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Abstract

We applied the Markov random field model, which is a kind of a Bayesian probabilistic method, to the spatial inversion
of the porosity and pore shape in rocks from an observed seismic structure. Gaussian Markov chains were used to
incorporate the spatial continuity of the porosity and the aspect ratio of the pore shape. Synthetic inversion tests were
able to show the effectiveness and validity of the proposed model by appropriately reducing the statistical noise from
the observations. The proposed model was also applied to natural data sets of the seismic velocity structures in the
mantle wedge beneath northeastern Japan, under the assumptions that the fluid was melted and the temperature
and petrologic structures were uniformly distributed. The result shows a significant difference between the volcanic
front and the forearc regions, at a depth of 40 km. Although the parameters and material properties will need to be
determined more precisely, the Markov random field model presented here can serve as a basic inversion framework

for mapping geofluids.
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Introduction

In order to understand the various dynamic processes
in the earth, it is important to understand the distribu-
tion of geofluids. Recent developments in the technology
for geophysical observations, such as seismic tomogra-
phy and geomagnetic methods, provide detailed images
of the earth’s interior (Nakajima et al. 2001; Ogawa et
al. 2001; Takahashi et al. 2009). Additionally, there has
been increased understanding of the constitutive relation-
ships between the physical variables, such as lithology, the
porosity of rocks, and the observational data, such as seis-
mic velocity and resistivity (Glover et al. 2000; Takei 2002).
Against this background, a pioneering study by Nakajima
et al. (2005) used the constitutive function proposed by
Takei (2002) to evaluate the effective aspect ratio and
the volume fraction (porosity) of the fluid-filled pores in
the observed low-velocity anomalies in the mantle wedge
beneath northeastern Japan.
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Recently, several studies have attempted to make a
quantitative and detailed map of the spatial distribution
of geofluids (Hoshide and Nakamura 2013; Iwamori et al.
2011). However, this remains difficult, because there is
still much uncertainty in the available data and assump-
tions. In order to overcome the difficulties arising from
this noise and uncertainty, a statistical and probabilistic
analysis of the geophysical data is essential.

The main purpose of the present study is to construct
an inversion framework that can be used to estimate pre-
cisely the distributions of various physical properties from
observed spatial data sets; we do this by developing the
Markov random field (MRF) model, which is a kind of a
Bayesian statistical model. The Bayesian approach enables
us to incorporate a forward model and prior information
into a data-driven inversion analysis.

The MRF model uses Markov chains to describe the
properties of an image, and it is often used in the field
of information science for image restoration and pattern
recognition (Geman and Geman 1984; Li 2009; Tanaka
2002). In the MRF model, the spatial variations in phys-
ical properties are assumed to be generally smaller than
the noise in the data and the analytical uncertainty. If
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this assumption is valid, then by using the Bayesian
approach, the MRF model appropriately filters out the
high-frequency noise, and we can obtain the accurate spa-
tial distributions of the physical properties. Recent papers
in the natural sciences have applied the MRF model to
inversion problems for various observational data sets
(Kuwatani et al. 2012; Watanabe et al. 2009).

Here, we develop a Gaussian MRF model to recon-
struct the spatial distribution of geofluids from the seismic
velocity structure. On the basis of the Bayesian frame-
work, the process for generating the velocity structure
and the spatial continuity of the distribution of geoflu-
ids are introduced into the stochastic inversion analysis
in accordance with the law of causality. In order to deal
with the nonlinear relationship between the target phys-
ical variables and the observed data, a Markov chain
Monte Carlo (MCMC) algorithm was incorporated into
the MRF model (Metropolis et al. 1953). An application
of the method to synthetic data showed that the spa-
tial distributions of porosity and the aspect ratio could
be reliably estimated, and this supports the effectiveness
of the MRF model. We also applied the model to the
velocity structure of the mantle wedge beneath north-
eastern Japan, which was obtained by 3-D tomography
(Matsubara et al. 2008), under the simple assumption
that variables other than the porosity and aspect ratio
were known and spatially uniform. Finally, we will dis-
cuss the validity of our assumptions, the effectiveness
and applicability of the MRF model, and the geophysi-
cal implications. Although many parameters and material
properties remain to be determined more precisely, the
proposed framework will be very effective for determining
the distribution of geofluids.

