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Crust and upper mantle resistivity structure in the southwestern end of the Kuril
Arc as revealed by the joint analysis of conventional MT and network MT data
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A joint analysis of data obtained by conventional magnetotellurics and network magnetotellurics (band-width,
0.003-7,680 sec) revealed detailed resistivity structure from the shallow crust to the upper mantle in the eastern part
of Hokkaido, Japan, situated in the southwestern end of the Kuril Arc. The results are summarized as follows: (1)
A conductive layer (a few to 10 Q2m), having a basin structure, is distributed widely to a maximum depth of about
6 km in the upper crust. Considering other independent studies, such as seismic reflection, gravity and drill core
analyses, the bottom of this layer coincides with the boundary between the Tertiary and the Cretaceous formations.
(2) A conductive layer (1040 ©2m) situated in the lower crust extends from the volcanic front toward the backarc
side, and is similar to feature with the Northeastern Japan Arc. (3) A highly resistive layer (5,000-10,000 Q2m) is
analyzed in the upper to middle crust of the forearc side. Since the distribution of this layer is consistent with the
high positive gravity anomaly region (227 mgal in maximum), the causative material may be common. A collisional
tectonic event between the Eurasia plate and the Okhotsk Paleoland in the Cretaceous period may possibly be related
with the existence of the layer, although the detailed tectonic implications are left to be solved. (4) The resistivity
of the upper mantle is 40-100 Qm. (5) The resistivity of the Pacific plate is estimated as 700—1,000 2m, which is

almost consistent with that of the Northeastern Japan Arc (500 2m).

1. Introduction
Recent advances in magnetotelluric (MT) soundings have
revealed the detailed electrical resistivity structure beneath
the Japanese Islands, following geomagnetic depth sound-
ings (GDS) in the 1960’s-1970’s (e.g., Sasai, 1967; Kato
et al., 1971; Rikitake and Honkura, 1973; Honkura, 1974;
Miyakoshi, 1979; Nishida, 1982). For example, Ogawa
(1987) deployed many MT stations and found a conductive
lower crust beneath the Northeastern (NE) Japan Arc. Utada
et al. (1996) also found a conductive lower crust and a thin
conductive layer (10 Qm or so) on top of the subducting
Pacific plate in NE-Japan by a combined analysis of MT
and GDS data. Succeeding attempts were made by Shiozaki
(1993), Fuji-ta et al. (1997) and Yamaguchi et al. (1999) in
the Southwestern (SW) Japan Arc which belongs to the sub-
duction zone of the Philippine Sea plate. A conductive layer
(75 ©2m) is also detected on the top of the resistive Philip-
pine Sea plate (Yamaguchi et al., 1999).

Hokkaido is situated at the junction connecting the NE
Japan Arc and the Kuril Arc (Fig. 1). Reconstruction of pa-
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leogeologic history in Hokkaido has been developed since
the early 1980’s (e.g., Kiminami ef al., 1986) from plate tec-
tonics theory based on much geological evidence. Hokkaido
is believed to have formed through two stages of major col-
lisions between land masses. One of these occurred be-
tween the Eurasia Plate and the Okhotsk Paleoland in the
late Cretaceous or Paleogene (e.g., Niida and Kito, 1986;
Sakakibara et al., 1986). The other between the Kuril fore-
arc and the NE Japan forearc in the late Miocene (e.g.,
Kimura, 1981, 1986). In addition to such past tectonic
events, subduction of the present Pacific plate has worked
on Hokkaido, resulting in the complex tectonic setting as
shown in Fig. 1.

According to Arita et al. (1998), the geology of Hokkaido
is divided into six provinces based on tectonic settings in the
Mesozoic (the Oshima, Sorachi-Yezo, Idon’nappu, Hidaka,
Tokoro and Nemuro Belts). From this classification, the
eastern part of Hokkaido is mainly situated in the Nemuro
Belt. The Nemuro Belt is composed of upper Cretaceous
to Paleogene sediments (the Nemuro group), Neogene and
Quarternary sediments and volcanics. The Nemuro group
is exposed in the southern part of study area, as shown in
Fig. 2 (Geological Survey of Japan, 1992). These rocks are
overlain by Tertiary and Quaternary sediments, forming the
Konsen plain, in the southern part of the Nemuro Belt and
Miocene to Quaternary volcanic rocks in the northern part
of the Nemuro Belt. From a detailed paleocurrent study
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Fig. 1. Tectonic framework in and around Hokkaido, Japan. A thin arrow denotes the direction of the crustal movement caused by the collision of the

Kuril Arc against the NE Japan Arc. A bold arrow indicates the subduction direction of the Pacific plate. The conventional MT sites are also shown by

small dots. VF indicates the volcanic front.

