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This paper deals with the effect of a third body on the apsidal motion of two bodies. The specific case involves a
third body-planet Jupiter and the apsidal line motion of a minor planet that orbits the Sun and has its apsidal line go
through the major axis of an ellipse. The third body (Jupiter) which satisfies the Langrangian solution will affect the
apsidal line motion and therefore affects the ascending and descending motions of the minor planet. In this case no
analytical solutions can be obtained, and therefore specific assumptions are made along with numerical solutions.
For convenience, we adopt the Lagrangian solution in the three-body problem and obtain quasi-analytical results,
which are used to evaluate the effect of the planet on the d€2/dt (€2 ascending node) of each minor planet. This
method is beneficial for improving our knowledge of the orbital elements of the asteroids, and perhaps even much
smaller effects such as the effects of the planets on the interplanetary dust complex. Information on the latter may
be provided by using this method to investigate Jupiter’s effect on the inclination of the symmetry surface of the

zodiacal dust cloud.

1. Introduction

Cowling (1938) discussed the motion of the apsidal line
in close binary systems by making the assumption that the
shape of the stars at any instant closely approximates the
equilibrium form. Considering this we attempt here to study
the effect of a third body on the motion of the apsidal
line. Specifically, we apply our analysis of this problem to
situations in the solar system in an effort to further refine our
knowledge of the gravitational effects of the planet Jupiter
on other minor planets such as the asteroids. Later, it may be
possible to delineate minute effects of Jupiter on the orbital
elements of the symmetry surface of the zodiacal dust cloud.

The three-body problem here is assumed to be the Sun,
an orbiting dust particle with its distance from the Sun much
greater than the Sun’s diameter, and the third body being
Jupiter. Kopal (1959) showed that the effect of the third
body will be very complicated and that analytical solutions
cannot be obtained.

In dealing with the effect of a third body (that satisfies the
Lagrangian solution) on the three-body problem, we make
some specific assumptions and use numerical calculations.
But before going into the mathematical details we give here
a short summary of the importance of this work in evaluating
the motion of the apsidal line (which is the major axis of
the ellipse of the minor planet to the Sun ) and searching for
minute gravitational perturbations of Jupiter on the ascending
node of the “Symmetry Surface” of the zodiacal cloud.
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2. The Asteroids

Recently there has been a great deal of interest in gather-
ing more detailed information on the orbital elements of the
asteroids in view of their possible catastrophic collision with
our planet. For this reason, we believe that improvements
in determining the effects of Jupiter on the asteroid’s orbital
elements are worth pursuing.

3. The “Symmetry Surface” of the Zodiacal Cloud
The zodiacal light (hereafter ZL) arises from sunlight scat-
tered by small (mainly 10-100 wm) dust particles which are
present in interplanetary space. It is appropriate here to de-
fine the so-called “Symmetry Plane” of the ZL, which we
prefer to call “Symmetry Surface” (Misconi et al., 1990).
The “Symmetry Plane” is classically defined as the plane
that contains the highest number density of interplanetary
dust particles and therefore the maximum brightness of the
ZL. The word symmetry comes from the observation that
the dust density and therefore the brightness intensity falls
off in a similar fashion above and below the plane. This is
also the same as searching for the “photometric axis” (locus
of points of maximum brightness) of the zodiacal light.
Based on observational evidence, Misconi (1977) and
Misconi and Weinberg (1978) suggested that there is no sym-
metry plane per se, but, rather a “multiplicity” of planes.
That is why we prefer now to call this “multiplicity” of planes
the “symmetry surface”. This follows from the observation
that the orientation of any symmetry plane is not constant
with heliocentric distance and appears to follow closely the
orbital planes of Venus or, Mars or and Jupiter, at their re-
spective distances (Misconi, 1980; Gustafson and Misconi,
1986; Gustafson ef al., 1987a,b). Misconi (1977) suggested
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Fig. 1. A sketch of the relative inclinations from the ecliptic plane as a
function of elongation: for the solar equatorial plane, the orbital plane of
Venus and the invariable plane. Also shown is the position of the sym-
metry plane found by Leinert ef al. (1980, dashed line) and our combined
results over this range of elongation (Misconi, 1980).

further that the zodiacal dust is influenced gravitationally by
the planets and that this could explain the warping of the
plane.

Several recent publications were brought to the attention
of the authors that touch on the subject of the “symmetry
surface” of the zodiacal light: Ishiguro et al. (1998), James
et al. (1997), and Ishiguro et al. (1997). These publications
injected renewed interest in this subject but they do not affect
the background or other aspects of this paper.

4. The Equations of Motion of the Three-Body
Problem
Considering these realities, we start with the equations of
motion of the three-body problem:

rr—n ryr—r;

f'l = —GWZ2 3 - Gm3 3 . (1)
T I3

. r,—r; r,—r

fy=—-Gmy———Gm——5—, 2
T3 1

. rs—rI rs—1m

r; = —Gm1 3 — GWI2 3 . (3)
31 3

Using these equations, (1) xm + (2) x my + (3) * m3 where
m is the mass of the Sun, m is the mass of the minor planet,
and m3 is the mass of the perturbing planet (Jupiter), which
then gets reduced to,

m¥| + moty + msr; = 0.
By integral, it yields:
mi¥y + myIiy + msr; = constant.
By selecting the center of mass as the new origin, we get:
ry=r —00, r,=r,—00, r;=r;—00.
So,
m¥) + mat, + ms¥y = (my + my + m3)00' = MR

where R is a constant for the center of mass. Now with
respect to the new origin, we have:

mﬂ“’{ + mzl‘g + m3r’3' =0.
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Fig. 2. Shows the masses of the Sun (m1), the minor planet (m;), and the
planet Jupiter (m3); ry, rz, and r3.

By integral, we have
mi¥] + mary 4+ msri + MR = 0. 4)
In order to obtain an equilibrium solution in this system, we

assume that:
13 =131 =112 =7 (1).

Then substitute them into Eq. (1):

.. G
I = —ﬁ[mz(l‘l — 1) +m3(r; —r3)].

From
mixry + mory +msr; =0,

there exists
my(ry — rz) + m3(ry —r3) = ri(my +my +ms3).  (5)
Taking the square of both sides of Eq. (5),

2 2
ri(my + my + m3)
= mzrlz2 + 2momsriaryz €os 60° + mgrlz3

= r3(m3 + myms + m?).