Method

The seismic wave velocities (Vp and Vs) of solid-fluid
composite media are generally expressed as functions of
the intrinsic elastic parameters of the solid framework and
pore-filling fluid, fluid volume fraction, and pore geom-
etry (Mavko 1980; Takei 2002). Recently, (Takei 2002)
proposed a unified formulation of Vp and Vs as a function
of the effective aspect ratio («) and the fluid volume frac-
tion, that is, the porosity (¢), of the fluid-filling pores; this
formulation can be applied to a wide variety of pore shapes
[see Additional file 1]. Assuming that the type and com-
positions of rock and fluid are fixed and that the thermal
and pressure effects are negligible, these functions can be
simply rewritten as follows:

VP :fP(¢» Ol),
Vs = fs(¢, ).

As shown in Figure 1, seismic velocities show a mono-
tonic decrease with increasing porosity ¢, and the slope is
controlled by the aspect ratio «.

(1)
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Figure 1 Dependency of seismic wave velocities on porosity and
effective aspect ratio, calculated using Takei (2002). (a) P-wave
velocity and (b) S-wave velocity. The dry rock and fluid phase are
assumed to be peridotite (V8 = 7.9 kmv/s, V2 = 4.55 km/s) and melt.

However, geophysical observations always contain some
measurement errors and uncertainty. Thus, the obtained
P-wave velocity Vj, for each grid cell i should be written as

Ve =fo(¢', ') + ep, (2)
where 8{, is the observational noise for Vli for each spatial
grid cell (i). If we assume a Gaussian noise with zero mean,

Equation 2 can be rewritten in terms of the conditional
probability as

p(Vhlg',al) =

i i iv12
exp(_{vp fo@l,ad)) )

2
20p

1
N 27103
3)

where p(VI§|¢i, ') is the probability that Vli is generated,
given ¢’ and &/, and o7 is the variance of the noise in the
observed seismic velocity Vp. Equations 2 and 3 can also
be written for the S-wave seismic velocity Vs. Because we
will assume that random errors are independent, the prob-
abilities of generating Vp and Vs are independent between
grid cells. By multiplying the probabilities of Vp and V5 for
all grid cells, we can obtain the total joint probability for
the observed velocities Vp and Vs for all grid cells as

N
p(Ve, Vslo, ) = [ [ p(ViIg', o)) - p(Vilgh o), (4)
i=1
where N is the total number of grid cells measured, and
Vp, Vs, ¢, and « indicate the respective set of variables Vp,
Vs, ¢, and o for the observed grid cellsi = 1,...N.
On the other hand, Bayes’ theorem can be written as
follows:

p(VPx VS|¢’“) P((by“)
,o|Vp, Vs) = . 5
p($,a|Vp, Vs) (Vo Vo) (5)

The left-hand side of the equation is the posterior prob-
ability p(¢, a|Vp, Vs), where the probability of ¢ and « is
based on the observed seismic velocities, Vp and Vs. The
set of ¢ and « that maximizes the posterior probability is
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considered to be the most probable spatial distribution of
porosity ¢ and aspect ratio « for the available observed
data set and the available prior information about the dis-
tribution of the fluid. The numerator of the right-hand
side of the equation is the product of the likelihood func-
tion p(Vp, Vs|¢, @) and the prior probability p(¢, «). The
likelihood function p(Vp, Vs|¢, ) is the probability of
generating the observed data Vp and Vg, given that val-
ues ¢ and o are true. The prior probability p(¢,a) is
the probability of the physical variables ¢ and a before
any additional observations are made. We assume that
the physical variables are continuous, and so the physi-
cal quantities are similar at neighboring spaces and times.
The MRF model adopts the Gaussian Markov chain model
as the prior probability, as follows:

1
p($) = — exp —2 5> (¢ (6)
Zo % i~y
where ). is the summation of all pairs of neighboring

l~1
grid cells, Uq> is the variance of the change in ¢ between
two adjacent grid cells, and Zy (aq%) is a normalization
coefficient. The prior probability for « can be also written
as Equation 6. The denominator of the right-hand side of
the equation p(Vp, Vs) is invariant for changes in ¢ and «,
so this is negligible for our analysis.

