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Shear instabilities in the dust layer of the solar nebula I. The linear analysis of a
non-gravitating one-fluid model without the Coriolis and the solar tidal forces
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As dust aggregates settled toward the midplane of the solar nebula, a thin dust layer was formed. The rotational
velocity was a function of the distance from the midplane in this layer, and the shear induced turbulence might occur,
which prevented the dust aggregates from settling further toward the midplane. Thus, it was difficult for the dust
density on the midplane to exceed the critical density of the gravitational stability. In this paper, the linear analysis
of the shear instability is made under the following assumptions: The self-gravity, the solar tidal force (thus the
Keplerian shear), and the Coriolis force are neglected; the unperturbed state has a constant Richardson’s number in
the dust layer; further we restrict ourselves to the case where dust aggregates are small enough, and a mixture of
dust and gas is treated as one fluid. Numerical results show that the growth rate of the most unstable mode is much
less than the Keplerian angular frequency, as long as the Richardson number is larger than 0.1.

1. Introduction
Dust grains which had been homogeneously distributed

initially in the solar nebula stuck together and settled toward
the midplane and a thin dust layer was formed as long as
the nebula was laminar (Safronov, 1969; Weidenschilling,
1980; Nakagawa et al., 1981 and 1986). If the midplane
dust density exceeded the critical density, planetesimalswere
formed due to gravitational instabilities (Safronov, 1969;
Goldreich and Ward, 1973; Coradini et al., 1981; Sekiya,
1983). However, recent investigations raised suspicion on
this scenario (Weidenschilling, 1980 and 1984; Cuzzi et al.,
1993; Weidenschilling and Cuzzi, 1993; Champney et al.,
1995; Sekiya, 1998). The rotational velocity of a nebular
fluid element was a bit smaller than the circular Keplerian
velocity due to the radial gas pressure gradient in the solar
nebula. As dust aggregates settled toward the midplane, the
rotational velocity increased around the midplane because
of the relative ineffectiveness of the radial pressure gradi-
ent compared to the centrifugal force and the solar gravity,
since the latter two forces are proportional to the mass. The
rotational velocity was then a function of the distance from
the midplane. Thus the shear induced turbulence might oc-
cur, and the turbulence might prevent the dust aggregates
from settling further and the dust density could not exceed
the critical value of the gravitational stability. If this was
the case, planetesimals could not be formed by gravitational
instability; they should be formed by mutual sticking of dust
aggregates due to non-gravitational forces, e.g. the van der
Waals force. It is important to elucidate the physics of the
shear instabilities in the dust layer, in order to know the real
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formation story of planetesimals.
We plan to work on the stability problems of the dust layer

in series of papers. This paper is the first one which makes
the linear analysis of the shear instability in the dust layer
with the simplest assumptions: (1) The self-gravity is ne-
glected. (2) A mixture of gas and dust is treated as one fluid,
which is a good approximation in the case where dust ag-
gregate sizes are small (<∼ 1 cm). (3) The solar tidal force,
which is the sum of the radial component of solar gravity
and the centrifugal force, is neglected; thus the radial shear
∂v/∂r is not incorporated in the unperturbed state, and only
z-component of the solar gravity is taken into account, where
v is the rotational velocity of a fluid which is a mixture of gas
and dust, r is the distance from the rotation axis, and z is a
coordinate perpendicular to the midplane of the solar nebula
(z = 0 on the midplane). (4) The effects of the Coriolis force
are neglected. (5) The effects of the radial density and pres-
sure gradients of the unperturbed state are only incorporated
in the unperturbed rotational velocity distribution v0(z). (6)
Local Cartesian coordinates (x, y, z) are used and we neglect
the curvature of a circle with constant values of r and z. (7)
The unperturbed state has a constant Richardson’s number
[see Eq. (13)] in the dust layer. In subsequent papers, these
assumptions would be modified.

