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The ponderomotive influence of ion cyclotron waves on the field-aligned distribution and motion of ions in the
equatorial zone of the magnetosphere is examined. The hydrodynamic, quasi-hydrodynamic and “test-particle”
approaches are used for the study of ponderomotive wave-particle interaction. Particular attention has been given
to the challenging questions encountered in applying the general theory to the magnetospheric physics. The closed
system of quasi-linear equations describing the ponderomotive effects is derived. Analytical investigation of the
basic equations has demonstrated the diverse manifestations of the ponderomotive impact of ion cyclotron waves
on the ion population in the magnetosphere. It is found that the redistribution of ion density under the action of
ponderomotive force with increase in the wave amplitude follows the pattern of phase transition of the second kind.
The density distribution changes qualitatively as the point in plane of the governing parameters of system crosses a
demarcation line. It has been found that the magnetic equator is an attractor for heavy ion. The period of the finite
(oscillatory) motion of a heavy ion, which is trapped in the potential trough in the vicinity of magnetic equator,
depends on the wave frequency, wave amplitude, together with the energy of motion. In addition, the diffusion
equilibrium of ions in a multicomponent plasma is considered, and the ponderomotive separation of ions in a binary
mixture is demonstrated. It is shown that the heavy ions collect near the magnetic equator provided the waves are
comparatively strong. It suggests that the ponderomotive effects play a part in formation of structure and dynamics
of the magnetosphere.

1. Introduction
Ponderomotive force is the time-averaged nonlinear force

acting on the media in the presence of high frequency elec-
tromagnetic field. Nonlinearity is herein taken to mean that
the ponderomotive force is quadratic in the amplitude of os-
cillations. The conventional term “high frequency” should
be read in the context of presented paper as denoting the
frequency range of electromagnetic ion cyclotron waves in
the Earth’s magnetosphere, i.e., approximately 0.1–10 Hz
in compliance with the numerous satellite observations (e.g.,
Bossen et al., 1976; Perraut et al., 1984; Lundin and Hultqvist,
1989; Anderson et al., 1992a,b; Erlandson et al., 1990, 1992;
Gustafsson et al., 1990; Lundin et al., 1990; Fraser et al.,
1992; LaBelle and Treumann, 1992; Mursula et al., 1994;
Anderson, 1996). It suggests that the ponderomotive ef-
fects play a part in formation of structure and dynamics of
the magnetosphere (Lundin, 1988; Lundin and Hultqvist,
1989; Allan et al., 1991; Lundin and Eliasson, 1991; Al-
lan, 1992, 1993a,b; Guglielmi, 1992, 1997; Guglielmi et al.,
1995, 1996; Hultqvist, 1996; Kangas et al., 1998). How-
ever, till recently the theory of ponderomotive wave-particle
interaction had been played a moderate role in determination
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of the intimate relations between the experimental findings.
This is in part because of the severity of the concept of av-
eraged forces acting on the plasma immersed into a high
frequency electromagnetic field.

A note of historical interest is appropriate here. The hy-
pothesis on the light pressure (this is one of a number of pon-
deromotive effects) goes back to J. Kepler. Electromagnetic
theory of the light pressure was first proposed by J. Maxwell
in 1873. It was one of the prominent results of classical elec-
trodynamics. P. Lebedev was the first to measure the light
pressure in 1899. Early in the century M. Abraham and G.
Minkowski launched an in-depth analysis of problem, based
on the concept of electromagnetic field momentum in the
framework of macroscopic electrodynamics (see, for exam-
ple, Ginzburg, 1975). In the modern time, Pitayevsky (1960),
Washimi and Karpman (1976) pursued this line of inquire.

Here the following comment is in order. Except for the
gravity force, the Lorentz force

F = eE + 1

c
v × B

is the unique fundamental force acting on the magnetospheric
particles. Here E and B are the electric and magnetic fields, e
is the electric charge, v is the velocity of particle, and c is the
velocity of light. In this respect the ponderomotive force is an
auxiliary notion. It may be introduced phenomenologically
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as mentioned above, but other than this, it may be found by
averaging F over the time in the framework of a microscopic
model of the medium. Miller (1958) had presented the known
expression for the force which is proportional to∇ 〈E2

〉
where

the angular parenthesis denotes the averaging over the time.
Hence, the Miller force is related to the spatial inhomogeneity
of the wave field. Lundin and Hultqvist (1989) proposed the
so-called “magnetic moment pumping” which is proportional
to
〈
E2
〉∇‖ ln B where ∇‖ is the spatial derivative along the

lines of geomagnetic field B. Beyond question that both of
these components of ponderomotive force are operating in
the magnetosphere. However, it is appropriate at this point
to note that the Lundin-Hultqvist force is paramount for the
ion cyclotron waves, whereas the Miller force prevails for
the Alfvén waves.

In spite of the fact that a considerable body of work de-
voted to ponderomotive wave-particle interaction has already
been published in geophysical literature, much remains to be
done in this area. Our point is that we have still a long way to
go toward the understanding the most interesting manifesta-
tions of ponderomotive forces. The purpose of the presented
work is to examine the ponderomotive influence of the trav-
elling ion cyclotron waves on the field-aligned distribution
and motion of ions in the equatorial zone of magnetosphere.
The work is not intended to be an exhaustive treatise of the
subject. The main attention has been given to the challenging
questions encountered in applying the general theory to the
magnetospheric physics.

In Section 2 the basic equations are described. The closed
system of equations of the 1D steady state quasi-hydro-
dynamics is presented with allowance made for the pondero-
motive forces. In Section 3 it is shown that the problem on the
ponderomotive impact of the waves upon the plasma density
may be formally reduced into a problem on phase transition
of the second kind. In such a formalism, the plasma dis-
tribution is altered radically as the imaging point in plane
of the governing parameters crosses some demarcation line.
In Sections 4 and 5 we seek the approaches to the problem
of ponderomotive interaction of the heavy ions with ion cy-
clotron waves in the equatorial zone of magnetosphere. Here
we come up against the problem of self-consistency of the
wave field, and the problem of singularity appearing in the
expression of the ponderomotive force at the gyrofrequency
of heavy ions. The brief discussion in Section 6 touches both
the prospects for uses of the concept of ponderomotive force
in the magnetospheric physics, and the obstacles interposed
on this way.

