 43 312 ± 13 36 - - −27 −3.8

24 59 239 ± 31 42 8.5 ± 1.4 <0.53b −24 −3.3

36 49 199 ± 11 46 - - −25 −3.4

6.3 - - - 20.3 ± 2.2 <0.34b −44 −7.0

0.4 7.8 303 ± 15 36 - - −45 −7.1

- - - - 58.6 ± 4.3 - - -

- - - - 116.0 ± 7.4 - - -

40 0.44

.48 0.05

analyzer (bPackard, 3100TR, cPerkinElmer 1220 Quantulus (Morgenstern and
Geochemical Earth Reference Model (2014); felemental concentration data

for the second column are shown in Figure 1a. The third to fifth columns give
temperature at the time of sampling.
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we collected more samples later. However, the δD, δ18O,
elemental concentration, and temperature for these loca-
tions showed small temporal variations even before and
after the 2011 Tohoku-oki earthquake, so we treated the
data collected at different times in the same way. Table 1
also summarizes the sampling dates, chemical data, and
estimated iodine age.

Methods for chemical and isotope analyses
Hydrogen and oxygen isotope compositions (δD and δ18O)
were measured by mass spectrometry or cavity ring-down
spectroscopy. The CO2/H2O equilibrium method and the
H2 reduction method using Cr metal were used for the
analyses of oxygen and hydrogen isotopes, respectively
(mass spectrometers, Delta Plus and Delta V advantage;
Thermo Fisher Scientific Inc., Waltham, MA, USA). The
precision of these measurements was ±0.1‰ for δ18O
and ±1‰ for δD. Oxygen and hydrogen isotope composi-
tions are presented in the δ notation in per mille relative
to the Vienna Standard Mean Ocean Water (V-SMOW).
The precision for the analysis by cavity ring-down spec-
troscopy (Picarro cavity ring-down spectrometer L2120-i;
Picarro Inc., Santa Clara, CA, USA) was ±0.1‰ for δ18O
and ±0.6‰ for δD. For the analysis of I, Br, and Cl,
water samples were filtered using 0.45-μm membrane
filters. Iodine concentrations in the groundwater sam-
ples were determined by inductively coupled plasma
mass spectrometry (Agilent 7700; Agilent Technologies,
Santa Clara, CA, USA). Groundwater samples were
diluted with 0.5 wt.% tetramethylammonium hydroxide
and spiked with Re as an internal standard. Cl and Br
concentrations were determined by ion chromatography
(Dionex, DX-500; Thermo Fisher Scientific Inc., Waltham,
MA, USA).
To determine iodine age, 129I/I ratios of deep ground-

water were measured by accelerator mass spectrometry
(AMS), using the sample preparation scheme developed
by Muramatsu et al. (2008). Groundwater samples were
purified by solvent extraction and back extraction using
CCl4. Purified iodine was precipitated as AgI by adding
AgNO3, and the AgI precipitate was washed with ultrapure
water and NH4OH. The supernatant was removed after
centrifugation, and the AgI was freeze-dried. The 129I/I
ratio was measured at the Micro Analysis Laboratory
Tandem Accelerator (MALT) at the University of Tokyo,
following the method detailed in Matsuzaki et al. (2007).
The 36Cl/Cl ratios of the samples were measured by AMS

at the Australian National University (Fifield et al. 2010) or
at the Purdue Rare Isotope Measurement Laboratory
(PRIME Lab), Purdue University, USA (Sharma et al. 2000)
to investigate the age of Cl. The samples were acidified with
concentrated HNO3 to precipitate AgCl by adding AgNO3.
The AgCl precipitate was separated by centrifugation and
dissolved in NH4OH. The SO4

2− was precipitated as BaSO4
by adding a saturated Ba(NO3)2 solution to remove isobaric
interference from 36S, and the BaSO4 precipitate was elimi-
nated by filtration. The AgCl was precipitated again and
separated by centrifugation before drying. Sample numbers
11 and 12 were prepared following the procedures described
in Tosaki et al. (2011), and their 36Cl/Cl were measured with
the AMS system at the Tandem Accelerator Complex,
University of Tsukuba (Sasa et al. 2010). Isotope 3H is one
of the most commonly employed radioisotopes used to
identify the presence of a modern water component.
The 3H concentrations in groundwater were measured
after electrolytic enrichment, using a liquid scintillation
analyzer (Packard 3100TR, PerkinElmer 1220 Quantulus
(PerkinElmer Inc., Waltham, MA, USA), or LSC-LB5
(Hitachi Aloka Medical, Ltd., Mitaka, Tokyo, Japan).