So,
. I
r=-G0M —,
r
where \
M — (m3 + myms + m3)?
: (my + my + m3)?

Hence m, moves in a central orbit around the center of
mass, as though the mass M, was located there. Now if the
configuration of the three bodies is maintained, then similar
results will follow for the other two bodies.

As long as the initial conditions are right, the figure re-
mains as an equilateral triangle; this condition means that
Fy . F, : Fs =r| :ry : r3, where F; is the force per unit
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mass (Danby, 1962), and the resultant force acting on m;
which passes through the center of mass. Thus,
723 731 r12

—_—— = — :)\, t s
r°s  r’3 rp ®

where the zero superscript indicates the value at £y, and
0 =0, =6, =0(1),

i.e., the orbital angular velocities of the three bodies are the
same, though they would vary with time. The total angular
momentum of the system about the new origin is

2 2 2 ; 2 2 2052
myry fi +mars fo +mars f3 = (myry + mary + m3r3)d

é(t) = constant.

The angular momentum for each individual mass about the
system is constant too.

Now we evaluate the relationship among 7y, 7, r3 and 7.
From

. r
ry = —GM1—3
ry
we can get
I
F, = —GM1—3.
r

1

Since Fy : F> : F5 =r| : ry : r3, we might assume

F F; F
h_h_§B_¢
r m r3
So,
GM
V1S=GM1V—; or I"?I 1.
ry S
So,
3 GMI
ry =
S

G
= m3 + myms + m3)"/?
\/S(m1+m2+m3)2( 2 23 3

= S'(m? + myms +m3)'/?,

S =7 G .
S(my 4+ my + m3)?

Same as above for 7, and 3.
The next step is to calculate the distance, », among the
three bodies.

where

) S
”12 + r22 —2rirpcosd =rp i.e.,, cosAd = - 2,,12r2 .
. r2+r2—r2
r3+r}—2rricos B=r, ie., cosB =2 pTov
24,2 9 C= i ¢ =0
ry+ri—2rrcosC=ry e, cosC= -7

A+ B+ C =360°.

Angles B and C will be less than 180°, so sin B > 0 and
sinC > 0.

2 2 2\ 2
sinB:x/l—cossz\/l—(w)

21"27"3
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2.2

_ —rt+ 2(1’22 + r32)r2 — (r22 — r32)2
B 4ryrs '

r2+r2_r2) 2
sinC =+/1—cos2C = 1—<¥>

2r3ry

—r4 4+ 207 + r32)r2 -} - r32)2
- \/ 4}’12;’32 '
cos A = cos(360° — (B + C)) =cos(B + C)
= cos BcosC —sin BsinC.

Hence, (Eq. (A.1), see Appendix A)

Now moving some terms, squaring both sides and merging
similar terms:
@rr® — 4 +r3 +rrt
~|—4r32[(rf + r? + r?) — (;’127”22 + r22r32 + 7”32;’32)]1’2 = 0.
In order to get a non-zero value of r, there exists
rt— (rl2 + r22 + 1”32)}’2
[} + 75 + 1) — (i3 + 35+ 13D = 0.

So (Eq. (A.2), see Appendix A).

Now if we substitute the values of 1, 7, and r3, i.e., | =
S’(m% + moms + mg)l/2 ... etc., the term containing the
square root becomes:

2(r12r22 + r22r32 + r32r32) - (rf + rg + rg‘)

= (7 +ry+r)? =207 +15 +713),
= [2(m] + m3 + m3) + (mimy + moms + mymy)?
—2[(m§ + moms + m%)2 + (m% +mms + mg)2
+(mi + mym; +m3)?],
= [V3(mimy + mams + mym) .
So (Eq. (A.3), see Appendix A)

@ isthe solution out of the triangle, so we pick upr = rV =
(my + my + m3)S’, and now we can discuss the motion of
each body.

The body m, is moving around the center of mass with
an elliptical orbit due to the resultant centripetal force F5.
Now let us assume that the equation of motion of the body
m, follows from:

1— 2
= M, and the same case for m;,
1 4 e cos f;
a(1 —e%)
Vp = ——.
1 4 e cos f>

But at any time
riiry i =8 (m3 4 mams +m3)*
S'(m3 +mims +mHV2 S (my 4+ my + m3)

ie.,
al(l—e%) . az(l—eg) ] a(l —é?)
l4+ecosf 1+eycosf 1+ecosf
= (m% + momsy —i—m%)l/2 : (m% + myms —i—m%)l/2 :

(mq + my + m3).
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This means that the linear terms have to be proportional
to each other, i.e.,
a) =dad =d

(m% + momsz + m%)l/2 : (mf +myms3 + m%)

(my + my + m3)

172 .

ande; =e; =eand f; = f, = f. From

a (my + my + m3)

—_— = and
ay  (m3+mams +m3)' /2
a (my + may + m3)
a (m? + myms +m3)\ /2’
we can get
(my + may + m3)
=d1— N and
(m2+m2m3 +m3)
(my + ma + m3)
a=a

2 .
(m3 4+ mymz + m3)!/2

Considering our problem, the vector » will move around
the center of mass of m; and m,, and in our case the center
of mass is actually the center of the Sun. The vector » moves
around the center of the mass in an ellipse whose anomaly
and eccentricity follow from 7| and r,. Consequently, we
can solve the motion of the apsidal line by considering the
perturbation effect of the third body m3, which is a planet.

We now start by considering the three masses m, m;, and
m3 which are incompressible bodies with densities p;, o2
and p; and with their centers of mass O, O,, and O3. m,,
and m3 rotate about the axis O, Z;, and O3 Z3, respectively,
and perpendicular to the plane of the triangle of their orbit.
Their angular velocities 6y, 65, and 65 are about these axes,
with their rigid masses m, m,, and m3. Co-ordinate axes
O\ X\ Y1 Z,, 0,X,Y>,7Z,, and O3X3Y3Z3 are taken with the
0,7y, 0,Z,, and O3 Z; as axes with rotating angular veloc-
ities, and, about these axes.

The distance r between the Sun (m), and the minor planet
(my), is assumed to be much larger than the diameter of the
Sun. This means that the Sun and the minor planet can be
regarded as forming a high precision ellipsoid. The distortion
in these three assumed spheres (Sun, minor planet, planet),
of radii Ry, R,, and R3, as the element of dm; of m; moves
from x,, y; and z; to x| + &1, y1 + 11, z1 + &1, where

BRI

m =1 € b] 0 N and
& 0 0 ¢ z

a) dl 0

|:el by 0] is strain matrix.