2. Basic Equations
If dust aggregates are small enough to couple firmly to

gas and a mixture of dust and gas is treated as one fluid, the
stationary rotation velocity in the dust layer is given by (see
e.g. Sekiya, 1998)

v = [1 − (ρg/ρ)η(r)]vK (r), (1)

where ρg is the gas density and ρ is the total (dust plus gas)
density, which is equal to ρg +ρd (ρd being the dust density),
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Fig. 1. The distributions of the unperturbed dust density ρd0 given by
Eqs. (14) and (4), in the cases where ρd0(0)/ρg = 0.1, 1 and 10 with
J = 0.1.

Fig. 2. The distributions of the unperturbed azimuthal velocity v0, given
by Eq. (3), in the cases where ρd0(0)/ρg = 0.1, 1 and 10 with J = 0.1.

vK (r) is the circular Keplerian velocity with radius r from
the sun, and

η(r) = −(∂P/∂ ln r)/{2[vK (r)]2ρg}, (2)

where P is the gas pressure. Eqs. (1) and (2) show that a
shear flow ∂v/∂z arises due to gradient of dust to gas ratio
∂(ρ/ρg)/∂z = [∂(ρd/ρg)/∂z], which, in turn, is caused by
settling of dust aggregates toward the midplane.
In the following, we consider a local region in the dust

layer around r = r0 and use the Cartesian coordinate sys-
tem (x, y, z), whose origin is on the midplane at r = r0, and
which rotates around the sunwith the velocity v = (1−η)vK ,
i.e. the velocity of gas dominant region (where ρ = ρg) at
r = r0, and x and y stand for the radial and the azimuthal di-

Fig. 3. The distributions of vertical gradient of the unperturbed azimuthal
velocity dv0/dz given by Eq. (5) in the cases where ρd0(0)/ρg = 0.1, 1
and 10 with J = 0.1.

Fig. 4. The growth rates of the instability ωi as functions of the azimuthal
wave number k in the cases where ρd0(0)/ρg = 0.1, 1 and 10 with
J = 0.1.

rections, respectively [hereafter we write r , η and vK instead
of r0, η(r0) and vK (r0), respectively, for simplicity]. For
the first step to solve this problem, we simplify the problem
assuming that the Coriolis force and the solar tidal force are
neglected, and that the unperturbed fluid is non-rotating with
respect to z-axis and has a shear motion only depending on
z-direction

v0 = {
1 − [ρg/ρ0(z)]

}
ηvK , (3)

where ρ0(z) is the unperturbed total (gas plus dust) density:

ρ0(z) = ρg + ρd0(z), (4)

where ρd0 is the unperturbed dust density. Note that Eq. (3)
differs from Eq. (1), since we use here a frame of reference
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Fig. 5. The growth rate ωi of the mode with the most unstable wave
number as a function of the Richardson number J in the case where
ρd0(0)/ρg =0.1. The most unstable wave number squared is shown by
the dashed curve.

Fig. 6. Same as Fig. 5 except that ρd0(0)/ρg = 1.

moving with v = (1−η)vK . We assume that the gas density
ρg is constant, which is a good approximation for a thin dust
layer (Sekiya, 1983). Then the shear rate is given by

dv0/dz = ρg[ρ0(z)]−2(dρ0/dz)ηvK . (5)

A mixture of gas and dust behaves as one incompressible
fluid in the region around themidplane, as long as dust aggre-
gates are small enough (Sekiya, 1998). Thus the equations
of continuity and incompressibility are written

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0, (6)

∂ρ

∂t
+ u

∂ρ

∂x
+ v

∂ρ

∂y
+ w

∂ρ

∂z
= 0. (7)

Fig. 7. Same as Fig. 5 except that ρd0(0)/ρg = 10.