Results
Isotope compositions and the estimation of hypothetical
end-members
Figure 2 exhibits isotope and chemical compositions
of groundwater from areas A to D. The d parameter
(d = δD − 8δ18O) after Dansgaard (1964) is mostly in
the range of 15 to 20 for the Abukuma area (Takahashi
et al. 2004) and 10 to 12 for the Kanto Plain (Inamura
and Yasuhara 2003). The δ18O values of several sam-
ples collected from the A and D areas are slightly
heavier than the meteoric water lines using d values of
10 and 20 (MWL in Figure 2a). The positive shift of
δ18O can be explained by isotopic exchange between
water and rock (Figure 2a), and this characteristic is
often found in connate water such as oil field brine
(Clayton et al. 1966; Mahara et al. 2012). The relation-
ship between the Cl and δ18O of the samples from
areas A and B cannot be explained by simple mixing
between meteoric water and seawater (Figure 2b). The
Cl concentration of the hypothetical end-member was
determined to be 361 mM by extrapolating the best-fit
line for the data from area D to 0‰ of δ18O. Higher Cl
in some data from areas A and B may be due to the
mixing of seawater through the sedimentary rocks.
The concentration of Br correlates well with that of Cl

(correlation coefficient, R = 0.99), suggesting simple mixing
between the meteoric water and seawater (Figure 2c). On
the other hand, the iodine concentration in deep ground-
water is much higher than in meteoric water and seawater
(Figure 2d). The highest iodine concentration was approxi-
mately 150 times higher than the seawater value. The I and
Br concentrations of the hypothetical end-members were
inferred from the mixing lines between the meteoric water
and data from area D (asterisks in Figure 2c,d), using the Cl
concentration at the end-member in Figure 2b. The Br and
Cl concentrations of the hypothetical end-members are di-
luted (Figure 2c). The I and Cl concentrations for some
samples from areas A and B can be explained by the mixing
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of the hypothetical end-member (asterisk), meteoric water
(filled black circle), and seawater (filled black square),
except for two samples with low I and Cl concentrations
(Figure 2d). In contrast, those for samples from areas C and
D in granitic basement can be explained by the mixing of
the hypothetical end-member with meteoric water.
Figure 3 exhibits an interesting correlation among the

four areas. The I/Cl increases with increasing temperature
of deep groundwater, and the ratio and temperature for
areas C and D are much higher than for areas A and B.

Age of I estimated from 129I/I
We estimated the ages of I in the deep groundwater from
the measured 129I/I of the water samples. Three gray
curves in Figure 4 indicate mixing lines, on logarithmic
scales, of the water sample with the highest iodine content
(number 2 in Table 1), with the anthropogenic meteoric
water, pre-anthropogenic seawater, and pre-anthropogenic
meteoric water. Snyder and Fehn (2004) report five 129I/I
values of anthropogenic meteoric water in Japan that
vary widely from 2.0 × 10−10 to 7.9 × 10−9 (cross marks in
Figure 4a). We did not measure the 129I/I of meteoric
water, using their lowest value instead, because it falls
on the mixing line. To draw the other two mixing lines,
we used a reported value of 129I/I (1.5 × 10−12) for the
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pre-anthropogenic water (Moran et al. 1998; Fehn et al.
2007a) and iodine concentrations of Abukuma River near
the sampling site after Tagami and Uchida (2006) and
typical seawater (Table 1). The results for the samples
from areas A, B, and D can be explained by the mixing
of the water with the highest iodine content with the
pre-anthropogenic meteoric and seawater (Figure 4).
This is consistent with the relationship between iodine
and Cl in Figure 2d. The two samples from area C have
higher 129I/I values (green filled circles in Figure 4)
than the pre-anthropogenic water. They also contained
detectable 3H (half-life: 12.32 years) of 1.28 ± 0.04 and
0.6 ± 0.1 TU, where 1 TU is defined as the ratio of 1
tritium atom to 1018 hydrogen atoms. Thus, the water from
area C is likely to have mixed with shallow groundwater
containing anthropogenic 129I, and we did not use them
for the age determination. Sample number 6 from area B
contained detectable 3H, but no significant contamination
of anthropogenic 129I was recognized.
Iodine age was calculated by the decay equation:

Robs ¼ Rie
−λ129t ð1Þ

where Robs is the measured 129I/I, Ri is the initial 129I/I
(assumed to be 1.5 × 10−12), and λ129 is a decay constant
of 4.41 × 10−8 year−1 (Fehn 2012). Most samples have a
129I/I value of (0.2 to 0.3) × 10−12 irrespective of the iodine
concentration and I/Cl ratio (Figure 4b), which gives iodine
ages of 36 to 46 Ma. We neglect fissiogenic 129I produced
by spontaneous fission of 238U because its influence is
small (Fehn et al. 2000; Tomaru et al. 2007a, c, 2009a, b).
The homogeneity of iodine age (39 ± 4 Ma) suggests that
the source of iodine is limited.

Secular equilibrium of 36Cl of the deep groundwater
We calculated the 36Cl/Cl ratios at secular equilibrium be-
tween the production and decay of 36Cl using the chemical
compositions of the host rocks (Additional file 1: Table S1).
Figure 5 shows the relationships between 36Cl/Cl and
1/Cl for the samples from the four areas. The secular
equilibrium 36Cl/Cl (Re) can be calculated by the following
equation (Andrews et al. 1986; Snyder and Fabryka-Martin
2007; Morikawa and Tosaki 2013):

Re ¼ ∅σ35Cl
λ36

N ð2Þ

The thermal neutron absorption cross section of 35Cl
(σ35Cl) is 43.6 × 10−24 cm2, the decay constant (λ36) of
36Cl is 2.3 × 10−6 year−1, and the isotopic abundance (N)
of 35Cl is 0.7577. The thermal neutron flux (∅), in neu-
tron per square centimeter per year, was estimated from
the whole-rock major and trace element compositions of
various sedimentary rocks and granitic rocks collected in
this area (Additional file 1: Table S1; Morikawa and Tosaki
2013). The secular equilibrium 36Cl/Cl (Re) are calculated
and plotted as horizontal dashed lines for areas A, C, and
D with granitic basement (Re = (1.77 ± 0.82) × 10−14), and
as horizontal solid lines for area B with sedimentary rocks
(Re = (9.87 ± 3.10) × 10−15) in Figure 5. The equilibrium
between 36Cl production and decay is established in
approximately 1.5 Ma (Andrews et al. 1986). The 36Cl/Cl
values of most of our samples are plotted at or near the
horizontal lines, and they have nearly reached secular
equilibrium. Note that a state of true equilibrium may
not be attained with a single, specific type of host rock
in a strict sense, possibly leading to some uncertainty
in the above interpretation. Overall, the deep ground-
water in the Joban and Hamadori area has not been af-
fected by modern seawater, even though the areas are
located near the coast.

Discussion
The origin of iodine
We discuss the possible sources of iodine in the deep
groundwater collected at ten hot springs in the Joban
and Hamadori areas and implications for water circulation
in the Tohoku subduction zone. The measured concentra-
tions of iodine in the groundwater were much higher than
in seawater (Figure 2d), whereas Cl and Br concentrations
were lower than in seawater (Figure 2b,c). Iodine is
strongly bound to organic matter under marine conditions
(Elderfield and Truesdale 1980) and is released during the
diagenesis of organic material to form natural water
enriched in iodine, such as oil field brines and pore
waters in marine sediments (e.g., Tomaru et al. 2009a, b;
Fehn 2012). Previous papers report that Br is also released
during decomposition of organic materials (Tomaru et al.
2007c, 2009b), but the enrichment of Br did not occur in
the deep groundwater we studied. A possible reason for
this is that the release rate of iodine from organic matter
is higher than that of Br (Tomaru et al. 2009b). The iodine
of about 40 Ma in age in the deep groundwater must have
derived from sedimentary rocks, and there are two pos-
sible sources, the Joban sedimentary basin, east of the hot
springs where we did the sampling (Figure 1), and the sub-
ducted marine sediments from the Japan Trench beneath
Tohoku, as discussed below.
We do not exclude the Joban basin as a possible iodine