O 0 C1

The velocity of dm | relative to Oy is:

le
V= |:Vlyj| = Vo1 +0ixr
Vlz
4 [ +é& i J k
=E|:y1+'711|+|: 0 0 01 j|
21+ & Yi+&a o yitm 2+ 4
arxy +diyr — (i + 06
= |:é1x1 + by + (x1 + &0, j| .

¢1z;
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For m, and m3, which is the same as for m;. The total

moment of the momentum of m; about O Z is:

> Vi = i Vi)dm,
=Y dmi(xi +ED[érxs + by + (1 + £)6)]
—(1 + nolarxs +diyr — 1 +m)oi]
=6, (r)’dm,
=0, ) [(1+&)* + 01 +n)’ldmy,

and

lezdml = nydml = %mle,
leyldml =0.

So

é1(1 4 ay) +bidy — ajey —di(14 b)) = 0.
ai, by, c1, d;, and e; are very small,
so we can regard e; = dl, e =d,. (6)

In the view of the incompressible body, there is:

dx\dydz, = dx|dy|dz|

1+a1 d] 0
= |: €1 1 +b1 0 :|dx1dy1dzl
0 0 1+Cl

and by neglecting the products of small terms, we have
ay+ by +c; =0. @)

The originally spherical surface of m; has undergone a
radial displacement, and the gravitational potential of m; is:

R Gdm, 1 (r? —3R?)
U =— = —Gm————1.
§ /(; r! 2 m1 R%

The additional potential due to the distortion U’ is:

—EGm (a1x12 + blyl2 + clz% + 2d1x1y1)
5701 R}

The total potential is (Cowling, 1938):

1 2 _ 3R?

U = _Gmlu
2 e

3 ml(alxlz+b1yf+clz%+2d1x1y1)

-G
5 R

The potential energy of m; due to its own gravitational at-
traction is:

(1) sphere-symmetrical part:

Force function F, = — 50+ = —9min,
1
Potential energy
R
Vs = dmF,.(r; —0)
0
Ry Gmry 3 Gm?
= dreridr | — ro=—--—"
/(; 1 1 ( R% ) 1 5 Rl
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(2) distortional part:
From strain potential (Eq. (A.4), see Appendix A)

Total potential energy

Gm?*[3 2
12 =Vs+Vd=_R_11[g_g(a%+b%+c%+zd%)]

From a; + by + ¢; = 0, we have

ai + bt + cf + 2ci(ar + by) + 2a1by
=al + b —c? +2a1b =0.
m2
So V) = —GR—II 21— L@3cl+ f2+4d})], where fi = a;—by.
Same cases for m, and ms5.

The potential energy due to the mutual attraction of m;
and m; can be found from Appendix /.

Gmlmz
Vi =—

r

3 R}
A1+ = % —L(—c; + ficos2I + 2d, sin21)
10 r2

3 R3
+E % —2(—cy + foc08 21l + 2d, sin 2[I)i|.
r

Assume 00, 0,0, and O30 are the directions at equi-
libria for O; X, O, X;, and O3 X3; for the angle between the
axes of 01X, and OX, we have

I1=60-63 =¢.

[_r12+r2—r22_ 2my + ms
cos = 5 = 2 23127
rr 2(m5 + mom3 + my3)

. V3m;
sin/ = 5 PN

2(m5 + mamsz + m3)V/
. V3ms3(2m; + m3)
sin2] = 5 70

2(m35 + moyms3 + m3)

cos ] — (2m§ + 2momsz — m%)

2(m§ + moms + m%) ’
In the case of mass my, II = 6 — 91(? = ¢ + 120°.

é r22 +r2 —r32
coS ¢y = =
2rar 2(m? + myms +m3)1/2’

V3m,

2(m3 + myms +m3)/2’

2ms3 + my

sin¢, =

2my + m3
2(m? + myms + m3)1/2’

cosIl = cos(¢ + 120°) = —

V3m;

sinll = ,
2(m? + myms + m3)1/2
3ms;(2
sin20f = \/_Zm3( m1+m3)2 ,
2(mi +mymz + m3)
cos 2l — (me +2mymsz — mg)

2(m% + mim;s —l—m%) ’

I'=6—-063 = .

cosil’ = 2m3 + m
2(m} + myms +m3)1/2
sing, = 3m, ,
2(m? +myms + m%)‘/2
sinagy = Y 3mi@ma & my)
2(mf +mims + m%)’
cos 20l — (2m§ + 2msm, — m%)

2(m% +myms + m%) ’
ar =6 — 03 = ¢y + 120°.
r32+r2—r12 2my + my
cos s = 2 = 2 N R
rsr 2(my + mimy + m3)!/

V3m;

2(m% 4+ mymy + m%)l/z’

sin ¢)3 =

2my + my
2(m3 4+ mymy + m3)12’

cosIII' = cos(¢p3 + 120°) =

V3m,

sinZll’ = 2y £ D)2

sin 201l = — V3mi(2my +my)
(2m% +mymy + m%)’

cos 2l = @m3 + 2maymy — m})

2(mf +mimy + m%) ’
' =6 - 65 = ¢s.
V3my(2my + my)
Z(M% +mym;y + m%)’
(Zm% +2mymy — m%)
2(m% +mimy + m%) ’

1" =6 —65) = ¢ + 120°.

sin2[1l" =

cos 21" =

2ms + my

cos I” = cos(¢; + 120°) = — ,
(¢ ) 2(m + moms + m2)12

V3m;

I
sin /= 2(m3 4+ mams + m%)l/z’
G2/ = — V3my(2ms + my)
2('”% + mym3 + m%) ’
c0s2]" — 2(m§ + 2msmy — m%)

2(m§ + moyms + mg) ’

The kinetic energy for the system is the sum of the kinetic
energy of m, my, and mj3, plus the kinetic energy of m; +
m, + mj3, relative to their common center of mass.

The kinetic energy of m, m;, and mj3, is:

1
3 > dmivi)
I . . .
=3 > Alarxy +diyr — 611 + )]
+biyr + dixy + 61 (xy + ED + crzi}dm,
1 . . . .
= —m R (f1 —2d:10))* + 2d) + f161)*

20
4362 + 6022 — ¢1)?),

T

I : : vy
T, = %mzRg{(fz —2d26,)* + (2d> + f26,)?
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— )%,
— 2d363)* + (2d5 + f363)*

+3¢2 4622

1 .
B=%mﬁms
+3¢2 4+ 622 — ¢3)%).