We only take z-component of the solar gravity −�2
K z into

account, where�K is the circular Keplerian angular velocity
at r0. The Euler equations are written

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ

∂P

∂x
, (8)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − 1

ρ

∂P

∂y
, (9)

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= − 1

ρ

∂P

∂z
− �2

K z, (10)

where (u, v, w) are the (x, y, z) components of the velocity,
respectively. Note that the solar tidal force is neglected in
Eq. (8), and the Coriolis force is neglected in Eqs. (8) and
(9) in this paper.
The unperturbed velocity is given by Eq. (3) and

u0 = w0 = 0. (11)

The unperturbed pressure P0 is given by

1

ρ0

dP0
dz

= −�2
K z. (12)

Note that P0 is assumed to be independent of x in the simpli-
fied model of this paper, although the shear motion dv0/dz
arises due to the radial pressure gradient through η given by
Eq. (2) in the original problem. We solve in this paper a
problem in non-rotating system with shear dv0/dz given by
Eq. (5) and only z-component of the solar gravity.
The stability of a shearing parallel flow is characterized

by the Richardson number (Chandrasekhar, 1961; Howard,
1961):

J = −[∂ρ0(z)/∂z]ρ0(z)
−1�2

K z[∂v0(z)/∂z]−2

= −z[ρ0(z)]3[dρ0/dz]−1(ρgηr)
−2, (13)

where Eq. (5) is used. A flow is stable as long as J ≥ 1/4
(Chandrasekhar, 1961; Howard, 1961).



520 M. SEKIYA AND N. ISHITSU: SHEAR INSTABILITIES IN THE DUST LAYER, I

Fig. 8. The real and imaginary parts of the eigenfunction �(w1) and
�(w1), respectively, of Eq. (22) in the case where log(k2η2r2) = 0.1,
with J = 0.1 and ρd0(0)/ρg = 0.1. The co-rotation point is shown by a
dash-dotted line with characters “CR”.

Fig. 9. Same as Fig. 8 except that log(k2η2r2) = 1.989.

A detailed distribution of the Richardson number in the
nebula depends on various processes: dust sticking, fractal
structure of dust aggregates, turbulence in the solar nebula,
etc. Time dependent calculations should be made in future
to know the evolution of the nebula, after basic processes,
e.g. shear induced turbulence, dust sticking etc., would be
elucidated. However, we here assume that an unperturbed
state has a constant Richardson’s number in the dust layer
for simplicity, and parameterize the dust settling by decrease
of the Richardson number. If the self-gravity of the dust

Fig. 10. Same as Fig. 8 except that log(k2η2r2) = 2.8.

Fig. 11. The real and imaginary parts of v1, which are calculated from
Eq. (16) with kx = 0, in the case where log(k2η2r2) = 0.1, with J = 0.1
and ρd0(0)/ρg = 0.1. The co-rotation point is shown by a dash-dotted
line with characters “CR”.

layer is sufficiently small, the total density distribution with
a constant Richardson’s number J is given by Sekiya (1998):

ρ0 =
{

ρg/
√
[z2/(Jη2r2)] + [ρg/ρ0(0)]2 for |z| < zd ,

ρg for |z| ≥ zd .
(14)

Here zd = √
Jηr

√
1 − [ρg/ρ0(0)]2 is the half thickness of

the dust layer, and ρ0(0) is the unperturbed total density on
the midplane, which is determined from

�d = 2
∫ zd

0
ρd0 dz, (15)
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Fig. 12. Same as Fig. 11 except that log(k2η2r2) = 1.989.

where �d is the dust column density, and ρd0 is calculated
from Eq. (4).
Perturbation equations are written assuming perturbed

quantities are proportional to exp(ikx x + iky y − iωt):

ikxu1 + ikyv1 + dw1

dz
= 0, (16)

−iω̄ρ1 + dρ0

dz
w1 = 0, (17)

−iω̄u1 = − ikx P1
ρ0

, (18)

−iω̄v1 + dv0

dz
w1 = − iky P1

ρ0
, (19)

−iω̄w1 = − 1

ρ0

dP1
dz

− �2
K z

ρ0
ρ1, (20)

where characters with subscript 1 designate perturbed quan-
tities, and ω̄ ≡ ω−kyv0 = −ky v̄, v̄ ≡ v0−c, and c ≡ ω/ky .
From Eqs. (16), (18) and (19), we have