2. Basic Equations
2.1 Hydrodynamics

The concept of ponderomotive forces may be brought
into the wave theory phenomenologically (Landau and Lif-
shitz, 1984). A rather general phenomenological expressions
were obtained by Pitayevsky (1960), Washimi and Karpman
(1976). For reference we have presented here the corre-
sponding formulae. For the sake of convenience the force
f = f (1)+f (2) acting on the unit volume is divided into the
time-dependent component

f (1) = 1

8πc
Re
{

∂

∂t
[(D − E) × b∗] + ω(K × b∗)

}

+ 1

16π
Im E∗

α

∂ Eβ

∂t

∂2εαβ

∂ Bγ ∂ω
∇ Bγ ,

(1)

where

Dα = εαβ Eβ, Kα = ∂εαβ

∂ω

∂ Eβ

∂t
,

and time-independent component

f (2) = 1

16π

{
(εαβ − δαβ)∇E∗

α Eβ

+ E∗
α Eβ

∂εαβ

∂ Bγ

∇ Bγ

·
[

B × curl
(

∂εαβ

∂B
E∗

α Eβ

)]}
.

(2)

Here B(x) is the external magnetic field, εαβ(ω, x) is the
dielectric permeability, ω is the carrier frequency of the wave,
δαβ is the Kroneker delta symbol. It is supposed that the
electric field of the quasi-monochromatic wave have the form
E(ω, t; x) exp(−iωt). The amplitude E(ω, t; x) varies in
time slower than exp(−iωt), but the spatial distribution of
the amplitude may be arbitrary. The same is also true for
the amplitude b(ω, t; x) of the magnetic field oscillations
(Pitayevsky, 1960; Washimi and Karpman, 1976).

On the one hand, the equations (1) and (2) are too cum-
bersome; on the other hand, as we shall see subsequently,
these equations are not entirely adequate for our purposes.
It is desirable to have the equations that are somewhat less
intricate, and somewhat more general. To avoid confusion,
it should be noted that the simplification and generalization
refer to the distinct parts of the model, namely, to the space-
time structure of the wave field and to the ionic composition
of the medium.

So, let us impose the following restrictions on the wave
field. Firstly, we shall avoid the difficulties connected with
the time-dependent component (1) of ponderomotive force
by assuming that the characteristic time of the wave ampli-
tude modulation is far in excess of the travel time during
which a wave packet travels a distance of the order of char-
acteristic length of the wave field. Then the longitudinal
component of the ponderomotive force is

f‖ = 1

16π

[
(εαβ − δαβ)∇‖E∗

α Eβ

+ E∗
α Eβ

∂εαβ

∂ Bγ

∇‖ Bγ

]
,

(3)

where ∇‖ is the spatial derivative along a field line of B.
Hereinafter, we shall consider the ponderomotive redistri-
bution of ions along the geomagnetic field lines, so that the
transverse component of the ponderomotive force f⊥ = f−f‖
is of no interest. (It can be shown that the influence of f⊥ is
negligible as long as c2

s � c2
A where cs is the sound velocity,

cA is the Alfvén velocity.)
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Secondly, we shall consider the circularly polarized ion
cyclotron waves. Let us introduce the local Cartesian co-
ordinate system (x, y, z) so that the external magnetic field
B =(0, 0, B). The electric field components of the wave are
related by the law Ex = i Ey . This is expressible in the fol-
lowing manner: E = aEx . Here a =(1, −i, 0) is the polar-
ization vector. Now, we make use of the relation εαβa∗

αaβ =
n2, where n is the refractive index (see, e.g., Guglielmi and
Pokhotelov, 1996). With this relation, equation (3) becomes

f‖ = 1

8π

[
∂n2

∂ B
E2∇‖ B + (n2 − 1)∇‖E2

]
, (4)

where n2 = εxx − iεxy , E =| Ex |. Thirdly, we shall restrict
our consideration to the travelling waves. Then

∇‖E2 = E2∇‖ ln (B/n) (5)

for the relatively short waves when the WKB approxima-
tion can be used. The equation (5) provides an approximate
solution of the problem of self-consistency between the spa-
tial structure of the wave field and the spatial distribution of
the charged particles (Guglielmi, 1992). We will revert to
the problem of self-consistency at the end of this subsection.
Substitution of (5) into (4) gives:

f‖ = E2

16π

{[(
1 + 1

n2

)
∂n2

∂ B

+
(

1 − 1

n2

)
2n2

B

]
∇‖ B

−
(

1 − 1

n2

)
∂n2

∂ N
∇‖N

}
.

(6)

Here N is the number of electrons in the unit volume.
Now that we have presented the ponderomotive force, we

need to focus upon the equation of motion. The force (6), it
will be remembered, acts on the unit volume of the medium
under the steady state conditions. Hence the hydrodynamic
equation of motion is

ρu∇‖u = −∇‖ p + ρg‖ + f‖ , (7)

and the mass conservation equation is

ρu/B = const . (8)

Here u is the bulk velocity along the geomagnetic field lines,
ρ is the plasma density, p is the plasma pressure, and g‖
is the field aligned component of gravitation acceleration.
These equations must be supplemented with the equation of
state, for example, with the equation p = c2

s ρ in the event of
isothermal motion. Lastly, the expression for n2 is required.
By using the known expression for εαβ in the cold-plasma
approximation we obtain

n2 = 1 −
∑

μ

ω2
0μ

ω(ω − �μ)
, (9)

where ω0μ = (4πe2
μNμ/mμ)1/2 is the plasma frequency,

�μ = eμ B/mμc is the gyrofrequency, eμ is the charge, mμ

is the mass, Nμ is the concentration of the particles of given
type, the multi-index μ = (e, i) signifies the electrons e and
ions i , the summation is made over the particle species (see
e.g., Ginzburg, 1971). The equation (9) may be used upon
condition that u � c/n.

We can see that the spatial distribution of n2 depends on
the spatial distributions of the particle species. Let us sup-
pose that the plasma consists of electrons and singly charged
ions which are identical in mass. Then the quasi-neutrality
condition ∑

μ

eμNμ = 0 (10)

leads to the equations Ni = N and ρ = Nmi . The square of
refractive index (9) equals

n2 =
(

c

cA

)2 (
�i

�i − ω

)
, (11)

where cA = B/(4πρ)1/2, ω < �i , c2
A � c2. The pondero-

motive force (6) becomes

f‖ = − b2

16π

[(
ω

�i − ω

)
∇‖ ln B + ∇‖ ln ρ

]
, (12)

and the self-consistency condition (5) becomes

b2

√
ρ

(
1 − ω

�i

)1/2

= const . (13)

Here b = nE is the amplitude of the wave magnetic field.
The equations (7), (8), (12), (13) and the equation of state

p = c2
s ρ make the closed system of equations. It is pertinent

to note that the hydrodynamic model of plasma with isotropic
pressure, as applied to the magnetosphere, is a palliative of
a sort. In particular, this model fails to account the mirror
force acting on the transversely heating ions (e.g., Singh,
1994; Barghouthi, 1997). A more general approach based
on application of kinetic equations allows one to describe in
detail the magnetospheric plasma. However, the application
of the methods of physical kinetics is difficult mathemat-
ically. There are another challenging problems. Without
going into details, we call attention to the fact that the aban-
donment of the hydrodynamic equations such as (7) leads to
the conceptual difficulty, since the fundamental equations for
the averaged (ponderomotive) forces are limited in use to the
phenomenological methods of description of the media. The
concept of average forces fails as soon as we should look at
the method of kinetic equation for clue.