. Thq kine‘gic energy relative to their center of mass, (6, =
6, = 63 = 0(t)), can be evaluated from:

1— 2
poo ad=ed)
1 4 e cos fi
. ai(1 —ey)(e; sin f7) riesin f
rh = = ,
: (1 + e cos f1)? 1+ ecos f
we have
a(l —é?) . r*e*sin f
=—— and F=—-—"-0.
1+ e*cos [ (14 e*cos f)
So,
(arr) . (@)
r= and 7| = .
a a

1 . 2

T = S 2+ 7207 (£’
2 a
1 . 2

Tho = —my (7% 4+ r26%) % (ﬂ) ,
2 a
1 . 2

T30 = —m3(};2 +I"292) % (ﬂ) .
2 a

By using the expressions which we had earlier for

1 (72 +r292)(m1a + maa? 4+ m3a?)
T10+T20+T30—§ : = :

a2
1 .
= 5M(r2 +r26%)
where (Eq. (A.5), see Appendix A)

The Lagrangian function is:

L=T—-V=N1+0L+T+To+ Tio+ T + T3
V=V, =Vs=Vip—Vaz = V3 ®

where

1
T, = —(m1 +my +m3) V2.

d 3L oL _0
dt 36’1 dcy S
c (m3 + m3)

4
—Gmiy — G (9)

. 2
C1 —+ 5(2 — C1)91 = R3 r3

For the general co-ordinate system f}, there exists:
fi— 44191 —2d,6; — f10]

/i

s Som R
(2m3 — mams + 2m3)(my + m3)

2r3(m§ + momsz + m%)

3G . (10)
—d0}

4 Gmd 3V3(G —
_ mdi V3(Gmams(my ms). (11)

5 R} 4r3(m3 4+ myms + m3)

di + f161 + —f191
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For the general co-ordinate system 6, where: (Eq. (A.6), see
Appendix A)

Neglecting products like fidy, fidi, f261, d?01, ...
can simplify it as: (Eq. (A.7), see Appendix A)

etc., we

For the general co-ordinate 7, we have:

Gm1m2
Mr?

f—r@f:—

9R
|:1 + 10—12( c1 + ficos2] + 2d, sin21)

9R
+W22( 2+ f> 0821l + 2d, sin 211)}
szmg.
Mr?

9R2
.|:1 o 2( ¢y + frco8 2l + 2d, sin 21I')

RZ
3 (—c3 4 f3c08 21T + 2d; sin 2111/)i|

10 102
Gm3m1 9R % ”
2 [1 Tor 5 (—¢3 + f3cos 21T

+2d; sin 2111")

R
10 2( c1+ fieos2I” +2d, sin21") }.(12)

For the general co-ordinate 6, we have:

d ,. 3G
—070) = #[(—ﬁ sin27 + 2d; cos 21)R?
r
+(— fa sin 21l + 2d, cos 211)| R?
3G
%[(— fasin 20l + 2d; cos 21I') R?
+(—f3 sin 201" + 2d; cos 211I')] R?
3Gm3m1
S5Mr?

[(—f5 sin 201" + 2d5 cos 211" R3

+(— f1sin 21" + 2d, cos 21")]R7. (13)

The quasi-equilibrium of m | under the gravitational attrac-
tion of m; and m3, as well as the centrifugal force due to its
own rotation can be set up by neglecting é1, f1,d, fi.di, ...
etc. So from (9), (10) and (11), we can get:

(G L) Glmatmy) 2
5 R3 30T r3 I

3
4 Gm1 v
’ (5 R} _91>
_ 3G(2m} — myms + 2m3)(my + m3)

2r3(m% + moms + m%)
4Gmy ., 3V3Gmams(ma + ms)
di\z—y —0i )=
5 R}

4r3(m3 + mamz +m3)
6, 6, and 65 will be the same order as the 6(¢), but 6(¢) is
small too, so

3

5R3
6Gm1

S(my + m3)
4mr3

cp=— 01, (14)
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15R%(2m§ —moms + 2m§)(m2 + m3)
8m 13 (m3 + mams + m3)
1583 R} myms3(myms)
16m 73 (m3 + mams + m%)'

Si= (15

dy =

(16)

The equilibrium form can be set up in the state of relative
rest, while 6; = 6, = 6; = 6, and assume that Jupiter and
the minor planet move with forms unchanged in a circular
orbit around the center of mass.

o G 9R?
0 — Z;TZ[ oz (—e1+ fi cos 21 + 24y sin21)
2
10R2( ¢y + frcos2ll + 2d, sm211)i|
Gm2m3
Mr?
|: 10R2( ¢y + frcos2Il' + 2d, sin 21T)
10R2( c3 + f3c08 20" + 2d5 sin 21T )i|
Gm3m1
Mr?
9R
-|:l 1OR2( c3 + f3cos 2" + 2d5 sin 2111")
10R2( c1 + ficos2l” +2d, sm2]”)] (17)
So,
. _ S(my +m3)
= 4mr3 1
SR? Gmlmz Gm2m3 Gm3m1
6Gm, M3 Mr3 Mr3
5R3
=" Tom [2m1 + 5(my + m3)], (18)
. 15R?(2m2 — myms +2m3)(m2 — m3)
fi= _ 2 9
8mr3(m5 + mams 4+ my3)
and

. 15V/3R3 —
b = V3 1nzzm3(mz m33 ‘ 20)
16m 13 (m35 + moms + m3)

Same case for m, and ms.

