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Recent work on time dependent seismicity is mainly based on the so-called “regional time predictable
model”, which is expressed by the relation:

logl,=cM +a

where 7 is the interevent time, i.e. the time between two successive mainshocks of a seismogenic region, and
M is the magnitude of the precedent mainshock. Parameter a is a function of the magnitude of the minimum
earthquake considered and of the tectonic loading and c is a positive (=0.3) constant. A problem of the method,
as it has been applied till now, is its dependence on the zonation, that is, on the definition of the seismogenic
regions, which is subjective to some extent. In the present work a different approach, which assumes no a-priori
regionalization of the area, is attempted in order to check the validity of the model. Grids of equally spaced
points at 0.5° have been created for Greece and Japan and the mainshocks located within each circle with center
at a point and radius varying between 30 and 150 km were considered. When the number of mainshocks within
the circle was four or larger, regression was performed and the ¢ value was calculated. In about 75% of the cases
for Greece with sufficient data and 80% for Japan the parameter ¢ was found to be positive. This result strongly

supports the validity of the model.

1. Introduction

Papazachos (1989) proposed a regional time-dependent
seismicity model to account for the temporal characteristics
of the generation of strong earthquakes in seismogenic
regions of the Aegean area. According to this model, the
time of occurrence of the next mainshock in a certain
seismogenic region is positively dependent on the
magnitude of the last mainshock in this source. Since then
the model has been developed, resulting in the “regional
time- and magnitude predictable seismicity model”, which
has been tested and applied in almost all areas of the
continental fracture system (see Papazachos and
Papaioannou, 1993; Papazachos et al., 1997a, b and
references therein). The essence of the model is that the
interevent time T, and the magnitude, Mf, of the next
mainshock in a seismogenic region depend on the
magnitude, M__, of the minimum mainshock considered,
the magnitude, Mp, of the last mainshock and the yearly
seismic moment rate, m, in the region. It has to be noted
that this model differs from the originally proposed time
predictable model (Shimazaki and Nakata, 1980), in that
it holds not only for an area containing a large fault where
the characteristic earthquake occurs but for an area which
includes, in addition to the large fault, smaller faults
where smaller earthquakes occur. The model is expressed
by the relations (1) and (2):
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logT, = 0.19M,, +0.33M, —0.39logm_ +q (1)

M =0.73M , —0.28M + 0.40logm, + m (2)
where the constants have been determined on the basis of
a large data set consisting of 1811 observations (T, M__,
M, M) in 274 seismogenic regions (Papazachos et al.,
1997a).The positive dependence of the interevent time, T,
on the magnitude, M , of the preceding mainshock is
denoted by the positive value of the parameter c. The
global applicability of the model has been successfully
tested (Papazachos and Papadimitriou, 1997).

A problem related to this model is that the procedure of
regionalization, that is, the definition of the seismogenic
regions, is subjective to some extent despite the fact that
it is based on combined seismological and tectonic
information of the area studied. To check the effect of
regionalization on the main features of the model, different
divisions were made in areas with complex seismotectonic
regime. It was observed that although the accurate
definition of seismogenic regions is important, it is not
very critical for the main characteristics of the model or
for the results obtained from its application (Papazachos
etal., 1997a).

The present paper aims at further clarifying this matter,
following an approach which assumes no a-priori
regionalization of the studied area, that is, without taking
into account any information concerning the area, even in
the case where clear seismotectonic features suggest that
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certain parts of this area, such as regions where well
defined active faults exist, merit particular treatment.

The areas of Greece and Japan have been selected to test
this approach, since zonation for these areas is based on
abundant seismotectonic and topographic-bathymetric
information enabling a sufficiently accurate definition of
seismogenic regions.