P1 = iρ0

k2

(

ω̄
dw1

dz
+ ky

dv0

dz
w1

)

, (21)

where k = (k2x + k2y)
1/2. Substituting Eqs. (17) and (21) into

Eq. (20), we have

d2w1

dz2
+ 1

ρ0

dρ0

dz

dw1

dz
−

(

k2 + 1

v̄

d2v0

dz2

+ 1

ρ0

dρ0

dz

1

v̄

dv0

dz
+ k2

k2y

�2
K z

v̄2

1

ρ0

dρ0

dz

)

w1 = 0. (22)

In regions outside the dust layer |z| ≥ zd , Eqs. (21) and
(22) are simplified as

P1 = iρgω̄

k2
dw1

dz
, (23)

Fig. 13. Same as Fig. 11 except that log(k2η2r2) = 2.8.

and
d2w1

dz2
− k2w1 = 0. (24)

From Eq. (24), we have

w1 =
{
A+ exp(−kz) for z > zd ,

A− exp(kz) for z < −zd ,
(25)

where A+ and A− are arbitrary constants. From Eqs. (23)
and (25), we have

P1 = ∓ iρgω̄

k
w1 at z = ±zd . (26)

Since P1 should be continuous at z = ±zd , Eqs. (21) and
(26) read

dw1

dz
+

(

±k − 1

v̄

dv0

dz

)

w1 = 0 at z = ±zd . (27)

There are two types of solutions: (a) even solutions where
w1(−z) = w1(z), and (b) odd solutions where w1(−z) =
−w1(z). It is revealed from our numerical calculations that
even solutions are always stable. Thus, we show only the
odd solutions in the following. In this case, the boundary
conditions are

dw1

dz
+

(

k − 1

v̄

dv0

dz

)

w1 = 0 at z = zd , (28)

and
w1 = 0 at z = 0, (29)

instead of Eq. (27). Further we restrict ourselves to the case
where kx = 0, since this gives the most unstable mode for
a given value of k. Numerical solutions of Eq. (22) with
boundary conditions, Eqs. (28) and (29), will be shown in
the next section.
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Fig. 14. The distribution of vorticity ξ1 ≡ ∂yw1 − ∂zv1 of the mode with the most unstable wave number in the case where J = 0.1 and ρd0(0)/ρg = 0.1.
The co-rotation sheet is shown by the arrow with characters “CR”.

Fig. 15. Same as Fig. 14 except that ρd0(0)/ρg = 1.

3. Numerical Results and Discussion
An unperturbed state is characterized by two parameters:

the Richardson number J and the ratio of the dust density
to the gas density on the midplane ρd0(0)/ρg . Figures 1
to 3 show the dust density, the velocity and the velocity
gradient, respectively, as functions of z, where the cases
ρd0(0)/ρg = 0.1, 1 and 10with J = 0.1 are drawn. As noted
by Sekiya (1998), the characteristics of a density distribution
given by Eq. (14) change considerably between the cases
where ρd0(0)/ρg << 1 and ρd0(0)/ρg >> 1. In the case
ρd0(0)/ρg >> 1, a density distribution changes its character
in the regions where ρd0(z)/ρg << 1 and ρd0(z)/ρg >> 1,
as seen in Fig. 1. Thus a velocity distribution also changes
its character according to Eqs. (3) and (5), as seen in Figs. 2
and 3, respectively.