In conclusion of this subsection, we return to the very
important equations (4) and (5). The equation (4) was de-
duced for the ion cyclotron waves in which the vector E has
a counter-clockwise rotation in the plane, perpendicular to
the direction of the B. However, it turns out that the equation
(4) can also be applied to the waves with clockwise polariza-
tion. In that case the polarization vector and refractive index
are equal to a =(1, i, 0), and n2 = εxx + iεxy respectively.
Hence, with the relation εαβa∗

αaβ = n2 we can derive the
equation (4) from Eq. (3) for the waves with the clockwise
polarization. The equation (5) rests on the assumption that
the ion cyclotron waves travel in a waveguide stretched along
the geomagnetic field lines. Considering that the effective
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cross-section of the waveguide changes along the field lines
as B−1, the equation (5) can be obtained in the paraxial ap-
proximation (Guglielmi, 1992). It is significant that equation
(5) furnish an opportunity to solve analytically some special
problems of the ponderomotive wave-particle interaction. It
is needless to say that there is a rich variety of the wave pat-
terns, which defy analytical description. In general case the
computer simulation is used for the study of the pondero-
motive forces in the magnetosphere (e.g., Allan et al., 1991;
Allan, 1992, 1993a,b).

The equation (5) provides a way of solving the problem
of self-consistency between the spatial structure of the wave
field and the spatial distribution of the particles. In general,
account must be taken of the spatial as well as the temporal
manifestations of the ponderomotive self action. This is a
challenging task. In particular, this more rigorous treatment
requires the consideration of the time-dependent component
(1) of the ponderomotive force. So, for the sake of simplicity
we are considering the amplitude of electromagnetic oscil-
lations to be time independent. However, it is felt that our
theory applies also to the slowly modulated oscillations pro-
vided that we deal with a steady-state modulation. In that
case the value E has a meaning of the electric field amplitude
averaged over period of modulation.
2.2 Quasi-hydrodynamics

A completely different type of situation occurs in the case
of multicomponent plasma. Here we run into obstacle in an
attempt to close the system of equations. Really, in place of
(7), (8), the system of quasi-hydrodynamic equations

ui∇‖ui = −(T/mi )∇‖ ln Ni

+ (e/mi )E‖ + g‖ + Ai ,

(14)

∇‖ B−1 Ni ui = 0 (15)

may be used; however, the expressions for the ponderomotive
accelerations Ai of ion species are unknown. Here T is the
temperature, E‖ is the ambipolar electric field, the index
i = 1, 2, ... labels the kinds of ions. It is assumed that
the plasma is isothermal and each ion has the single electric
charge e. The plasma density equals ρ = ∑

mi Ni . The
quasi-neutrality equation (10) becomes∑

Ni = N , (16)

where the summation is made over the ion species.
Guglielmi and Lundin (1999) have used a simple test-

particle approach in the evaluation of the ponderomotive
acceleration. Here we make an effort to evaluate Ai by a
rearrangement of terms in the phenomenological equations
(1), (2).

First we write the total force as a sum of partial forces:

f =
∑
μ

fμ.

Now, let us note that the tensor of dielectric permeability
appears in the expression for the ponderomotive force f as
follows: εαβ − δαβ (see Eqs. (1) and (2)). This combination
equals

εαβ − δαβ = 4π i

ω

∑
μ

σ
μ
αβ,

where σ
μ
αβ is the contribution from particles μ to the tensor

of conductivity. These considerations give us the rule to split
the total force f into the sum of partial forces fμ. Then we
can to define the partial accelerations Aμ = ρ−1

μ fμ, where
ρμ = Nμmμ, in particular,

Ai = e2 E2

2m2
i ω (�i − ω)

·
[
∇‖ ln E2 −

(
�i

�i − ω

)
∇‖ ln B

]
.

(17)

There is reason to hope that the expression (17) is true, since
it is coincident with the expression which was obtained by
the another method (Guglielmi and Lundin, 1999).

By using the self-consistency condition (5), we can rewrite
(17) in the form

Ai = − e2 E2

2m2
i ω (�i − ω)

·
[(

ω

�i − ω

)
∇‖ ln B + 1

2
∇‖ ln n2

]
.

(18)

We would like to exclude the derivative of n2 by using the
relation

∇‖n2 = ∂n2

∂ B
∇‖ B +

∑
μ

∂n2

∂ Nμ

∇‖Nμ.

It is conveniently to present (9) as follows:

n2 = 1 +∑
μ

(n2
μ − 1),

n2
μ = 1 − ω2

0μ/ω(ω − �μ).
(19)

Then

∂n2

∂ ln B
=
∑

μ

∂n2
μ

∂ ln B
=
∑

μ

(
�μ

ω − �μ

)
(n2

μ − 1),

∂n2

∂ ln Nμ

= n2
μ − 1,

and the net result is

Ai = − e2 E2

2miω (�i − ω)

{(
ω

�i − ω

)
∇‖ ln B

+ 1

2n2

∑
μ

[(
�μ

ω − �μ

)
∇‖ ln B

+ ∇‖ ln Nμ

]
(n2

μ − 1)

}
.

(20)

The equations (7), (14)–(16), (19), (20) make the closed sys-
tem of equations of the one dimensional steady state quasi-
hydrodynamics with taking into account the field aligned
ponderomotive force.
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3. Plasma Density
3.1 Balance of forces

In this and the following two sections we shall use the
equations (12) and (20) in studies of the ponderomotive in-
fluences on the ions in equatorial zone of the magnetosphere.
Let us start with a simple case of hydrostatic equilibrium.

According to (7) the balance of ponderomotive, gravita-
tional and pressure-gradient forces is described by the equa-
tion

∇‖ p = ρg‖ + f‖ . (21)

We know that the expression (12) for the ponderomotive force
f‖ applies when the plasma contains the identical ions. Let
us denote i = 1. Then ρ = Nm1, p = 2N T , and the
ponderomotive acceleration A = f‖/ρ equals

A = −
(

cE

2B

2)( �

� − ω

)

·
[(

ω

� − ω

)
∇‖ ln B + ∇‖ ln ρ

]
,

(22)

where � = eB/m1c. The balance of forces (21) takes the
form

c2
s ∇‖ ln ρ = g‖ + A, (23)

where cs = (2T/m1)
1/2.