Here, we define the evaluation function as the negative
logarithm of the posterior possibility, — In p(¢, a|Vp, V).
By substituting the likelihood function Equation 4 and
the prior probability Equation 6 into Bayes’ theorem
Equation 5, the evaluation function can be expressed as

E(¢; o 0) VP’ VS)
1 Y : CN2
== (Vife(4',a))

20p i

1 N
o Y (Vifs(@ o))’ )
s i=1

Fag D00 g T )

i~j ® i~
N
+ E(lnag + lnosz) +InZy +InZ, +C,

where 0 indicates the set of parameters {03,03,05,03},
and C is a constant that is independent from ¢, &, and
0. Due to the monotonicity of the logarithm function,
the minimization of the evaluation function E(¢,a;8) is
equivalent to the maximization of the posterior probabil-
ltYP(¢’ «|Vp, Vs).

In the evaluation function, the first and second terms
indicate the reproducibility of the observation, respec-
tively, whereas the third and forth terms indicate the
spatial continuity of the porosity and the aspect ratio,
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respectively. Minimization of E(¢,a;0) satisfies the
requirements of both the reproducibility of the observed
data and the spatial continuity of the physical variables.

The parameters 6 fully control the relative importance
of the reproducing the observational data to honoring
the continuity of the physical properties, and so these
parameters are often referred to as hyperparameters. The
most probable set of hyperparameters is obtained by min-
imizing the free energy, which is defined as the negative
logarithm of the posterior possibility p(8|Vp, Vs). Using
Bayes’ theorem and marginalizing the likelihood function,
the free energy can be expressed as

F(8) = —Inp(6|Vp, Vs)

:—ln/ /exp{—E(¢,<x;0)}d¢da+C, (8)

—00 —00

where we assume that the prior probability p(6) is uni-
formly distributed, and C is a constant that is independent
from 6. In this study, the free energy F(f) was mini-
mized by the steepest descent method, using the MCMC
method [see Additional file 1]. A maximum a posteriori
(MAP) solution set of ¢ and a can also be obtained from
numerous candidates which are generated by the MCMC
calculations.

Synthetic inversion test
The synthetic inversion test was conducted to investigate
how well the proposed method could reconstruct the tar-
get physical quantities from a noisy data set. The target
spatial distributions of ¢ and « were assumed to have
Gaussian inhomogeneities (Figure 2a). In a Gaussian inho-
mogeneity, the difference between the values for a physical
property between two adjacent grid cells obeys a Gaussian
distribution and corresponds to the prior probability of a
Gaussian Markov chain (Equation 6). In order to simu-
late actual observed data, the velocity structure, Vp and
Vs, was generated by substituting the assumed 2-D spa-
tial distributions of ¢ and « into the constitutive function
Equation 1 and then adding noise (Figure 2b). For the con-
stitutive function Equation 1, we used the same physical
properties as were used for the melted peridotite system:
1,050°C and a depth of 40 km (Nakajima et al. 2005).
Figure 3 shows the changes in the hyperparameters 6
during the iterations of the steepest descent method as
it minimized the free energy F(f) by using the MCMC
method. We can see that each hyperparameter converges
to the true value as the number of trials increases; this
indicates that the estimations of the hyperparameters are
successful. Figure 4 shows the root-mean-square (RMS)
errors (the square root of the average of the squared
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Figure 2 Synthetic data used in the inversion test. (a) Synthetic
distributions of porosity ¢ and aspect ratio e, which are to be
estimated. They were generated by 50 x 50 random walks; the
variances were set to (o(;, oj) = (0.0042,0.0152). (b) Observational
data of Vp and Vs. They were obtained using Equation 1 with
Gaussian noise; the variances were set to (o7, 02) = (0.12,0.05%).

residuals between the true and estimated values) for the
values of ¢ and o that minimize the evaluation func-
tion E(¢,a;0) for each iteration of the steepest descent
method. They decrease and converge to a low value as
the number of trials increases, and this implies that the
estimation accuracy increases as the hyperparameter esti-
mation proceeds.