2. Greece—Data and Method

In the data bank of the Geophysical Laboratory of the
Aristotle University of Thessaloniki there is information
on the basic focal parameters (origin time, epicenter, focal
depth, magnitude) of more than 40,000 earthquakes which
occurred in the broader Aegean area during 550BC-1995
with magnitudes in the range 3.0-8.3. Not all the data,
however, have the basic properties (completeness,
homogeneity, accuracy) which are required for reliable
seismicity studies in the broader Aegean area (Papazachos
and Papazachou, 1997). For this reason, an updated
catalogue has very recently been compiled which has such
properties. From this catalogue, only shallow earthquakes
(h <60 km) with M = 5.5 which occurred in Greece and its
surroundings have been selected for the present study.
The resulting data set is complete for the following time
intervals and cutoff magnitudes:
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1911-1995, M = 5.5,
1845-1995, M 2 6.5.

The epicenters of these earthquakes are shown in Fig. 1.
On the same map, the 67 seismogenic regions in which
Aegean and surrounding areas have been divided, were
also drawn. These regions have recently been defined by
Papazachos and Papaioannou (1997) on the basis of new
seismological data as well as on additional geological and
geomorphological information.

On this map a grid of equally spaced points (denoted by
crosses) at 0.5° was created. Each point was taken as the
center of a circle with radius increasing from 30 to 100 km
in steps of 10 km, and all earthquakes within each circle
were considered. The next stage was to decluster the data,
that s, to define the mainshocks, preshocks (foreshocks in
the broad sense) and postshocks (aftershocks in the broad
sense). As it is known, clustering is usually attributed to
foreshocks and mainly to aftershocks in the strict sense,
that is, to earthquakes that have their foci in the rupture
zone of the mainshock and usually last a few months.
However, even when these shocks are omitted from the
data, clustering still prevails (Kagan and Jackson, 1991),
because spatial clustering occurs not only in the rupture
zone of amainshock butalso in abroader area (seismogenic
region) where other mainshocks also occur, resulting in a
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Fig. 1. The epicenters of strong shallow earthquakes which occurred after 1911 with M >5.5 and after 1845 with M > 6.5 in the area studied, along
with the 67 seismogenic regions which have recently been defined by Papazachos and Papaioannou (1997). The crosses denote the centers of
the circles with radii from 30 to 100 km. Circles with radii 30—-100 km, with a step of 10 km, have been drawn with their center located at 40.5°N-

23.0°E.
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time clustering of the order of several years. In the present
study, declustering of the data for each circle is based on
the relations (Karakaisis et al., 1991; Papazachos et al.,
1997a):

t,=3 years, logt =0.06+0.13M 3)

where 7 and 7 are the durations of the preshock and the
postshock activity, respectively.

A constant duration of the preshock activity and an
increase of the duration of the postshock activity with the
magnitude of the preceding mainshock is expected by the
time predictable model (Mogi, 1985). According to
relations (3) the total duartion of this clustering may reach
up to 20 years. In practice, however, it is mostly of the
order of 15 years.

The declustering procedure is performed in the following
way: the largest event in the catalogue for a certain
seismogenic region is first picked up and its preshocks
and postshocks are determined by using the relations (3).
For instance, if the largest event is an earthquake with
M =17.0, then all events which occurred 3 years before and

9.3 years after this earthquake are considered as its
preshocks and postshocks. Thus, one of the seismic
sequences of this region is defined and a representative
magnitude, M, for this sequence is determined by summing
all seismic moments of the shocks of the sequence, as they
have been calculated by a method proposed by Molnar
(1979). This magnitude, M, is considered as the magnitude
of the mainshock (M ). Then, the second largest earthquake
of the remaining part of the catalogue is picked up and the
procedure is continued till every event of the catalogue
has become a member of a group which includes a
mainshock and its preshocks and postshocks.

For each circle the earthquakes were first considered
and then, after declustering, the mainshocks were found.
The smallest mainshock of the n mainshocks is taken as
M . and the interevent times, T, between successive

nl
mainshocks with magnitudes equal to or larger than M__

are calculated. Then, the second smallest mainshock Ts]
considered as M . withM__ > M _ and new interevent
times between successive mainshocks with magnitudes
equaltoorlargerthan M__  are calculated. This procedure

is continued until the last M <M_, with k=n -1, is

1.00

0.90 +

0.80 -

0.70

C positive (%)

0.60

0.50 T T T

20 30 40 50

1.00

0.90

0.80 +

0.70

C positive (%)

0.60

0.50 . . T

Radius (Km)

T T T 1
70 80 90 100

Minimum Number of Obs. (T, Mp...)