Reference to Eqs. (5), (11) shows that

E(s)

E(0)
=
{[

B(s)

B(0)

]3
ρ(0)

ρ(s)

[
�(s) − ω

�(0) − ω

]}1/4

, (24)

where s is the coordinate along a given field line, and E(0),
B(0), �(0), ρ(0) are the values at a reference point s = 0.
Substitution of (24) into (22) gives

A(s) = −
(

cE(0)

2B(0)

)2 (
ρ(0)�(s)

ρ(s)[�(s) − ω]

)1/2

·
[(

ω

�(s) − ω

)
∇‖ ln B(s) + ∇‖ ln ρ(s)

]
.

(25)

Rewriting Eq. (23) in terms of the result (25) we obtain

1

ρ

dρ

ds
= P(s)ρ1/2 − εQ(s)

ρ1/2 + εR(s)
, (26)

where

Q(s) = [ω/�(s)][ρ(0)]1/2

(1 − ν)1/2[1 − ω/�(s)]3/2

d

ds
ln B(s),

P(s) = g‖(s)
c2

s

, R(s) =
[

ρ(0)

(1 − ν)[1 − ω/�(s)]

]1/2

,

ν = ω

�(0)
, ε =

[
cE(0)

2cs B(0)

]2

.

3.2 Redistribution of plasma density
To seek the solutions ρ(s) of the Eq. (26), there is a need

to specify the model of geomagnetic field B, to select the
geomagnetic field line, and to prescribe the values ρ(0), cs ,
ε, ν. (Here the parameter ε should not be confused with
the dielectric permeability.) It is not difficult to find the
solutions by using the numerical methods, but we prefer the
analytical investigation since our prime interest here is with
the qualitative dependence of the solutions on the governing
parameters ε, ν and cs . Then we will have a general grasp of
the plasma redistribution under the action of ponderomotive
forces.

Let us consider the properties of the functions P(s), Q(s)
and R(s) (see (26)). We place the reference point s = 0 at one
of the local minimums of the function B(s), i.e., dB/ds = 0,
d2 B/ds2 > 0 at s = 0. Let us assume that this minimum is
located at the magnetic equator. (This holds true, for exam-
ple, in the case of magnetic dipole.) Then g‖(0) = 0. It will
be noted that at the periphery of dayside magnetosphere there
are two minimums of the magnetic field intensity, and both
are placed outside the equator. In such a situation g‖(0) �= 0;
however, at the periphery of the magnetosphere, the gravita-
tional force is small and can be neglected at all.

So, we take g‖(0) = 0. It is evident that g‖(s) is an
odd function, i.e., g‖(−s) = −g‖(s), and (∂g‖/∂s) > 0 at
s = 0. Hence the P(s) is a monotone increasing function
which pass through the zero and has the parity P(−s) =
−P(s). The function Q(s) is also odd (Q(−s) = −Q(s)),
and Q(0) = 0 since dB/ds = 0 at the equator. However,
Q(s) is a nonmonotonic restricted function in contrast to
P(s). R(s) is a real function since ν < 1 , ω < �(s). This
is a positive defined and decreasing function with a maximum
at s = 0. It will be noted also that R(s) is an even function:
R(−s) = R(s). Therefore, the denominator in the right-
hand side of Eq. (26) is an strictly positive and restricted
function of s. In view of these results, reference to Eq. (26)
shows that ρ(−s) = ρ(s).

Before beginning the general analysis of the solutions, it
would be well to consider three limiting cases. At first let
ε = 0 (the waves are absent). Upon integrating (26) we
obtain (27)

ρ(s) = ρ(0) exp

⎡⎣ 1

c2
s

s∫
0

g‖(s)ds

⎤⎦ . (27)

In the small vicinity of the equator we have

ρ(s) ≈ ρ(0) exp
(

γ s2

2c2
s

)
, (28)

where γ = dg‖/ds at s = 0. We can see that without the
waves the plasma density has a minimum at the equator.

Now, let ε �= 0, and ν → 0 (low-frequency limit). Then

ln
[

ρ(s)

ρ(0)

]
+ 2ε

[
1 −

√
ρ(0)

ρ(s)

]
= 1

c2
s

s∫
0

g‖(s)ds. (29)

The qualitative behavior of ρ(s) in the small vicinity of the
equator looks like (28), except that the value

c2
s + [cE(0)/2B(0)]2 (30)
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is used as the substitute for sound velocity c2
s . In other words,

in the low-frequency limit the ponderomotive force does not
change the monotonic decrease in plasma density as we ap-
proach the magnetic equator.

At last, let ε �= 0, and nominally ν → 1 (cyclotron res-
onance limit). In consequence of this formal transition we
obtain the asymptotic estimation

ρ(s) ∼
[
�(0) − ω

�(s) − ω

]
ρ(0). (31)

It is notable that in this case the plasma distribution is in-
dependent of the gravity, pressure, and even of the wave
amplitude. We can see the steep rise in plasma density as we
approach the equator. The width of peak is proportional to√

1 − ν; it tends to zero as ν → 1. Really, let us invoke the
parabolic approximation of geomagnetic field, so that

�(s) = �(0)[1 + (s/a)2],

where a = (2B)1/2(∂2 B/∂s2)−1/2 at s = 0. Then ρ(s) ∼
ρ(0)[1 + (s/b)2]−1 , where b = a

√
1 − ν is the width of

peak. In reality the point ν = 1 can never be attained due
to the resonance absorption of the waves. Nonetheless, (1 −
ν)min ∼ (cs/cA)3/2 (e.g., Guglielmi and Pokhotelov, 1996),
and therefore bmin ∼ a(cs/cA)3/4 � a.

We now turn to a general examination of the integral curves
of Eq. (26). Reasoning from the properties of P , Q and R
we state that zeros and poles of ρ(s) are absent. Hence the
possible extremes of ρ(s) lie on the plane (s, ρ) along the
curve

ρc(s) = [εQ(s)/P(s)]2 (32)

and along the line s = 0. (These are the so-called zero-
isoclines.) With the proviso that ρ > 0 the other nominal
possibility (the axis s) is ruled out. It is easy to check that
ρc(s) is an even, restricted and strictly positive function with
the maximum

ρc(0) = (ε/εc)
2ρ(0), (33)

εc = lims→0
(√

ρ P/Q
)

=
(

∂g‖
∂s

)
0

(
1

B

∂2 B

∂s2

)−1

0

(1 − ν)2

c2
s ν

(34)

at the equator. Here inferior index “0” denotes the point
s = 0. The curve (32) and line s = 0 separate the region
of physically admissible values of ρ and s into four domains
with a definite sign of dρ/ds in the each domain in the manner
shown in Fig. 1. This information suffices to describe the
qualitative behavior of the integral curves.