Figure 5a shows the spatial distributions estimated by
the MRF model for ¢ and « from the above synthetic
velocity structure model. The distributions of ¢ and «
were calculated by numerically solving Equation 1 from

(a) (b)
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Figure 3 Estimated behavior of the hyperparameters during the
method of steepest descent. (a) Variances of continuity of porosity
(¢) and aspect ratio (), and (b) variances of noise in the
observational data, Vp and Vs. The empty circles indicate the true
values of the variances.
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Figure 4 Behavior of the root-mean-square errors in the porosity
(¢) and the aspect ratio («). The trial number is the iteration
number for the method of steepest descent.

the observed Vp and Vg; we shall refer to this as the deter-
ministic method. For comparison, these are also shown
in Figure 5b. The distributions of ¢ and & calculated by
the deterministic method are directly affected by the noise
of the observed seismic velocities. They are too jagged
for the true distributions to be determined. Although the
deterministically estimated distributions of ¢ and « are
rough and contain large errors, the MAP solutions that
were obtained by the MRF model are much smoother and
more accurate. For the deterministic method, the RMS
error for « is approximately 0.31, whereas the RMS error
for ¢ is approximately 0.07. With the MRF model, the
RMS errors of ¢ and & were reduced to 0.0098 and 0.038,
respectively. Although the deviations of « from the true
profile are still large, the estimated profiles are much more
accurate than those obtained by the deterministic method.

In addition to the synthetic distributions of ¢ and «,
which have Gaussian inhomogeneities, we also checked
the effectiveness of the proposed method using a power-
law inhomogeneity, since this is considered to be the
typical distribution of actual inhomogeneities in the earth
(Sato et al. 2012). The details are in Additional file 1.
Although there is difference between the prior probabili-
ties, which were assumed to be Gaussian, and the actual
power-law inhomogeneities, the estimated variances of
continuity, o2 and cr(f, were approximately the same as
the true values obtained by estimating them from the
hyperparameters. We can also estimate the spatial distri-
butions of ¢ and &, which supports the effectiveness of
the proposed method for actual non-Gaussian distribu-
tions in natural systems. Although further investigation
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Figure 5 Estimated fluid distribution (porosity ¢ and aspect ratio o). (a) MRF model (this study) and (b) deterministic method.

is needed, due to the versatility of the Gaussian distri-
butions, the proposed method is approximately valid for
natural continuous distributions.

Application to the mantle wedge beneath northeastern
Japan

We applied the above MRF model to the velocity structure
beneath northeastern Japan, as constructed by Matsubara
et al. (2008) using seismic tomography. In Matsubara et al.
(2008), the cells were constructed with a 0.1° grid spacing
in the horizontal direction and a 10-km grid spacing in
the vertical direction. In this study, the 2-D distributions
of the fluid were imaged from the horizontal Vp and Vs
images at a depth of 40 km (Figure 6). As in Nakajima et al.
(2005), we assumed that the host rock was peridotite; for
the reference velocities, defined as the velocities of the dry
host rock, we used V) = 7.90 and Vg = 4.55 km/s. We
also assumed that the fluid was melted throughout. We
used the same melt parameters as those used in Nakajima
et al. (2005).

We show the results for the inversion beneath north-
eastern Japan. Figure 7 shows the estimated hyperparam-
eters versus the iteration count during the method of
steepest descent. From Figure 7, we can confirm the stable
convergence of all the hyperparameters. We also checked
the stability of convergence for different initial values of
the hyperparameters and verified that there were no local

minima that could trap the inversion. The variances of the

continuity of the porosity oq% and the aspect ratio o2 con-

o
verged to 8.3 x 1077 and 2.7 x 107>, respectively. On the
other hand, the variances of the observational noises Vp
and Vg converge to 0.061 and 0.0038, respectively. The
standard deviations o4 and o, equaled the RMS errors.
The calculated RMS residuals of Vp and Vs were 0.25 and
0.062, respectively.