We now consider the small oscillations abouF the state of
relative rest. So we replace ¢y, f1,d,,r,0,61,0,0,...etc.
by:
=fi+ fl.dv=d+d,r=7+7r,

0=0+60,0,=0+6,0=0+6,...etc

4G 1.
a+4[ g

. /
c=c¢+cp, i

2 ..
]+§a—qwﬂ

5R} 3
3G(mj4+m3) 3 21
j}+ﬂ[%¥?-m}_449_zﬁea
_ 9G(2m3 — Mzm3+2m3)(mz+m3) @)

2r4(m3 + moms + m%)

oscillations. We assume, that the period is

tuting 7’ = ipr’ and @’ = —
the small terms on the RHS, we get:

1187

. [4Gm, . WU B

d, +d, [W—G i|+f19+§f191
_ 9V3Gmyms(my — m3) (23)
B 4r*(m3 + moms —l—mg)’

(Eq. (A.8), see Appendix A)
i —r'0* —2r66’
_ 2Gmymayr’
T M3

9R? .
J1+ F(—cl + ficos2l + 2d; sin21)
P

9R3 .
+5—22(—Cz + f>co82ll + 2d, sin 2]1)1|
,

2Gm2m3r/
M3

9R?
.[1 + 5722(—02 + frcos2Il' + 2d, sin 2IT")

9R?
+5—23(—C3 + f3cos 2[II' 4+ 2ds sin 2[[1/)]
r

2Gmsmr’
M3

9R
[1 + —3( 3 + f3c08 2I" + 2ds sin 2111")

—21(—c1 + ficos2l” + 2d, sinZI”)]

9Gm1m2
10Mr4
+R3(—cy + f, cos 21T + 2d} sin 217)]
9Gm1m2
C10Mrt
+R3(—c} + f3 cos 201" + 2d sin 2111')]
9Gm1m2
10Mr4
+R}(—c| + f]cos2I” + 2d; sin21")],

———Z[R3(—c}| + f{cos2I +2d| sin21)

[R2(—cy + f3 cos 21l + 2d} sin 21T")

[R3(—cy 4 f{ cos 20" + 2d; sin 211"

(24)
3Gm1m2
SMr

+ (— fy sin 211 + 2d) cos 211) R3]
3Gm1m2
S5Mr#
- [(— f3sin2Il' + 2d} cos 2IT') R;
+ (— fi sin 211" + 2dj cos 21II') R3]
3Gm1m2
SMr4
(= £ sin 201" + 2d; cos 211" RS
+ (— fisin21" + 2d} cos 21") R} ].

ri + 276 = [(—f]sin2] 4 2d; cos21) R}

(25)

There are a series of solutions for those equations of small
27”,andc'/1 =ipci,
= pzc/l, ...etc.

There is one oscillation for which p?> — 62, so by substi-
p?0’ into Eq. (25), and neglecting

: 2ir' 2r'6
—rp?0' +2ipr'd ~0, 0 = :; , 0 =— 4

- (26)
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Then substituting 6" into Eq. (24):

) . 2ir'6 .
—p*r' — 0% — 2r8ip < i ) ~r'6%  where
rp
62 ~ W(Wllmz + mam3 + mzmy).

Thatis, — p*r' — 6% + 462 =62, so p> — 6%

The ratio of the period of rotation of the apse to the period
of orbital revolution ¢ (which is not the ¢ in Fig. 1) is:
0—p

P __P
0

= ie,p=(0—-e)b. 27)

From Eq. (26) we can see the 6’ and ’7 are of the same order

of magnitude, while ¢/, f”, d’ and 6’ are of the order of Rr‘—I’
(from Egs. (20), (21), (22) and (23)). So, the terms involving

4Gm, are large compared with the other terms on the left. So

5R3
approximately:
, 15(m2+rn3)Rf ,
== 7 1y 28
“1 dmyr* " (28)
, 45(2m?2 — mams + 2m3)(my + m3)R> ,
A= ', (29)
8mrt(m; + moms 4+ my3)
{ _ 45\/§m2m3(m2 +M3)R? r/' (30)

B 16mr4(m3 + mams + m3)

Same case applies for the parameters of other m, and m3.
Now for Eq. (17), we first consider the terms involving
R%:

%[le(—fl sin2] + 2d; cos21)
+ms3(—f1sin21” + 2d, cos 21")]
3Gm,

= SMr3
+2d(my cos2I + m3zcos21”)]
N 3Gm1 3m2m3(m2 — m3)
T 5M3 |:_ 12(m§ + mams3 + m3)
(2m3 — mams + 2m3)(m, + nu)}
2(m§ + momsy +m§) '

[— fi(mysin 2] + m3 sin21")

+2d;

But

i _ fi+ o (2m% — myms3 + 2m§)(M2 + m3)
2d, 2(d1 +d{) \/§m2m3(m2 —m3) .

So, the terms involving R?, R% and R§ are zero. As a result,
<(r20) = 0. (31)

This means that the angular momentum is invariant. Due
to

f _ d; . 3r
fl di r
C_'l__3[ (my + ms3) i|l’_/
¢l - 2my 4+ 5(my +m3) | r ’

substituting into Eq. (24) we get:

and

2Gmim;

F’{pz T M3
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9R? .
1+ 5—2(—01 + ficos2/ + 2d; sin21)
r

9R3
+5—22(—02 + f2cos 21l 4 2d, sin 2[1)j|
r

2Gm2m3
M3

9R§ ! : !
A1+ ﬁ(—q + focos2Il' + 2d, sin 21T")

9R?
+5—§ (—c3 + f3 cos 201" + 2ds sin 2111/)]
r

2Gm3m1
M3

9R§ 1! : 1
A1+ 57(—03 ~+ f3co8 21" + 2d5 sin 21IT")

9R} , -
+¥(—01 + ficos21” + 2d; sin21")

27Gmm; {RZI: —3(my + m3)c

2my + 5(my + m3)

omrs |
+ ficos21 + 2d, sin2[]

n 2|: —(m3 +mp)c;
*L2my + 5(ms +my)

+ f> cos 211 + 2d, sin 2]1] }

27Gmyms {RZI: —3(m3 +my)cy

2my + 5(m3 +my)

10M75 2

+ f> cos 2II" + 2d, sin 21]’]

—(m; +my)c
+R§|: (m 2)e3
2m3 4+ 5(my + my)

+ f3 cos 2III' + 2d; sin 2[[[’} }

27Gmsm, {Rz[ —3(my + my)cs

2m3 + S(my + my)

1oMmrs |77
+ f3 cos 21" + 2d; sin 211, ”i|

" 2|: —(my + m3)c
"L2my + 5(my + m3)

+ ficos 21" + 2d; sin21”:|} —46% = 0.

Substituting ¢, f1 and d], we have:

. 2G 9R? 9R?
p2—392+M{[l+—l(...)+—2(...):|

M3 1012 1072

OB LER TR

10,2777 7 10,2777 0 2002 07 T 2002

2Gmym; 9R; 9R3

1 B L (T

+ M3 H: +10r2( )+10r2( )

9R; 9R? 27R3 27R?
TR R T SO Ry w APy wed OO

2Gmsm, 9R§ 9R12
1 —(...
+ Mr3 H: +10r2( )+10r2( )
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PR R TR R
1or2 " 1or2 " 2002 2002
=0.