As long as ε < εc, ρ(s) has a single extremum, namely,
the minimum at s = 0. The limiting cases ε = 0 and ν → 0
discussed above are in this category. As soon as ε exceeds
the critical value εc, three extremes appears on the curve
ρ(s), namely, the maximum at s = 0 and two minimums
which lie along the separatrix (32). Thus, the plasma density
distribution changes qualitatively as the governing parameter
ε passes from ε < εc to ε > εc. This transition happens at
the critical value of the wave amplitude

Ec = E∗(� − ω)/(�ω)1/2. (35)

Fig. 1. The separatrix ρc(s) and the line s = 0 break the half-plane s, ρ

into four domains with a definite sign of dρ/ds in the each domain. The
possible extremes of the integral curves ρ(s) lie along the line s = 0
and/or along the separatrix.

Fig. 2. The L-dependence of E∗ in the dipole magnetosphere (see Eq. (36)).

Here the meaning of E∗ is evident from comparison of (34)
and (35). In the case of dipole approximation of the geomag-
netic field we have

E∗ = 2
√

2

3

BE (RE gE )1/2

cL3/2
, (36)

where BE = 0.31 G, RE = 6.4 · 108 cm, gE = 980 cm/s2,
and L is the McIlwain parameter. Figure 2 shows the L-
dependence of E∗. Figure 3 shows the demarcation line in
the plane of governing parameters ω/� and E/E∗. If a point
is situated to the left (right) of demarcation line, then the
plasma density has a minimum (maximum) at the magnetic
equator. As an illustration, Figure 4 shows two represen-
tative distributions of the plasma density. We can see the
qualitative change in the plasma density distribution as the
wave amplitude E passes from E < Ec (curve a) to E > Ec

(curve b). It should be particularly emphasised that Figures
2–4 are plotted with allowance made for the competing ef-
fects (pressure, gravity, ambipolar electric field) and not just
the ponderomotive effect.

As an illustration we consider the Pc 1 magnetic pulsation
which was detected by Bossen et al. (1976) at the geosyn-
chronous orbit. According to Fig. 1 of their work, the ampli-
tude of magnetic field oscillations is of the order to b � 3.5
nT at the frequency 0.25 Hz. Instead of relations (35), (36),
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Fig. 3. The demarcation line in the plane of governing parameters ω/� and
E/E∗. If a point is situated to the left (right) of demarcation line, then
the plasma density have a minimum (maximum) at the magnetic equator.

Fig. 4. The distribution of the normalized plasma density y(x) = ρ(x)/ρ(0)

along the dipole magnetic field line versus x = sin φ, where φ is the
latitude. Here L = 5, ν = 0.5, E∗ = 0.83 mV/m, Ec = 0.58 mV/m (see
the text). Figure illustrates the qualitative change in the plasma density
distribution ρ(x) as the wave amplitude E increases from E < Ec (curve
a, E = 0.2 mV/m) to E > Ec (curve b, E = 2 mV/m).

the following equivalent relations

bc = b∗[(� − ω)/ω]1/2,

b∗ = (32πρRE gE/9L)1/2

can be used in this occasion. At L = 6.6 we have ω/� =
0.15 in the dipole magnetic field. If we use the characteristic
value ρ = 3 ·10−20 kg/m3, then bc � 1.34 nT. Hence b/bc �
2.6, i.e., we expect the distribution of plasma density with a
maximum at the equator.

Let us return to the limiting case ν → 1 discussed above
(see Eq. (31)). It is evident that we are dealing here with the

[t]

Fig. 5. The bifurcation diagram. The thick line gives the position smin of
ρmin as a function of the governing parameter ε. Above the threshold εc
the value | smin | is proportional to the square root of supercriticality.

case of E > Ec. If ν → 1, then Ec → 0 in accordance with
our conclusion that the distribution (31) does not depend
on the wave amplitude. However, in reality (1 − ν)min ∼
(cs/cA)3/2, so that Ec min ∼ E∗(cs/cA)3/2 as long as cs � cA.

The ponderomotive redistribution of the plasma density in
going from state ε < εc to state ε > εc closely resembles
phase transition of the second kind. Let us denote the position
of ρmin by smin. We take | smin | as an order parameter. At
ε < εc we have smin = 0. When crossing the threshold
(ε > εc) the system exhibits a transition of the second kind,
and in the line with this assumption

smin ∝ ±√
ε − εc, (37)

i.e., the order parameter is proportional to the square root of
supercriticality (e.g., Gilmore, 1981). Figure 5 illustrates the
situation. The analysis of Eq. (26) with taking into account
the properties of functions P(s), Q(s) and R(s) leads to the
estimation

s2
min = 4

(
1 − ν

2 + ν

)(
1

B

∂2 B

∂s2

)−1

0

(
ε

εc
− 1

)
near the threshold. This result substantiates our hypothesis
(37).

4. Capture of Heavy Ions
4.1 Equation of motion

Going to the case of multicomponent plasma, we face
two problems. Both of these problems are directly related
to the changes in the spatial structure of the refractive in-
dex. One difficulty concerns the appearance of zeros and
so-called crossovers of n2 (e.g., Guglielmi and Pokhotelov,
1996). The WKB approximation is not valid in the vicinity
of corresponding points along the wave path. Hence, we can
not use the equation (5) to describe a spatial structure of the
wave field in relation to the distribution of ions, which in turn
is conditioned by the wave structure. It seems likely that in
the general case there is no way to study the ponderomotive
redistribution of ions in the multicomponent plasma with-
out recourse to numerical integration of the nonlinear wave
equation. However, this is a challenging task. In this and
the next sections we shall consider some special cases when
it is tolerable to use the Equation (5) for at least qualitative
description of the wave field.
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The second problem is indirectly related to the additional
poles of the refractive index in the multicomponent plasma.
The poles of n2 at the gyrofrequencies of heavy ions (see
Eq. (9)) correlate with the corresponding singularities ap-
pearing in the expression of the ponderomotive force (see
Eq. (18)). This involves a considerable challenge of a funda-
mental nature. The generalization of the equations presented
in Subsection 2.2 is demanded to eliminate these singular-
ities. Moreover, strictly speaking the concept of averaged
ponderomotive force, as such, is liable to break down in the
vicinity of gyroresonances of the heavy ions. Here many
questions still remain to be answered. Nevertheless, an at-
tempt must be made to use our present notion of pondero-
motive force after an elimination of infinities.