In each case, we solved the perturbation equations nu-
merically and obtained the growth rate of an unstable mode
ωi = � (ω) as a function of the wave number k (Fig. 4),
where � designates the imaginary part. The most unstable
wave numbers are log(k2η2r2) = 1.989, 0.730, 0.849 in the
cases ρd0(0)/ρg = 0.1, 1 and 10, respectively, with J =
0.1. The reason why a mode has a peak growth rate will be
discussed later.
Figures 5 to 7 show the growth rates of the mode with the

most unstable wave number as functions of the Richardson
number J in cases ρd0(0)/ρg =0.1, 1 and 10, respectively.
As seen in these figures, the growth rate is much less than
the Keplerian angular frequency as long as J >∼ 0.1, and
the instability disappears when J >∼ 0.22. Thus the Coriolis
force and the Keplerian shear which are neglected in this
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Fig. 16. Same as Fig. 14 except that ρd0(0)/ρg = 10.

paper and also in Sekiya (1998) may play a crucial effect on
the instability. We plan to elucidate this problem in some
subsequent papers.
In Figs. 8 to 10, the real and imaginary parts of w1, which

are the eigenfunctions of Eq. (22), are drawn in the cases
where log(k2η2r2) = 0.1, 1.989 and 2.8, respectively, with
J = 0.1 and ρd0(0)/ρg = 0.1. In Figs. 11 to 13, the real and
imaginary parts of v1, which are calculated from Eq. (16)
using the assumption kx = 0, are drawn, with the same
parameters as Figs. 8 to 10, respectively. Hereafter we call
a sheet, where the unperturbed flow velocity v0 is equal to
the pattern velocity of the perturbation �(c), i.e. �(v̄) = 0,
a co-rotation sheet (or a co-rotation point in the sense of one
dimensional calculation of z), where � designates the real
part. Note that Eq. (22) has a singularity at the co-rotation
point if c is real, i.e. for neutral stability. Although a solution
is regular at the co-rotation point for a growing mode with
�(c) > 0, which we obtained here, an abrupt change of the
behavior of a solution occurs around the co-rotation point as
seen in Figs. 8 to 13, since the last three terms in parentheses
of Eq. (22) have large values.
Figures 14 to 16 show the distributions of the vorticity

ξ1 ≡ ∂yw1 − ∂zv1 of the mode with the most unstable wave

number in cases ρd0(0)/ρg =0.1, 1 and 10, respectively,
with J = 0.1 (note that the unit is arbitrary, since we treat
a linearized quantity). It is seen that large amplitudes of
vorticity also distribute around a co-rotation sheet. These
behavior around the co-rotation sheet (co-rotation point) is
interpreted physically that the unperturbed quantities interact
with the perturbed quantities around the co-rotation sheet
(co-rotation point). A more detailed description of the co-
rotation point (the critical point in usual terminology of the
fluid mechanics) is seen in chapter 8 of Lin (1955).
As seen from Fig. 4, the growth rates have the maximum

values at log(k2η2r2) =1.989, 0.730 and 0.849 in the cases
ρd0(0)/ρg = 0.1, 1 and 10, respectively with J = 0.1. Here
we consider the reason why a mode has a maximum growth
rate at an intermediate value of k. Multiplying Eq. (20) by
ρ0v

∗
1/2 (where the superscript ∗ denotes the complex conju-

gate value) and taking the real part, we have

2ωI
1

4
ρ0|v1|2 = −1

2
ρ0

dv0

dz
� (

w1v
∗
1

) + 1

2
k� (

P1v
∗
1

)
, (30)

(note that we assume kx = 0 and ky = k). This equation
shows that the azimuthal part of the perturbed kinetic energy
is supplied by the shear dv0/dz and is transported through the
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Fig. 17. The azimuthal and vertical parts of the perturbed kinetic en-
ergy density, ρ0|v1|2/4 and ρ0|w1|2/4, respectively, in the case where
log(k2η2r2) = 0.1, with J = 0.1 and ρd0(0)/ρg = 0.1.

Fig. 18. Same as Fig. 17 except that log(k2η2r2) = 1.989.

work done by the pressure perturbation (note that the phase
average causes the extra factor 1/2 in each term). Similarly,
multiplying Eq. (20) by ρ0w

∗
1/2 and taking the real part, we

have

2ωI
1

4
ρ0|w1|2 = −1

2
�

(
dP1
dz

w∗
1

)

−1

2
�2

K z�
(
ρ1w

∗
1

)
. (31)

This equation shows that the vertical part of the perturbed
kinetic energy is transported through work done by the pres-
sure perturbation and is lost through the work done by the

Fig. 19. Same as Fig. 17 except that log(k2η2r2) = 2.8.