Substituting §2 from Eq. (17) into it:

p2—392+292{1+ T
mymy + momsz + mzm
[OR1 2R TRL TR )]
[10.2777 T 1072777 T 2002 T 2002
moms
mymy + momsz + mzm,
[ORs e 2R R TR
1022777 T 102777 T 2002 7 T 2002
msm
mimy + moms + mim,
[ 9R? 9R? 27R? 27R? ]
-_W(...)Jr 02t )T 5 G+ 03 (...)_
=0,

pr=0°[1-2(.)]

_ P _ 12

=1-S=1-01-2(..

€ ; [ (..)]
9R?

= 10 2(m ma + mams + mymy)

: {—(m1m2+m2m3)|:1 + 9(mz + m3) ]él

2Q2m 4 5(my 4+ m3))

5 .
+ E(mlmz cos 21 + mzmy cos21”) fi

5 .
+ E(mlmz sin2/ + mzm, sin2[”)2d1}

9R3
10r2(mymy + mamsz + mamy)
9(m3 + m) ]éz
2(2my + 5(m3 + my))

' {—(mzms + msml)[l +
5 o
+ §(m2m3 cos 211 + mym, cos 2II') f,

5 ) o
+ 5(7’1’!21’)’!3 sin 211 4+ mmy sin 21T )Zdz}

9R3
10r2(msmq + mymy + moms)
9(my + m3) ]5‘»3
2(2m3 + 5(m1 + my))

: {—(m;ml + m1m2)[1 +
5 / 11N £

+ 5(”13”11 cos 211" + moms cos 21II") f5
5 .

+ §(m3m1 Sil’12][[/ “+ myms sin21]]”)2d3}.

Finally, substituting ¢, f], di, ¢, fz, d>, ¢3, f3, d; we have

R\
()
mimy + moms + m3m,

*{(mlmz + m3m1)[§l + M}

16m1
135 (ma 4 m3)(2m3 — mams + 2m3) 72
64 m} + myms + m3

405|: I’I’IQI’I’I3(I’I12 — m3) i|2}

64 m% + moms + m%
(&)

mimy + moms + msm;

3 57
*{(I’I’lzn’l3 + mlmz)[z + M}

l6m2
135 |:(m3 + m)2m3 — m3m, + sz)]2
64 mi +mymy +m?

405 m3m1(m3—m1) 2
Sl B e —1
64 | m5 + mzmy + my
(&)
mymy + myms + msm;

3 57
*{(m3m1 + m2m3)[z + M}

l6m3
135 [(m1 + mp)2m? — mymy + zmg)]2
64 m%—i—mlmz—i—m%

405|: mﬂ’l’lz(ml - I’}’lz) i|2}

— 32
64 [ m? +mimy + m3 32)

If m3 goes to zero (and R; too), the result will be consistent
with Cowling’s result (Ziglin, 1976), i.e.:

5 5
— [(1 +16@> (ﬁ) + (1 +16@> (ﬁ) }
4 m r my r

We consider next the elliptical motion. To generalize Eq.
(12) to apply for non-uniform bodies, the small terms in-
volving ¢y, f1,d, ... etc. can be expressed in terms of the
differences between the principal moments of inertia of m,
m,, and ms. For these non-uniform bodies, these values are
%, %, and % times as large as for uniform bodies of the
same masses and radii. Therefore,

_ G(mymy + mam3 + m3m,)

_6? =
r r Mr2

{ ki R}
014
r2(mymy + mayms + mymy)
(my + m3) 1 (3(my + m3)?
G r3 2
9 ((m2 + m3)(2m3 — mams + 2m§)>2
(m3 + mams + m3)

67 +

8

27 ( mamy(my —ms3) \

+§((m% + mams3 +m%)) >]
kR

r2(mymy 4+ mams3 4+ mym,)

(m3 +mp) 1 (3(m3 4+ m)?
[ G 73( 2

9 ((m3 +my)2m% — mym; +2m3)\*

g( (m3 + mym; + m?) >

27( msmy(mz —my) \’
+§ 2 2
(m3 + m3my + my)
ks RS

r2(mymy + mams + m3my)

_l.

65 +
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G 7 2
9((m1 + my)(2m2 — m3m, +2m§)>2
8 (m%—{—mlmz—{—m%)

27 ( mimy(my —my) \°
t= 2 2
8 \ (my + mimy + m3)

_ G(mymy + mymsz + mzm,)

.|:(m1 +ms) ., i<3(m1 + m»)?

Mr?
#[1 4 (81 + 82 + 83)r 2 + (8] + 85 + 84)r ]
(33)
where
5 — klRf(mz + m3) 2
! G(mimy + myms + m3my) !
5 — kyR3(m3 + my) 42
27 GOmimy + mams + mymy) 2
5 = ks R3 (my + m3) ;2

T G(mymy + moms + msmy)
_ ki R}
b (mymy + moms + m3m;)
{ 3(my + m3)?
X —_—
2
9 [(mz + m3)(2m§ — momsz + 2m§)2]
8 (m% + momy +m§)
27< mzrn3(m3) )2}
8 (m% + moms + m%)
5 — ko RS
27 (mymy 4 mams + mymy)
{ 3(m3y +my)?
X —_—
2
9 [(m3 + my)(2m3 — mym; + 2m%)2:|

8 (m% + msmy + m%)
mami(m3 —my)

27 2
+= 2 2
8 (m3 + m3my + m7)

_ k3 R3
37 (myma + mams + mymy)
X{3(m1 + my)?

/

/

2
9 |:(m1 +m2)(2m3 —mymy + 2m§)2]

8 (m%+m1m2+m§)
27 ( mimy(my —my) \°
+— 3 5 .

8 \ (my + mimy + m3)

Now from Eq. (31), we have %(rzé) = 0; so the total
angular momentum is 726 = h. Suppose u = 1/r. Then
from Eq. (33), we can set up:

d*u
de?

_ G(mimz + maym3 + mym,)

2 ’.5
+u= Wi (bu” 4+ §'u)

where § = 8, + 8, + 83 and 8’ = &7 + 85 + 85.
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By using the Lagrangian method of changing constant,
then the solution for a second order differential equation is:

/9 G(mimy + mamsz + mzmy)
u=1,4-—
A Mi?