We begin with the one-dimensional field-aligned motion
of the heavy “test particle”, i.e., a single ion i = 2 in the
plasma containing the one kind of ions i = 1 with m2 > m1.
In this case, there is no the first difficulty mentioned above.
Equation of motion of the test particle is

·
v= g‖ + e

m2
E‖ + A2, (38)

where the ambipolar electric field is equal to

E‖ = −
(

T

e

)
∇‖ ln ρ, (39)

and the ponderomotive acceleration equals

A2 = e2 E2

2m2
2ω[(�2 − ω)2 + δ2]

· [(�2 − ω)∇‖ ln E2 − �2∇‖ ln B
]
.

(40)

Here δ is an effective collision frequency (see Appendix),
and ρ = m1 N . Substitution of (5) into (40) yields

A2 = − e2 E2 (�2 − ω)

2m2
2ω[(�2 − ω)2 + δ2]

·
[(

ω

�2 − ω

)
∇‖ ln B + 1

2
∇‖ ln n2

]
.

(41)

This coincides with (18) if δ = 0. Substitution of (11) with
i = 1 in (41) yields

A2 = − e2 E2 (�2 − ω)

4m2
2ω[(�2 − ω)2 + δ2]

(42)

·
[(

2ω

�2 − ω
− 2�1 − ω

�1 − ω

)
∇‖ ln B + ∇‖ ln ρ

]
,

and lastly from (38), (39), (42) it follows that

dv

dt
= g‖ −

[
T

m2
+ e2 E2 (�2 − ω)

4m2
2ω[(�2 − ω)2 + δ2]

]
∇‖ ln ρ

− e2 E2 (�2 − ω)

4m2
2ω[(�2 − ω)2 + δ2]

(43)

·
(

2ω

�2 − ω
− 2�1 − ω

�1 − ω

)
∇‖ ln B.

In relation to this equation some remarks are in order. We
used the equation (11) for the square of refractive index in
the collisionless plasma (δ = 0). This approximation for n2

is justified in the following regime: δ � ω, δ2 � (�1 −ω)2.
Hence the term δ2 in Eq. (43) has a role exclusively at the
frequencies ω ∼ �2. In fact, we have introduced the colli-
sions to nothing more than eliminate the infinity appearing
in the expressions of ponderomotive effects at the gyrofre-
quency �2. For the same reason we do not include the effect
of collisions in the equation of motion (38). In the end of
this section we shall have more to say about Eq. (43).

One additional comment is necessary. In general, when
writing the equations of motion, account must be taken of
the mirror force term (e.g., Northrop, 1963). We drop this
term on the right sides of Eqs. (38) and (43) for the sake of
simplicity. In other words, we restrict our consideration to the
specific case of the test particles with zero magnetic moment
in the absence of the wave. We would like to note that the
particle in the wave field gains an effective magnetic moment
resulting in appearance of the mirror force. However, this
wave induced mirror force is already properly accounted in
the Eqs. (40) – (43). Of course, the effects of “usual” mirror
force may also be allowed for as the need arose, but here we
prefer to study the ponderomotive forces in the framework
of simple model. Note also that the similar approach is used
by Hultqvist (1996): he assumes that the particle magnetic
moment equals zero in the absence of the waves.
4.2 Equator as an attractor for heavy ions

Let us introduce the ponderomotive potential U (s) to bring
the equation (43) into the form:

dv

dt
= −∂U

∂s
. (44)

Here s is the coordinate along the geomagnetic field lines as
previously. The conservation of energy gives

v = ±
√

2 [W − U (s)], (45)

where W is a constant. We can see that our test particle
moves within the domains where U (s) < W . (The value W
is the total energy of test particle per unit mass.)

The analysis of the right-hand side of (43) enables us to
present roughly the general view of U (s) at the frequencies
ω ∼ �2 in the vicinity of magnetic equator (Fig. 6). We
can see that the equator is the attractor for heavy ion. If
W > Um , the particle executes an infinite motion; if W <

Um , the particle executes a finite motion, i.e., it is trapped
in the potential trough of depth Um . The region of motion
of captured ion is confined to the interval (−s0, s0). The
borderpoints ±s0 are defined by the equation

U (s0) = W. (46)

The period of the finite motion

T = 2
√

2

s0∫
0

ds√
W − U (s)

(47)

depends on the wave frequency ω, wave amplitude E , to-
gether with the parameter of motion W .
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Fig. 6. The general view of the ponderomotive potential U (s) at the resonant
frequencies (ω ∼ �2) in the vicinity of magnetic equator. The region of
motion of a heavy ion is confined to the interval (−s0, s0). Here W is the
constant of motion.

To make an estimate of T , let us consider the potential

U (s) = ecE2

2m2 Bδ

[
arctan

(
ω − �2 (0)

δ

)

− arctan
(

ω − �2 (s)

δ

)]
.

(48)

It corresponds to the main term in the right-hand side of
(43) at the resonant frequencies ω ≈ �2. The depth of the
potential well equals

Um = ecE2

2m2 Bδ

[
π

2
+ arctan

(
ω − �2 (0)

δ

)]
. (49)

It is easy to check that

Um <
πω

2δ

(
cE

B

)2

. (50)

Let us assume that �2 (0) < ω, and δ � ω − �2 (0). Then
with the reference to Eqs. (47), (48) it can be seen that

T ≈ 4a

v

(
1 − �2 (0)

ω

)1/2

. (51)

Here v = √
2W , and

a =
(

1

2B

∂2 B

∂s2

)1/2

0
,

or a =
(√

2/3
)

RE L in the case of dipole field. From (51)

we notice that the period T depends on the energy of motion
W ; that is to say that the captured ion executes the nonhar-
monic motion. The harmonic oscillations with the period

T ≈ (2πa/c) (Bδ/Eω) (52)

take place when ω → �2 (0), and W � Um . Here B =
BE/L3.

It will be recalled that v <
√

2Um . Once more restriction
on the velocity follows from the fact that the Doppler effect is
disregarded in Eq. (43). Ignoring this effect is permissible for
the nonresonant particles with the proviso that v is much less
than the phase velocity of the wave. In the case of resonant
particles this condition is inadequate. However, rigorous
consideration of the Doppler shift demands a revision of the
theory of ponderomotive forces outlined in Section 2. This
is beyond the scope of our present work.