source, but we consider it unlikely for the following
three reasons: (1) The lower Miocene formation in the
Joban basin contains a thick layer of fine to coarse
sandstone and conglomerate, which comprise a gas reser-
voir, and the iodine-containing water may have migrated
up along the formation towards the hot spring wells where
we sampled the deep groundwater (Figure 1b). However,
the geothermal gradient at the Joban gas field (Figure 1a)
is 18°C km−1 (Tanaka et al. 2004), and the expected
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temperature at maximum depth (approximately 3 km)
for the formation is about 70°C. This is lower than the
temperature of the groundwater in area D (close to 80°C
maximum, Figure 3), and the high temperature of the
groundwater cannot be explained by the water in the
Joban basin as its source (there is no heat source such as a
volcano in the sampling area). (2) Deep groundwater sam-
ples in areas A, C, and D were collected in basement gran-
itic rocks, but the temperature of the water is higher than
1

A
B
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D
E

Secular equilibrium

granite

sedimentary rock
Cosmogenic

Modern seawater

1/Cl (L/mg)
10-110-210-310-410-5
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3
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C

l/
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No.4

Figure 5 Mixing diagrams in the 36Cl/Cl versus 1/Cl space.
Horizontal lines indicate the secular equilibrium (Re) of

36Cl/Cl for
granite and sedimentary rocks, estimated from the chemical
compositions of host rocks (Additional file 1: Table S1). Black-filled
circles give the 36C/Cl and 1/Cl values of two river water samples
collected in area E, representing the cosmogenic end-member.
Lines indicate mixing between cosmogenic and modern seawater
values after Fifield et al. (2013).
that of water from the Joban sedimentary rocks in area B
(Figure 3). Presumably, hot groundwater from depths
comes up close to the surface in areas A, C, and D
through the basement rocks. (3) Several active faults are
developed in the sampled and neighboring areas, and
surface ruptures formed along the Itozawa and Yuno-
dake Faults during the 2011 Iwaki earthquake (red lines
in Figure 1a; The Research Group for Active Faults of
Japan 1991; Toda and Tsutsumi 2013). This earthquake
discharged thermal water in Iwaki City for at least 2 years
(Sato et al. 2011; Kazahaya et al. 2013). The earthquake
was of a normal-fault type with complex ruptures and af-
tershocks extending to a depth of almost 15 km (Fukushima
et al. 2013). The active tectonics of the sampled areas
must have promoted discharge of deep groundwater from
depths through the basement rocks, rather than from the
Joban basin. The geothermal gradients in the Joban-
Hamadori areas are 24°C km−1 to 33°C km−1 (Tanaka et al.
2004), but the temperature of the hot spring water is
higher than the geothermal gradient in about half of
the hot springs where we sampled groundwater
(Figure 3).
The deep groundwater we sampled came through the