(Su? +8'ud) sin¢>d¢>i| cos6

O G(mimy + mams + mymy)
B
+[ +/0 e

-(8u® + 8'u’) cos ¢d¢} sinf

G(mimy + myms + msmy)
Mh? ’

(34

The first approximation is obtained by neglecting the terms
involving § and §. If the initial line of 0 is suitably selected
(B = 0) and the approximation then is the ellipse:

lu=1=-ecos® where

. Mh?
~ G(mymy +mams +msmy)’
AMR?
G(mimy + mams + mzmy)’

/

(35)

e=1[4=

The second approximation is obtained by substituting the
result of Eq. (35) into the RHS of Eq. (34). After one revo-
lution, the periastron longitude has increased by 6,; and 6,
satisfies:

8_u =0,=0 is neglecting the derivitave
a0 0 =2m

of small terms of (Su? + 8'u°).

We have (Eq. (A.9), see Appendix A)

Since 6, is very small, we have approximately:

G(mymy + mam3 + mzmy)

O = AMN?

2w
(8u® + 8'u’) cos pdg,
0

1 T (1 4+ Ecos¢
E<8'/O (f) COS¢d¢
2 5
+8’/ <1+E%s¢> cosc/)dd))
0

1 5 15 5
= |8 20 E+812n(ZE+ —E*+ —E°||.
E|: T ”(2 LIVEERIRT;

The increment 6, is equal to 2 e, therefore:

1) 5 3 1
e=—+ —8’(1 + EEz + gE“).

Substituting § = 8; + 8, + 83 and 8’ = 8] + 85 + &}

1 ( ky R} (my + m3)0?
&= =
P\ G(mymy + mayms + msmy)
ko R3 (m3 + m)63

G(mymy + myms + mzm)
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k3R (my + my)6? )
G(mymy + mym3 + mzm)

1 3, 1,
+l_5 1 + Ee + ge
{ klRf [IS(M2 +WI3)2

(mymy + mom3 + mzmy) 4

45 ((my + m3)(2m§ — myms3 + 2m§) 2
16 (m% + moyms +m§)

135 (1 myms(my — m3) 2
F<(m§ + mamsz + m%)) :|

kR3 15(m3 + m)?
(m1m2+m2m3+m3m1)[ 2
45 ( (m3 +m1)(2m§ —msm; + Zm%) 2
1_6< (m3 + mymy +m3) )
135/ msmi(mz —my) \°
F((m§+m3m1 +m%)> }

k3Ré5 15(m; + my)?
(mymy + mams +m3m1)[ 4
45 ((my 4+ mp)2m? — mymy +2m3)\?
1_6( (m%+mlm2+m§) )
135/ mimy(my — my) 2
F<(M%+m1mz+m§)) “

Rotating angular velocities with the mean orbital ones (co-
rotation and co-revolution), we get:

(36)

GM,

3
ai

91292293=é and 91=n1=

3
(mi-&-mzm3+m§) 2

7 = o UM E) _
(m2Amyms+m?)? a
(my+my+m3)
Also
re +7p 1 1 1
a = = + = .
2 l—e 1+e 1 —e?
So

_ G(my+my + m3)
= 3
By substituting 6, 6, and 63 into Eq. (36), it has:

6? (1 —é»3.

kRS

B(mimy + mayms + msmy)

*{(1 — 62)3(7112 + m3)(my + my + m3)

3 1 15(my + m3)?

1+ 2+ g4 | 220780
+< + 26 + 3 ) |: 2

45 <(m2 + m3)(2m3 — mams + 2m§)>2
16 (m% + mom; +m§)

+135( mZI’I’I3(I’}’Z2—WZ3) )zi“
16 \ (m3 + myms + m3)

kRS

P (mimy + mams + msmy)

*{(1 — )3 (m3 +my)(my + may + m3)

3 1 15(m3 + m)?
1424 ot || 2V T
+<+2e +8e)[ 1

45 ((m3 +my)2m2 — m3m; + 2m§))2
16 (m% + msm +m%)

+13_5( m3mi(m3 —my) >2“
16 \ (m3 + msm; + m?)
ks R3
B3(mimy + mams + mymy)

*{(1 — &) (my + my)(my + my + m3)

+ <1 + %ez + %64) [M
45 ((m] +m2)2m3 — mymy —|—2m§)>2
16 (m%+m1m2+m§)

135 mymy(my — my) 2

16 ((m%+m1m2+m§)> “

If E is very small, we have:

k (R1>5
E = J—
(miymy + moym3 +msmy) \ r

15(my + m3)?
s L
45 ([ (my 4 ms)(@m3 — myms + 2m3)\’

16 ( (m3 + mams + m3) >

+135( mZn’I3(Wl2—m3) )2]}
16 \ (m3 + myms + m3)

ks <R2)5
+ —
(mimy + mamsz +mzmy) \ r
15(m3 + m))?
4
45 ((m3 +m1)(2m§ — m3my + 2m%)>2

16 (m% + msm; +m%)
+135 ( mymy(m3 —my) )2“
16 (m§+m3m1 +m%)

ks <R3)5
+ —
(mymy + moms +mamy) \ r
15(my + m»)?
4
45 ((m1 +m2)(2mf —mimy + Zm%))2

16 (m%+m1m2+mg)
+l35 ( mimy(my — my) )2]}
16 (m%—i—mlmz—l—m%) '

It can be consistent with Eq. (32).
Numerical results for the effects of Jupiter on the apsidal
motion of the minor planets and perhaps the zodiacal dust

*{(mz +m3)(my + my +m3) + [

*{(’113 +my)(my +my +m3) + [

*{(ml +my)(my +my +m3) + [
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cloud’s Symmetry Surface will be addressed in a future paper.

5. Summary

We have addressed the problem of the apsidal line motion
in the three-body problem and found quasi-analytical solu-
tions to the Lagrangian solution of the three-body problem.
We also stated the importance of such results on investigating
the effects of the planets on the “Symmetry Surface” of the
zodiacal cloud, namely determining the ascending node €2 of
the symmetry surface as a function of heliocentric distance
and thus discerning the role of each planet in gravitationally
perturbing the orbital elements of the interplanetary dust.
This will not be a trivial task given the meager information
at present on the origin of the zodiacal dust, however we
believe this is a first step in that direction.

It is also noteworthy to mention here that Ziglin (1976) dis-
cussed the arbitrary three-body problem in a manner where
the third body has a negligibly small mass and defined quan-
titatively the problem for all permissible values of the param-
eters. In particular, the problem of critical inclinations and
eccentricities was solved. He also found parameter values
for which plane retrograde motions are unstable. All these
results were numerical solutions of the exact equations of the
three-body problem.