At last, the challenging question relates to the effective
collision frequency δ. We have introduced δ exclusively for
the regularization of the ponderomotive acceleration (40) at
the frequencies ω ∼ �2. In the ionosphere the collision term
has the literal sense, so that the equation (40), as such, finds
use. However, in the magnetosphere the physical meaning
of δ should yet be search for. Guglielmi and Lundin (1999)
have presented a heuristic rule which can be termed as “size-
regularization”. This name come from the fact that we insert
a characteristic transversal size l⊥ of the wave field into the
model. The relation δ ∼ (c/ l⊥) (E/B) is set by recognizing
that the displacement of the ion under the action of the wave
field is no more than l⊥. If so, then (52) gives T ∼ 2πa/ωl⊥.

5. Binary Mixture of Ions
5.1 Equations of equilibrium

Let us consider the diffusion equilibrium of ions in a mul-
ticomponent plasma. Putting ui = 0, we obtain from (14),
(16), (17):

c2
i ∇‖ ln

(
Ni

∑
j

N j

)
= g‖ + Ai , (53)

Ai = e2 E2

2memi (�e + ω)(�i − ω)

·
[
∇‖ ln E2 − �e(2�i − ω)

(�e + ω)(�i − ω)
∇‖ ln B

]
.

(54)

Here ci = (T/mi )
1/2, {i, j} = 1, 2, ..., me << mi . It is

preferable to use

Ai = −
(

cE

2B

)2 ( 2�i

�i − ω

)
(55)

·
[(

�i

�i − ω

)
∇‖ ln B + 1

2
∇‖ ln

(∑
j

ω2
0 j

� j (� j − ω)

)]

rather than (54). It follows from (20) at the frequencies much
less then the electron gyrofrequency, ω � �e.

The equations (53), (55) together with (5), (9), (16) repre-
sent the closed system of quasi-linear equations. This is rea-
sonably cumbersome system. For simplicity we restrict anal-
ysis to the case of binary mixture of ions, i.e., {i, j} = 1, 2.
Then the square of refractive index (9) equals

n2 = 1 + ω2
01

�1(�1 − ω)
+ ω2

02

�2(�2 − ω)
, (56)

and the quasi–neutrality condition (16) is N1 + N2 = N .
For definiteness, we shall put m1 < m2. In other words, we

shall consider the two-component plasma involving a mixture
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of the light (i = 1) and heavy (i = 2) ions. Then n2 = 0 at
the frequency ω = �2 + �ω, where approximately

�ω ≈ N2

N
(�1 − �2), (57)

in the event that �2
1 � ω2

01. As we have mentioned in Sec-
tion 4, our theory is not valid in the vicinity of corresponding
points along the wave path.

There are two line to get round the difficulty. First, we can
restrict our consideration to the frequencies ω < �2 min; in
this case the zeros of n2 are absent along the wave path at all.
Second, we are entitled to neglect zeros of n2 associated with
heavy ions on condition that the band �ω is small enough
(e.g., Guglielmi and Pokhotelov, 1996). The theory is not
sufficiently advanced to indicate the corresponding validity
criterion, but in any case the necessary condition is N2 � N
(see (57)).
5.2 Equatorial condensation of heavy ions

From this point on we shall use the ratio N2/N as a small
parameter when solving the equations of equilibrium. In
other words, it is suggested that the heavy ions constitute a
small admixture to the light ions. This corresponds roughly
to the magnetospheric conditions at least in a relatively qui-
escent state.

With the small parameter in hand it becomes possible to
solve the quasi-linear equations (53) via step-by-step method.
Zeroth-order approximation gives the distribution of light
ions. It is akin to the previously described distribution of the
single-component plasma (see Section 3). In the first approx-
imation we get the equation descriptive of the distribution of
heavy ions:

∇‖ ln N2 = m2

T
g‖

−
[

1 + m2

T

(
cE

2B

)2 (
�2

�2 − ω

)]
∇‖ ln N1

(58)

−m2

T

(
cE

2B

)2
ω�2

(�2 − ω)2

[
�1 − �2

�1 − ω
+ 1

]
∇‖ ln B .

Upon integrating (58) we obtain

N2(s) = N2(0) exp

⎡⎣m2

T

s∫
0

α(s)ds

⎤⎦ , (59)

where

α =
(
2c2

1 − c2
2

)
(�1 − ω)(�2 − ω) − 2c2

1εω(�1 − �2)

2c2
1(�2 − ω) (�1 − ω + ε�1)

g‖

− 2c2
1εω

(�1 − ω)(�2 − ω)

·
[

1 + 2
(

�1 − �2

�2 − ω

)
− 1

2

(
�2 − ω + 2ε�1

�1 − ω + ε�1

)]
∂�2

∂s
.

Here s denotes the coordinate along geomagnetic field line
with s = 0 at the equator, ε = (cE/2cs B)2 is the normalized
wave intensity, cs = (2T/m1)

1/2 is the sound velocity.

Fig. 7. The critical value of normalized wave intensity as a function of the
normalized wave frequency. Providing that ε > εc , the heavy ions collect
near the magnetic equator. Here T = 5 · 103K (104 K) and L = 4.5(5)

for the upper (lower) couple of curves. The upper (lower) curve in each
couple corresponds to plasma with O+(He+) ion admixture (see the text).

The following assay is similar to that described in Sub-
section 3.2. The main result is illustrated in Fig. 7. Here
we can see the critical value of normalized wave intensity εc

as a function of the normalized wave frequency ω/�2. The
curves labeled He+ (O+) correspond to the case m2 = 4m1

(m2 = 16m1), i.e., the case of small admixture of helium
(oxygen) ions in the hydrogen plasma. Here T = 5 · 103K
(104 K) and L = 4.5(5) for the upper (lower) couple of
curves. The upper (lower) curve in each couple corresponds
to plasma with O+(He+) ion admixture. As long as ε < εc,
the concentration of heavy ions N2(s) has the minimum at
s = 0, otherwise N2(s) has the maximum at s = 0. In other
words, the heavy ions collect near the magnetic equator with
providing that ε > εc.

6. Summary and Discussion
The principal contributions of this paper are as follows.
(1) The presentation of the equations describing the pon-

deromotive influence of ion cyclotron waves on the magne-
tospheric ions, and, more importantly,

(2) the demonstration of manifestations of the pondero-
motive redistribution of ions in the equatorial zone of the
magnetosphere.