7 8 9 10

Fig. 2. (a) Plot of the ratio of the positive c-values to the sum of all c-values (positive+negative values) versus the radius of the circles considered

for the Aegean area. The lines correspond to different minimum number of observations (T, M

Mp) that have been used in multilinear
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regression. (b) The same ratio (positive c-values to the sum of all c-values) plotted versus the minimum number of observations (T, M . Mp)

with the lines corresponding to different circle radii.
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considered as a M. for the respective circle. Thus, for
eachcircle, anumber of observations (T, M __, Mp) resulted
and, provided there were 4 or more, they were used as
input in a multilinear regression routine compiled by C.
Papazachos (personal communication), while the output
of this routine was a respective number of c-values.
Figure 2a is a plot of the ratio of the positive c-values to
the sum of all c-values (positive + negative values) versus
the radius of the circles considered. The lines correspond
to different minimum numbers of observations (7, M__,
M ) that have been used in the multilinear regression. It is
observed that in the majority of the cases in all circles this
ratio is larger than 55%. It is also observed that for the
circles with radii equal to or larger than 60 km more than
70% of the c-values are positive. The same ratio (positive
c-values to the sum of all c-values) has been plotted versus
the minimum number of observations (T, M__, Mp) with
the lines corresponding to different circle radii and is
shown in Fig. 2b. It is observed that in the majority of the
cases the positive c-values outnumber the negative ones.
One may argue that these results may be biased since for

larger M__ longer interervent times are expected. However,
tests of this model on random catalogues underway, which
will appear soon, show that its main feature (positive
dependence of the return period on M) is not artificially
derived.

3. Japan—Data

In a recent paper (Papazachos et al., 1994), the area of
Japan had been divided into 12 seismogenic regions on the
basis of geomorphological and seismotectonic information,
of spatial clustering of epicenters of strong earthquakes,
of the maximum earthquake ever observed and of the
seismicity level. The major factors, however, which
contributed to that zonation were the distribution of
aftershock volumes and source areas of recent events, of
tsunamigenic sources and of several, well documented,
focal areas of historical earthquakes. For example, the
seismogenic region 3 (shown in Fig. 3) was defined on the
basis of the rupture zone of the 1707 Hoei earthquake
described by Ando (1975). For a detailed description of
the zonation see Papazachos et al. (1994) and references
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Fig. 3. Epicenters of strong shallow earthquakes which occurred in Japan and its surrounding area and have been considered in the present study.
The black circles correspond to the mainshocks while the gray circles denote preshocks and postshocks in the sense described in the text. The
12 seismogenic regions defined by Papazachos et al. (1994) are also shown, along with the probabilities determined in their paper for the
generation of strong (M = 7.5) earthquakes during 1993-2002 (rectangles close to each seismogenic region). Circles with radii equal to 50, 100

and 150 km have been drawn with their center located at 34°N-136°E.
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therein.

The data used in the present work have been taken from
the catalogue of Pacheco and Sykes (1992), which lists all
strong (M = 7.0) events that occurred during 1900-1989.
Magnitudes of historical earthquakes were taken from
Rikitake (1976, 1982), while for the time period 1885—
1900 the catalogue of Utsu (1988) was used. For events
not listed in these catalogues, as well as for earthquakes
with M < 7.0, the catalogues of Abe (1981) and Tsapanos
et al. (1990) were considered. Data of strong events
during 1990-1992 were taken from the ISC bulletins.
Examination of the completeness of all data collected
revealed that the catalogue which finally is used in this
work can be considered as complete for the following time
intervals and cutoff magnitudes:

1951-1992, M =2 6.0,
1931-1992, M 2 6.5,
1885-1992, M = 7.0,
1840-1992, M = 7.8,
1700-1992, M = 8.5.
Figure 3 shows the epicenters of all strong earthquakes

which were used in this study. Three magnitude ranges are
depicted, while mainshocks and preshocks-postshocks, as
they have previously been defined, are denoted by black
and gray symbols, respectively. The 12 seismogenic
regions, defined by Papazachos et al. (1994), are also
shown. On this map, a grid of equally spaced points
(denoted by crosses) at 0.5° apart was created. Again,
each point was taken as the center of circle with radius
increasing from 30 to 150 km in steps of 10 km, and all
earthquakes which were inside each circle and fulfilled
the aforementioned completeness criteria were considered.
Then, following the declustering procedure described
previously, the mainshocks in every circle were defined
and the interevent times between successive mainshocks
were determined, while regression was performed on
these data and c-values were obtained.