The series of papers of Solovaya (1972, 1974) contained
analytical studies of non-restricted 3-body problems. As-
suming that the angular momentum of the outer body is large
enough, “new” effects appear. But no analytical results were
obtained for the apsidal motion.
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APPENDIX

Assume 6}, 65, 63 and 6 are the angles which O X, O, X>, O3X3 and r make with a fixed direction in their plane, and
assume that — 0, =l and 0 — 6, = II:

cos/ sin/ 077[x; cos{l sinll 07 [x} r\ 2
r12=(|:—sinl cos / Oi| |:yi:|—|:—sinll cos Il Oi| |:y§:|+|:0:|> ,
0 o 1JLz 0 o 1Lz 0
A =rip =r*—2r(x]cos I + y}sin I + x}cos IT + y} sin IT)
1 ! /. / /. / /.
+ ﬁ(xlz +P+ 2D+ 6+ 7+ 25
— 2(x1x5 + ¥ »y) cos I cos Il — 2(x5y; — x| ) sin I cos 1]

— 2(x1y5 +x5y)) sin 1 cos I — 2(x|xy — yiys) sin I sinll,
1 1 1

2
=—=—|1—-=(x;cos! +y,sinl + x} cosIl + y,sinll)
I \/K I"|: r 1 Y1 2 b

1 -1/2
+ r—2(x12 + 242+ PR+ + - } .

. oo . Gavdv, .
Since the odd cross product terms make no contribution to the integral # we therefore neglect the high order terms
Thus the resultant expression will be: i

1 1 1
— = l/r[l + —(x} cos I + y;sin I + x5 cos IT + y} sin IT)* — F(x;2 +yE P X Y+ 2D
r r

ri2
1 3 4\ 1 ' o / 1o T2
+ =) {=3){5 ﬁ(xlcosl—kylsml+xzcosll+yzsmll) +o
/dV{dVZ/ _ miymy

r r

3

AVIdVs (o1 cos T + v sinl + xycos Il + yysindl) = 0
" (x;cosI +y;sinl +x,cosll + y,sinll) =0,
For integral —5& [ dV]dVy(xP? + yP? + 2 +x7 + y¢ + 25):

x? = [(1 +a)x; +diyl,

SO

1 1 1 R?
~37 /x{de{de/ = _ﬁ(l +2a;) * gmlR]2 *my = _W;z(l 4+ 2a))mms,.

This is the same as the integral of terms involving xiz cos? I, xjyjcosisinl, y{2 sin? I, as well as other similar ones.
So, the integral of potential energy due to the mutual attraction is:

Vip = _Gmrlmz 3 Gmllon:lez(l +2a;) — GmllTr’r’zSlez(] +2by) — Gmlloir:;R%U +2¢)
_Gmlloin:;R%(l 2az) = %1107":32]3%(1 +202) — W;TT;I%(] +2¢2)
B T R LLLLY Y
M(l + 2ay) cos® IT + M(] +2by) cos? 1T + Mdz sin 211
1013 1013 5,3

By using a; + b; + ¢; = 0 and a; + by 4+ ¢, = 0, we can simplify the result to:

Gmlmz
Vip=—

R? 3R?
[ + 5—21(a1 cos’> I + by sin® I + d, sin2l) + 5—21(a2 cos? IT + by sin® I + d» sin 211)} .
r v

Using the symbol f| = a; — b;, we can get:

Vip=—

Gmlmz |:1 4 3R2 2

3R
p 10r12(—cl 4+ ficos2l +2d;sin21l) + Frlz(_q + f> cos 21l + 2d, sin 2[I)i| .
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Appendix A

2 2 2
ry+ry—r
21’17‘2

(rl2 + r22 — rz)(r32 + rl2 —r?) — \/—r“ + 2(1/22 + r32)r2 — (r22 — r32)2\/—r4 + 2(r12 + r32)r2 — (rl2 —r3

2)2

2
4rirorg

(rl2 + r22 + r32) + \/(rlz + r22 + r32) — 4((ri1 + rg + r?) — (;’12}’22 + r22r32 + r32r32))
N 2

(rl2 + r22 + r32) + \/3\/2(7”127”22 + r22r32 + r32r32) — (rf1 + rg + r?)
= 2 .

r2

r2

2 2(m% + m% + m%) + (mymy + moyms + mymy) £ 3(mymy + momsz + msmy)

* S/Z
) s

rD = (my +my +m;3)S,

r@ = \/m% +m3 + m3 —mimy — mams — mymS'.

_8U/ _ 6G (a1x1 +diy1)

Fl = —=Gm ,
. 0x1 5 R:l;
ou’ 6 b1y +dix)
Fl=-20 = Dm0 T A
a1 5 R;
104 6
Fl=— :——Gml(clz;),
821 5 Rl

1
F;*rlzg(F;*é—i—F’y*n—i—F;*{)

— l * _éGm (alxl +d1y1)2 + (b1y1 —|—d1x1)(b1yl + €1x1) + (C%Z%)
= 5 l R?
2 o o(@i + i+l +2dD)
25 ! R,

’

Vd:ZAmng*Arz .
mi(my +m3) +mo(mz +my) + mz(my +my) + 3mymoms mymy + moms + mzm

M =
(my + my + m3)? my +my + ms

E[(2 —c1)?01 + fiQ2dy + £16) — 2d1(f1 — 2d16))]

_ 3G(N3mams(my — m3) fi — 2(ma + m3)(2m3 — moms + 2m3)d,)
- 4r3(m3 + mams + m?)

3G(3mams(my — m3) fi — 2(ma + m3)(2m3 — myms + 2m2)d;)
4r3(m3 + moms + m%)

d .
E[(l —cb] =

3G (N3mams(my — m3) f{ — 2(my + m3)(2m§ — moyms + 2m§)d{)

r3(m3 + myms + m3)

’

(1 =D — 16 =

ou 0 .
Ozﬁ 9:0,,:[14—/ (...)](—51n9p)+[(...)]cos€ ,
0
o — tan! ( 02” (8u? + 8'u”) cos pd g
p =1an AMR? 2w : :
G(mmy+myms+mzm;)  JO ((Sl/lz + 8/u5) Sln¢d¢

(A1)

(A2)

(A.3)

(A.4)

(A.5)

(A.6)

(A7)

(A.8)

(A.9)
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