Figure 8a shows the spatial distributions of ¢ and «
estimated by the MRF model. The most probable esti-
mate is the set of ¢ and o that minimizes the evalua-
tion function E(¢,w;#), as defined by Equation 7, i.e.,
the set that maximizes p(¢, a|Vp, Vs). For comparison,
the distributions of ¢ and «, which were estimated by
the deterministic method, are shown in Figure 8b. The
distributions of ¢ and « calculated by the deterministic
method are very jagged, which directly reflects the noise
in the observed seismic velocities. Additionally, many of
the observed Vp and Vg deviate from the range of possible
Vp and Vg, as generated by Equation 1; this is as shown in
Figure 8b.

The ¢ values estimated by the MRF model range from
0 to 0.01. By comparison with the original mappings
of Vp and Vs (Figure 6), the regions of large ¢ values
correspond to small Vp and Vg, reflecting that both Vp and
Vs decrease monotonically with increasing ¢. In particu-
lar, the ¢ values are relatively large (> 0.002) beneath the
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Figure 6 Observed tomographic data (Matsubara et al. 2008) at the depth of 40 km used in this study. P-wave and S-wave velocities (Vp (left)
and Vs (right)) and their ratio (Vp /Vs, bottom) are shown. Closed triangles indicate the Quaternary volcanoes.

Quaternary volcanoes and Hokkaido. On the forearc side,
the value of ¢ is generally low, ranging from 0 to 0.002.
However, several anomalous, large values of ¢ are found
in the east, off Fukushima and between the Honshu and
Hokkaido islands.
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Figure 7 Estimated behavior of the hyperparameters during the
method of steepest descent, at the depth of 40 km. (a) Variance
of continuity of porosity O’; and aspect ratio o2; (b) variance of the
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observational noise in Vp o and Vs 2.

The o values are 0.01 to 0.03 on the back-arc side and
0.001 to 0.01 on the forearc side. The regions of small o
are roughly consistent with the regions that have a high
Vp/Vs ratio. Beneath the Quaternary volcanoes, the «
value is generally high. In particular, near Chubu and west
Hokkaido, the value may be as large as ~0.1. On the fore-
arc side, the « value is generally low, and small values
of «, about 0.001, are detected in the Hidaka region and
westward.

Discussion

In terms of reducing high-frequency noise, the role and
efficiency of the MRF model appear to be similar to those
of a smoothing filter applied to the observational data.
In a smoothing method such as a moving average, too
large of a filter will cause excessive smoothing and blur
the details of the image. In actual analyses for natural sys-
tems, however, the true distribution and magnitude of the
noise are unknown, so we cannot make a prior determina-
tion of the appropriate filter size. Thus, it is difficult to use
an ordinary filtering (averaging) method to determine the
precise physical values from noisy observations. However,
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Figure 8 Estimated distributions of ¢ (left) and « (right). (a) MRF model and (b) deterministic method. The gray pixel in the estimate of the
deterministic method indicates that the residual of the calculated and observed Vp and Vs was larger than 1% of the observed Vp and Vs.

even without a priori information about the magnitude of
the noise, the MRF model can determine the variance of
the noise from the data. This is the most significant advan-
tage of the MRF model, that it enables us to analyze the
data objectively and quantitatively.

When applied to the actual data, the deterministic
method, which uses the data and the inverse function
to obtain an analytic solution, results in a very jagged
and incomplete estimate. When observational data is con-
verted to physical parameters, the results are sometimes
beyond the scope of the model, and thus no solution can
be derived. This is caused by a combination of observa-
tional noise and uncertainty, which highlights the impor-
tance of using a statistical or probabilistic analysis. The
proposed method was able to image the continuous dis-
tribution of fluid because it did not take a deterministic
approach but a probabilistic approach, and it was thus able
to avoid perturbations due to noise.