The results (Figs. 4a and b) showed that, as in the case
of Greece, the ratio of the positive c-values to the sum of
all c-values (positive and negative c-values) is larger than
60% for all the circles considered, while this ratio was
larger than 87% for circles with radius, r = 100 km.
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Fig. 4. (a) Plot of the ratio of the positive c-values to the sum of all c-values (positive+negative values) versus the radius of the circles considered

for the area of Japan. The lines correspond to different minimum number of observations (7, M
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regression. (b) The same ratio (positive c-values to the sum of all c-values) plotted versus the minimum number of observations (T, M . Mp)

with the lines corresponding to different circle radii.
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4. Calculation of Probabilities

To further check the applicability of the model without
taking into account any information concerning the
regionalization of the area, probabilities for the generation
of strong (M 2 6.0) shallow earthquakes in the broader
Aegean area during the period 1996-2010 are calculated
and the results are compared with probabilities determined
for the seismogenic regions of this area, as they are drawn
in Fig. 1.

Very recently, Papazachos and his colleagues (1997¢)
estimated probabilities for the generation of strong shallow
and intermediate depth earthquakes in the broader Aegean
area during the time period 1996-2010. Figure 5a shows,
by rectangles of three shades located at the centers of the
seismogenic regions of Fig. 1, the probability values for
the occurrence of strong (M = 6.0) shallow earthquakes
during this time period. For the same period, 1996-2010,
probabilities have been determined, for each circle with
radius equal to 60 km, since this was the smallest radius
for which the results (Fig. 2a) were satisfactory. The
procedure for the calculation of the probabilities is
explained below.

It has been found (Papazachos and Papaioannou, 1993)
that the ratio of the observed interevent time, 7, to the
theoretically calculated one, T, follows a lognormal
distribution with a standard deviation, o, equal to 0.29. To
calculate the conditional probability, P, that the repeat
time T of an earthquake will occur in a region during the
next At years, conditional on the ¢ years that have elapsed
since the last earthquake, the following formula is used:

p_ FlLa/0)-F(L /o)

1-F(L, /o)

0.00 a

T T T T T T T T T T T T 34
18 19 20 21 22 23 24 25 26 27 28 29 30

where L, = log(z + At/Tt), L = log(t/Tt), and F is the
complementary cumulative value. The probabilities thus
calculated, which are denoted by rectangles of three shades
located at the centers of the circles of Fig. 1, are shown in
Fig. 5b. The similarity of the spatial distribution of
probability values in both maps of Figs. 5a and b and
especially for values equal to or larger than 50% is
obvious. It has to be noted that four strong earthquakes
occurred in regions where moderate or high probabilities
had been estimated. These earthquakes, which are denoted
by starsin Figs. Saand b are: 1) 13 October 1997, M = 6.7,
36.38°N-22.07°E, 2) 18 November 1997, M = 6.7,
37.57°N-20.66°E, 3) 17 August 1999, M =7.4,40.76°N-
29.97°E, 4) 7 September 1999, M =5.9,38.05°N-23.56°E.