Fig. 20. Each term in the right hand sides of energy equations (30) and (31),
in the case where log(k2η2r2) = 0.1, with J = 0.1 and ρd0(0)/ρg = 0.1.

z-component of the solar gravity �2
K z.

Figures 17 to 19 show the azimuthal and vertical parts
of the perturbed kinetic energy density, with the same pa-
rameters as Figs. 8 to 10, respectively. Figures 20 to 22
show each term in the right hand side of energy equations
(30) and (31), with the same parameters as Figs. 8 to 10,
respectively. As k → 0, |w1| << |v1| as seen from Fig. 17
[this figure shows the case where log(k2η2r2) =0.1], since
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Fig. 21. Same as Fig. 20, except that log(k2η2r2) = 1.989.

v1 increases due to Eq. (16) whereas the behavior of w1 is
not so strongly controlled by the value of k as long as k
is small enough as seen from Eqs. (22) and (28). In this
case, the energy input by shear −ρ0(dv0/dz)�(w1v

∗
1)/2�K

is small (see Fig. 20), to supply the large kinetic energy∫
[ρ0(|w1|2 + |v1|2)/4] dz ∼ ∫

(ρ0|v1|2/4) dz (see Fig. 17),
since the former is linear and the latter is quadratic of v1. In
the case of large k [e.g. log(k2η2r2) =1.989 and 2.8], the
behavior of w1 is strongly controlled by k and the value of
|dw1/dz| is nearly equal to k|w1| as seen from Eqs. (22) and
(28). In this case |w1| ∼ |v1| as seen from Eq. (16) and also
from Figs. 18 and 19. For such a large value k, an eigenvalue
is determined by the continuation of the eigenfunction at the
co-rotation point. In the case of log(k2η2r2) =1.989, values
of w1 and dw1/dz above and below the co-rotation point are
similar (see Fig. 9) and there is no need to change the values
abruptly around the co-rotation point to continue the eigen-
function. Thus Eq. (22) should not be nearly singular and a
large value of �(c) = ωi/k is allowed. As k increases, the
value of dw1/dz increases as seen from Eqs. (22) and (28),
and the matching of values w1 and dw1/dz above and below
the co-rotation sheet become worse; thus an abrupt change
of w1 around the co-rotation point is needed to continue the
function (see Fig. 10), and Eq. (22) should be nearly singular
at the co-rotation point. Therefore �(c) = ωi/k should be
small.

4. Conclusion
The linear analysis of the shear induced instability of the

dust layer in the solar nebula is made. In this paper, (1) the
self-gravity is neglected; (2) the Coriolis force and the so-
lar tidal force (thus the Keplerian shear) are also neglected;
(3) the one-fluid model which is appropriate for small dust

Fig. 22. Same as Fig. 20, except that log(k2η2r2) = 2.8.

aggregates is used. We solved a problem of non-rotating
system without Keplerian shear ∂v0/∂r but with shear in z
direction ∂v0/∂z. We have the following results: (A) The
growth time is much longer than the Keplerian period, as
long as the Richardson number J >∼ 0.1. (B) The instability
disappears when J >∼ 0.22. Under the assumptions made
in this paper, it is considered that the dust distribution in the
solar nebula is well represented by Eqs. (14) and (4) with
J ≈ 0.22. Since this value is not so different from the criti-
cal Richardson number Jc=0.25 used by Sekiya (1998), the
conclusion of Sekiya (1998), that the gravitational instability
is inhibited in the nebula with the solar abundance, is correct
as long as the above mentioned assumptions are valid. In
cases where the dust sizes are much larger than ∼ cm, the
two fluidmodel should be used to analyze the instability; this
will be done in subsequent papers. The Coriolis force and
the solar tidal force may also play essential roles; we also
plan to treat this problem in subsequent papers.
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