pre-Cretaceous basement rocks. Thus, the geological
situation in our study area is different from those studied
by Fehn et al. (2003) and Tomaru et al. (2007b, 2009a),
who sampled pore waters in sediments on the continen-
tal slopes in the Nankai Trough and off the Shimokita
Peninsula, northern Japan. In our study area, it is hard
to expect sedimentary rocks younger than 40 Ma beneath
the pre-Cretaceous basement. The subduction zone in
the Japan Trench is regarded as a classical erosion bound-
ary and sediments on the continental slope deposited on
Cretaceous rocks (von Huene and Culotta 1989). Moreover,
von Huene and Lallemand (1990) proposed that the sub-
duction of seamounts would play an important role in the
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erosion and estimated that the rate of tectonic erosion
at a subducting plate boundary is comparable to the
rate of sediment accretion. Thus, rocks constituting
the upper plate in the Japan Trench are unlikely to be
accreted large-scale sedimentary rocks, younger than
the Cretaceous. However, a small-scale accretionary
prism is developed throughout the Japan Trench, and a
thin interplate layer, possibly composed of sedimentary
rocks, is recognized along the plate interface down to a
depth of almost 20 km (Figure 6; Tsuru et al. 2002;
Miura et al. 2003). The types of subducting sediments
are unclear in the southern part of the Japan Trench,
but DSDP drilling at leg 56 site 436 revealed that in-
coming sediments are mostly pelagic sediments of a few
hundred-meter thickness and of Miocene to Pliocene in
age (about 20 to 2 Ma) (The Shipboard Scientific Party
1980; Kimura et al. 2012, Figures two panel b and four).
Chester et al. (2013) report very similar sediments beneath
the coseismic fault during the Tohoku-oki earthquake
in the J-FAST drill cores in the Japan Trench. More-
over, sediments in the western Pacific Ocean near the
Japanese Islands contain organic carbon of 0.5 to
1.0 wt.%, much higher than in sediments in the Pacific
Ocean away from land (Premuzic et al. 1982, Figure one;
Klauda and Sandler 2005, Figure three). We thus consider
that subducted sediments in the Japan Trench are possible
sources of iodine in the deep groundwater in the Joban-
Hamadori areas.

Implications for water circulation in subduction zones
The subducted sediments undergo a series of dehydration
reactions (Figure 6). Kimura et al. (2012) showed using a
new temperature calculation that the opal A-CT-quartz
transition and smectite-illite transition occur at the plate
interface between 40 to 80 and 80 to 120 km, respectively,
landward of the Japan Trench (Figure 6). The hypothetical
end-member determined in this study shows higher iodine
and lower Cl concentrations than seawater. The dehydra-
tion of hydrous minerals releases water and dilutes the Cl
concentration in pore fluid; hence, the source of deep
groundwater is probably deeper than those dehydration
depths. Moreover, the isotope and trace element compos-
ition revealed the involvement of sediments in the gen-
eration of island-arc magma in northeast Japan (Shibata
and Nakamura 1997), strongly suggesting that the sub-
duction component is carried to depths exceeding
150 km. The mantle wedge may be serpentinized, in
view of a result of seismic wave tomography (Figure 6;
e.g., Miura et al. 2003), also suggesting the release of a
large amount of water beneath the mantle wedge.
Microseismicity has been recognized in the mantle

wedge to form the aseismic front (AF in Figure 6) roughly
below the coastline (Yoshii 1975, 1979). Thus, the overrid-
ing plate off the coast of the study area is characterized by
the mantle wedge and basement crust, both seismogenic,
and slope sediments covering the basement rocks.
Shale is very impermeable, particularly in the direction
normal to the bedding plane (Kwon et al. 2004a, b and
references therein), and even the clay-bearing fault
gouge has a permeability of as low as 10−17 to 10−22 m2

(Faulkner and Rutter 2000). Therefore, fluids probably
cannot easily penetrate through the slope sediments
containing low-permeability shale, although we are not
aware of any permeability data on the slope sediments
in the Tohoku subduction zone, whereas fractured
basement rocks have much higher permeability (e.g., 10−15

to 10−18 m2 in the case of cataclasite along the Median
Tectonic Line; Uehara and Shimamoto 2004). Hence,
the overall permeability structures might have promoted
fluid flow through fractured basement rocks from the
subducting plate towards the coastline.
In addition, Imanishi et al. (2012) recognized that