The same procedure was applied to the area of Japan. It
was found that the ratio, T/Tt, for all data obtained from
the 100 km-radius circles, i.e. the smallest radius for
which the results from the regression are satisfactory
(Fig. 4a), follows a lognormal distribution with a mean
value equal to 0.0 and standard deviation equal to 0.27.
Probabilities for the generation of large (M = 7.5) shallow
earthquakes were calculated for each and every circle
with radius equal to 100 km, for the time period 1993-
2002. This time period and cutoff magnitude were chosen
in order to facilitate comparison with the probabilities
calculated by Papazachos et al. (1994). The results of this
calculation are shown in Fig. 6, where three different
shade rectangles have been used to denote three different
probability ranges (light gray: 0.0-30%; gray: 30-50%;
dark gray: 50-80%). The comparison of the distribution
of the probability values calculated in the present work
with the probabilities determined by Papazachos et al.
(1994), which are denoted by the rectangles close to each
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Fig. 5. (a) Probabilities for the generation of strong (M = 6.0) shallow earthquakes in the 67 seismogenic regions of the Aegean area during 1996—
2010 (Papazachos et al., 1997c). (b) Probabilities for the generation of strong (M = 6.0) shallow earthquakes in circles having their centers at
0.5° apart with radius equal to 60 km during 1996-2010. The stars in both figures show the epicenters of four strong earthquakes which occurred

in the Aegean area since 1996.
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Fig. 6. Probabilities for the generation of strong (M = 7.5) shallow earthquakes during 1993-2002, computed for circles having their centers at
0.5° apart with radius equal to 100 km. The stars denote the mainshock epicenters (M = 7.0) which occurred in this area during 1993-1998.

seismogenicregion in Fig. 3, seems satisfactory. However,
differences are observed between the probability calculated
by Papazachos et al. (1994) for the region 6 (Tohoku, in
their paper) and the probabilities found in this work for the
circles which are located within this region. This
discrepancy is probably due to the fact that, in that paper,
a M = 7.4 event that occurred on 1 November 1989 had
been taken as the last mainshock, thus resulting in a low
(P = 22%) probability for the whole seismogenic region
during 1993-2002, whereas in the present work the
probabilities are low only in the circles that this event
belongs to. It is again noted that, since 1993 the following
large (M =7.0) mainshocks occurred inside the seismogenic
regions defined by Papazachos et al. (1994): 1) 12 July
1993, 42.85°N-139.20°E, M =7.7; 2) 28 December 1994,
40.53°N-143.42°E, M =17.8;3) 16 January 1995, 34.58°N-
135.02°E, M =7.2;4) 19 October 1996,31.89°N-131.47°E,
M =7.0. The epicenters of these earthquakes are shown as
stars in Fig. 6.

5. Discussion

An attempt has been made in this paper to check the
effect of zonation on the applicability of the regional
time- and magnitude predictable seismicity model. In

previous studies (Papazachos et al., 1997a, b) it had been
observed that, when the model was applied in areas with
complex seismicity patterns and tectonics (e.g. Philippines,
Taiwan, New Hebrides), the accurate definition of
seismogenic regions was important, but it was not very
critical on the main features and the results of this model.

There are, however, some uncertainties in the application
of this model that concern the long-term clustering of
earthquakes and the interaction between adjacent faults
(see Papazachos et al., 1997a, for detailed discussion).

Long-term clustering has been identified by Ambraseys
(1989) in some areas in Middle East (East Anatolian
Fault, Zagros). He concluded that deformations associated
with earthquakes in these zones seem to occur every few
hundred years, during relatively short paroxysmal periods
of strong events. It is, thus, quite difficult to estimate
future activity on the basis of a data sample of past events,
depending upon whether the sample of observations has
been taken from a high or low period of current activity.
On the other hand, it has been shown that the most recent
past may be a better indicator of future seismic activity
(McGuire and Barnhard, 1981). The above mentioned
conclusions show that the results depend strongly on the
data on which they are based.
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As regards the interaction between adjacent regions, it
has to be said that it remains a major problem which
attracts the attention of many scientists who use stochastic
simulations as well as multivariate stress release models
to quantify the stress transfer between regions (Suzuki
and Kiremidjan, 1991).

In the present paper it has been shown that the basic
feature of the model, that is, the positive dependence of
the return period, 7, on the magnitude, Mp, of the preceding
mainshock, exists independently of the shape or the surface
of the region considered, since it has been found that in the
majority of the cases in both areas studied, the c-values
were positive. This result enables a tentative seismic
hazard assessment in areas where no zonation has ever
been attempted. More accurate seismic hazard studies
require a detailed zonation based on as much data as
possible.
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