This study used the seismic velocities estimated by
tomography, Vp and Vg, and realistic observations were
simulated by adding uncorrelated Gaussian noise with
zero mean to each of the grid cells. At present, the pro-
posed model cannot deal with the cross-correlated errors
of seismic velocities that are derived from a tomographic
inversion. For a more accurate estimation of the distri-
bution of geofluids, a ray-path matrix, which relates the
travel time to the inverse of the seismic velocity, can
be incorporated into the probabilities of the generated
observations, Equation 3. In our current research, due to
the flexibility of the MRF model, we were able to suc-
cessfully apply it to a seismic tomographic inversion by
using the ray path matrix to generate the probabilities
and continuity of the rate to obtain the prior probability.
The inversion of physical properties directly from the
observed travel time is an important issue that needs to be
addressed in future work.
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The calculated spatial variations in the porosity ¢ and
the aspect ratio « of the geofluids show a significant differ-
ence between the forearc regions and the volcanic front, at
a depth of 40 km. On the forearc side, the values are gener-
ally low, with ¢ ranging from 0 to 0.2 vol.%, and « ranging
from 0.001 to 0.01; this indicates that the fluid is not inter-
granular but is between thin cracks. There is little melting
in this region, and even if melt exists, it is not textually
equilibrated to the surrounding rocks. The small amount
of melt is consistent with other geophysical observations
which indicate weak inhomogeneities and weak attenua-
tion on the forearc side (Takahashi et al. 2009; Umino and
Hasegawa 1984; Yoshimoto et al. 2006).

Beneath the Quaternary volcanoes, on the other hand,
the large amount of geofluid (> 0.2 vol.%) indicates par-
tial melting of the rock. The « values are generally high
(> 0.02), so the melt is considered to fill oblate spheroid
cracks or dikes. In particular, in the region of Chubu and
west Hokkaido, the value is up to ~0.1, which indicates
that the pore geometry is near equidimensional, and the
fluid is distributed in the spaces between the grains (Waff
and Bulau 1979; Takei 2002). The estimated amount and
shape of geofluid are considered to be closely related to the
magmatic process of the Quaternary volcanoes (Tamura
et al. 2002; Nakajima et al. 2005).

At the same depth beneath the volcanic front, Nakajima
et al. (2005) estimated the porosity at 1 to 2 vol.% with
an aspect ratio of 0.02 to 0.04. Although the values of the
aspect ratios are consistent with each other, the porosi-
ties differ. It is not possible to make a simple comparison
between this study and that of (Nakajima et al. 2005),
because different seismic velocity structures were used
in their analyses (Nakajima et al. 2005; Matsubara et al.
2008). There are also several sources of uncertainty in nat-
ural systems, which affect the values of the parameters
used in the analysis; this is discussed below. Further stud-
ies are necessary to evaluate the validity of the obtained
distributions of geofluids.

In order to match the number of unknown parameters
to the number of observable parameters, we have assumed
that the parameters other than porosity and aspect ratio
of the geofluids are known and uniformly distributed.
In the actual mantle wedge zone, however, the spatial
variations of temperature and composition overlap with
geofluid distributions. For more realistic imaging of the
distribution of geofluids, it is necessary to introduce a
priori information and to introduce other models, such as
those for thermal or petrological structure, into the anal-
ysis (Iwamori et al. 2011). However, many of these models
are still poorly constrained, and thus, in order to obtain
reliable distributions of geofluids, some of the parameters
should be probabilistic variables. The MRF model may
have the potential to overcome these difficulties due to
its Bayesian approach and flexible formalism. By allowing
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us to add terms to the evaluation function, it allows us to
incorporate other geophysical observational data sets and
various types of prior information as probabilistic con-
straints. Although additional theoretical improvements
are needed for individual problems, the MRF model pre-
sented here can serve as a basic inversion framework for
the mapping of geofluids.

Additional file

Additional file 1: Markov random field modeling for mapping
geofluid distributions from seismic velocity structures by T. Kuwatani
etal.
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