normal-fault type earthquakes had occurred locally in
the Joban and Hamadori areas even before the 11 March
2011 Tohoku-oki earthquake, despite the stress field in
Tohoku being dominated by E to W compression. The
11 April 2011 Iwaki earthquake and associated surface
ruptures were of normal-fault type (Fukushima et al.
2013; Toda and Tsutsumi 2013). Moreover, Imanishi
et al. (2012) found a clear normal-fault type earthquake
sequence extending from the subducting plate to the
aftershock area and called it a branching fault (shown by
a thick red line in Figure 6; small gray circles are after-
shocks traced along profile EE’ in Figure four of their
paper). The study area is the only place in the focal area
of the Tohoku-oki earthquake where aftershocks are
distributed continuously from the subducting plate to
the coastal area of Tohoku. The branching fault is a
broad zone of microseismicity and probably acted as a
fluid conduit from the subducting plate to
the study area. The discharge of a large amount of ther-
mal water after the Iwaki earthquake (Sato et al. 2011;
Kazahaya et al. 2013) strongly suggests that the earth-
quakes promote upward movement of deep ground-
water in the areas. If the deep groundwater in the study
area came out through the broad branching fault zone,
the path of the water along the fault would be about 80
to 90 km. The ages of the incoming sediments range
from 2 to 20 Ma, as reviewed above, and it takes about
2 Ma for the sediments to reach the intersection of the
subducting plate and the branching fault. Thus, the
iodine age of about 40 Ma gives 2 to 5 mm year−1 as the
average speed of H2O migration in the overlying plate.
The low speed may imply that fractures are sealed
rapidly, and fault valve behavior (Sibson 1992, 2013)
controls the fluid flow. Whether an average velocity of a
few to several millimeters per year is appropriate or not
needs a test from additional study in the future.
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According to Kazahaya et al. (2014, Figure two panel B),
the end-member of Arima-type deep-seated fluids in
southwest Japan, which has been considered to be derived
from the subducting Philippine Sea Plate, is within the
range of magmatic gas in the δD to δ18O diagram. The
values of δD and δ18O for our deep groundwater samples
(Figure 2a) fall on the trends for altered seawater in their
diagrams. In addition, our samples have lower Cl con-
centration than seawater, whereas the Cl concentration
of Arima-type deep-seated fluids is more than 4 wt.%
(Kazahaya et al. 2014). It should be emphasized that the
δD, δ18O, and Cl data of our samples do not have Arima-
type deep-seated fluid characteristics, although they might
have migrated through the mantle wedge. One possible
cause of the difference is the difference in temperature
between the Nankai Trough and Japan Trench; that is,
the calculated temperature along the slab/mantle inter-
face at a depth of 50 km is only 200°C in northeast Japan
(Peacock and Wang 1999). More detailed geochemical
investigations need to be undertaken to determine the
origin of iodine and fluid-flow paths in the Tohoku sub-
duction zone. The Joban and Hamadori area, where we
sampled deep groundwater from basement rocks, may be a
good window to look into the fluid circulation in a subduc-
tion zone related to subducted sediments.

Conclusions
We measured δD, δ18O, 129I/I, 36Cl/Cl, and 3H concentra-
tions in deep groundwater in the Joban and Hamadori
areas in southern Tohoku and inferred the origin of iodine
contained in the water. Main results are summarized
as follows:

(1)The hypothetical end-member of the groundwater,
estimated from the relationship between Cl and
δ18O, revealed much higher iodine and lower Cl
concentrations in the groundwater than those in
seawater. The I and Cl concentrations can be
explained by the mixing of the hypothetical
end-member, meteoric water, and seawater.

(2)Ages of iodine in deep groundwater from the Joban
and Hamadori areas were uniform and were
approximately 40 Ma. Most of the 36Cl/Cl ratios
were within a range of the secular equilibrium.

(3)The I/Cl ratio of the deep groundwater increases
with increasing temperature. The temperature of the
groundwater is high with a maximum of 78°C at a
depth of 1,100 m, and the groundwater in the Joban
basin is unlikely to be a source of the groundwater
in the study areas because the geothermal gradient
(18°C km−1) of the basin is low. Basement rocks in the
study areas are older than Cretaceous and cannot be a
source of the iodine either.

(4)Subducted sediments in the Japan Trench are a
possible source of iodine in the groundwater because
the sediments in the northwestern Pacific Ocean
contain organic carbon as much as 0.5 to 1.0 wt.%.
Active faults are developed in the study area and a
large amount of groundwater was discharged during
and after the 2011 Iwaki earthquake.
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Microseismicity was also recognized from the
subducted plate all the way to the study area after
the 2011 Tohoku-oki earthquake. Those results and
the iodine ages suggest that the
groundwater migrated through fractured basement
rocks from the subduction plate to the study areas
at a rate of 2 to 5 mm year−1.
Additional file

Additional file 1: Table S1. Major and trace element compositions of
representative rock samples. Data for rocks similar to the host rocks of
our sampling locations were selected from the original data reported in
Morikawa and Tosaki (2013).
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