Let us now see what we can learn in general sense from
our investigation. In the first place, we can definitely con-
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clude that the field-aligned ponderomotive force have a pro-
nounced impact on the ion population provided the waves
are comparatively strong. This conclusion conforms with
the results obtained previously (e.g., Lundin, 1988; Lundin
and Hultqvist, 1989; Allan, 1992; Guglielmi et al., 1996;
Hultqvist, 1996). It may be more surprising that the uses
of the theory of ponderomotive force in the magnetospheric
physics run into obstacles. We can see that the difficulties
start with the very formulation of problems. The general
phenomenological equations (1), (2) derived by Pitaevsky
(1960), Washimi and Karpman (1976) are not suitable for the
multicomponent plasma. The use of the quasi-hydrodynamic
equations instead of (1), (2) partially has made in improving
the situation; however, some problems of the fundamental
nature still stand. One of them is the problem of ponderomo-
tive self-action of the waves (Guglielmi, 1992, 1997). The
approximate solution (5) of the self-consistency problem is
limited in use to the short travelling waves. It fails if zeros
of n2 associated with heavy ions occur along the wave path
in the multicomponent plasma (see Section 5).

The poles of n2 at the gyrofrequencies of heavy ions pose
the problem too. According to Eqs. (18)–(20), the pondero-
motive acceleration tends to infinity if ω → �i . This is
so-called ponderomotive resonance. In Section 4 we have
introduced the effective collision frequency δ to eliminate the
infinity, but this is nothing more than a palliative. Guglielmi
and Lundin (1999) have presented an alternative cure for this
difficulty; however, in our opinion we have still a long way
to go toward the understanding how the heavy ion travels
through the region of ponderomotive resonance. This prob-
lem is of prime importance for the magnetospheric physics,
especially in connection with the satellite observation of up-
ward moving heavy ions (Lundin, 1988; Gustafsson et al.,
1990; Lundin et al., 1990; Lundin and Eliasson, 1991). From
the most elementary viewpoint, the region where ω ∼ �i is
a peculiar kind of effusor in which the high ponderomotive
potential converts into the field-aligned velocity.

The results presented in the Section 3 seem to be rest on
the more solid ground. It should be remembered that these
results were obtained in the framework of time-independent
model. Even so, there is little question that the magneto-
spheric plasma tends to collect in the vicinity of geomagnetic
equator under the action of ion cyclotron waves. This ten-
dency will, in the certain conditions, lead to formation of the
plasma density distribution with a maximum at the equator.
One such condition is the inequality E > Ec (see Figs. 2 and
3). Other condition is as follows: the ponderomotive force
acts during a sufficiently long time in order to establish the
stationary state. The corresponding criterion, as it usually
is, should be searched for in the context of an advanced the-
ory. Here we can only present a conservative estimate. Let us
adopt the value τ ∼ smin/cs as an order estimation of the time
scale for the particle redistribution with an eye to the fact that
the real time scale may be greater than τ . Then a necessary
condition for feasibility of the steady state approximation is
δt > smin/cs , where δt is the duration of quasi-stationary
regime of the electromagnetic oscillations. By way of ex-
ample, assume that smin ∼ 2 · 109 cm and cs ∼ 2 · 106 cm
s−1. Then the necessary condition is δṫ > 103 s. The at-
tempt to find the sufficient condition by a simple way has

not met success. The ion cyclotron waves are observed in
the form of so-called Pc1 geomagnetic pulsations. There is
an interconnection between the appearance of a large body
of Pc1 events and the refilling of plasmaspheric flux tubes
at the recovery phase of magnetic storm (e.g., Kangas et al.,
1998). It would be of interest to study the possible impact of
the ponderomotive force upon the process of plasmasphere
refilling. To do this would require a consideration of the
nonstationary problems, since as judged from the physical
reasoning, the excitation of ion cyclotron Pc1 waves in the
equatorial zone of the magnetosphere leads to formation of
the rarefaction acoustic shocks which travel along the field
lines toward the Earth.

A wide range of questions is connected with the pondero-
motive wave-particle interaction at the periphery of the mag-
netosphere. The main peculiarity of the dayside periphery
is that there are two minima of the magnetic field intensity
which are located outside the equatorial plane. The bifurca-
tion, i.e., the transition from one minimum to two minima
take place at the distance r ∼ 0.8rm away from the Earth,
where rm is the distance to the magnetopause. The most
ion cyclotron wave events, on the other hand, occurred just
on the dayside periphery of the magnetosphere (Anderson,
1992). If so, the theory seemingly predicts the distribution of
plasma density with minimum at the equator and two maxi-
mums outside the equator at the distances 0.8rm < r < rm .
However, in fact the theory outlined in the paper ignored the
magnetospheric convection which is liable to alter grossly the
plasma distribution at the periphery of the magnetosphere.

In the nightside outer magnetosphere, the neutral sheet of
geomagnetic tail has aroused interest in the context of pre-
sented paper. It follows from general considerations that
the ion-cyclotron waves push the plasma towards the neutral
sheet. However, as in the case of dayside outer magneto-
sphere, the theory is unsuitable here in its present form.

In this paper we used the hydrodynamics, quasi-hydro-
dynamics, and test-particle approaches. The general ap-
proach based on the application of kinetic equations is dif-
ficult mathematically, but it allows to describe in more de-
tail the ponderomotive redistribution of ions in the magne-
tosphere. In particular, it allows to study the instabilities
which may arise due to this redistribution. The application
of method of kinetic equations to the problem of pondero-
motive redistribution of ions will be subject of the future
publications.

Acknowledgments. We would like to thank B. Aparicio, J. Kangas,
K. Stasiewicz, and M. Yamauchi for the interesting discussions.

Appendix. Evaluation of the Equation (40)
It is shown here how the equation (40) is derived from

the equation of motion of a test particle. This is akin to the
derivation described by Guglielmi and Lundin (1999), except
that the collisions of particle are built into the equation of
motion. First, the formula for the magnetic moment

μ = (e/2c)〈x × v〉
is used. Here the angular parenthesis denotes the averaging
over the period of electric field oscillations, x(t) is the tra-

jectory of a particle, v = ·
x. From the equation of motion it
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follows that

x(t) = a exp(−iωt), y(t) = −ia exp(−iωt),

where

a = eE

mω(� − ω − iδ)
.

Here δ is the collision frequency. Hence the field-aligned
component of the magnetic moment is

μ = − e3 E2

2ωcm2[(� − ω)2 + δ2]

Therefore, the so-called Lundin-Hultqvist force (“magnetic
moment pumping”) FL H = μ · ∇‖ B equals

FL H = − e3 E2

2m2cω[(� − ω)2 + δ2]
∇‖ B.

In a similar manner, the Miller force is derived:

FM = e2(� − ω)

2mω[(� − ω)2 + δ2]
∇‖E2.

The ponderomotive acceleration A = m−1(FL H + FM) thus
equals

A = e2 E2

2m2ω[(� − ω)2 + δ2]

· [(� − ω)∇‖ ln E2 − �∇‖ ln B
]
.

This coincides with (17) if δ = 0.
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