Kiminami (1983) suggested the Nemuro group was mostly
supplied from the north but also partially from the south.
These facts strongly suggested that both the Okhotsk Pale-
oland and the Paleo-Kuril outer arc were located in the north
and south of the study area in the late Cretaceous, respec-
tively. Kiminami (1983) indicated that the Okhotsk Pale-
oland possibly consisted of part of a volcanic arc. However,
there was little geophysical evidence to support this hypoth-
esis.

The first electromagnetic study in this region was per-
formed by Mori (1975). Mori measured geomagnetic and
geoelectric field variations, which was succeeded by a VLF-
and ELF-MT survey by the Research Group for Crustal Re-
sistivity Structure (1984). This survey revealed only the
shallow sedimentary structure (<1 km) because the ob-
served frequency range was limited to 8, 14, 20 and 17,400
Hz. Uyeshima (1990) and Uyeshima et al. (2001) performed
a network MT study with a long electric dipole (ranging
from ten to several tens of kilometers) in the period range
from 300 sec to 7,680 sec and proposed a resistivity model
of the upper mantle. This new method was realized by em-
ploying the commercial telephone network (the detailed

methodological explanation of the network MT is referred
to in the above-mentioned papers). However, the lack of
short period band MT data prevented establishment of the
detailed resistivity structure of the crust.

To remedy this situation, we made MT measurements us-
ing conventional short electric dipoles (approx. 50 m elec-
trode spacing) in the period range from 0.003 sec to 1,820
sec. In addition, we re-analyzed the network MT data by
Uyeshima (1990); consequently, we analyze wideband MT
data in the period range 0.003 sec to 7,680 sec. This first at-
tempt at joint analysis of conventional MT and network MT
data may provide detailed resistivity structure of the SW end
of the Kuril Arc to a depth of about 100 km.

2. Conventional MT Observation in the Eastern
Part of Hokkaido

Observation: The strike of the Kuril Arc and the elon-
gation of contours of the Bouguer anomaly (Yamamoto and
Moriya, 1989; Moriziri et al., 2000) have an ENE-WSW
direction (Fig. 3), suggesting that the general tectonic struc-
ture is approximately two-dimensional in the eastern part of
Hokkaido. We carried out conventional MT surveys in this



H. SATOH et al.: RESISTIVITY STRUCTURE IN THE SOUTHWESTERN END OF THE KURIL ARC 831

144E

P
- e

; 77 i
¥/ Projected MT
,‘e///j{%gproﬁle(NZSW)

145E

m Sediments
| (Quatemary)

En: ] Volcanics
+~»] (Quatermary)

=

Sediments
(Neogene)

77, Sediments
//7; (Paleogene)

Sediments
(Crataceous)

Volcanics
(Jurassic)

Fig. 2. The conventional MT sites are shown with a simplified geological map (Geological Survey of Japan, 1992). Seismic reflection profile and projected

MT profile are also shown by thin and thick solid lines, respectively.

area in 1996 and 1997 using three measurement lines, A-,
B- and C-profiles, as shown in Fig. 2. These are aligned
in the NNW-SSE direction, which is almost perpendicular
to the above mentioned general tectonic trend. The num-
ber of observation sites is 31. We acquired measurements
of two-component electric fields and three-component mag-
netic fields at each site for a period range from 0.003 sec to
1,820 sec, using two sets of the V5-MT systems of Phoenix
Geophysics Ltd. Data quality of the magnetic and elec-
tric fields was remarkably improved at most of the sites by
applying a short remote reference method (Gamble et al.,
1979).

Estimation of the strike direction: We checked if there
is a consistent regional strike for the data set. To deal with
the galvanic distortion, we applied the Groom-Bailey tensor
docomposition method for each site and period (Groom and
Bailey, 1989).

Figure 4 shows the rose histograms of the estimated re-
gional strike directions in four period bands (0.1-1 sec, 1—
10 sec, 10-100 sec, 100-2,000 sec). All data in each profile
are included in each histogram. Allowing for a 7 /2 am-
biguity in strike estimates, there is a general preference of
strike direction of N65°E or N25°W except A-profile. The
/2 ambiguity is solved by referring to the induction ar-
rows which are estimated from the three-component mag-
netic field data. As shown in Fig. 5, induction arrows from

B-profile and the southern end of C-profile tend to point in
a NW-SE direction, indicating a NE-SW strike orientation.
Comparing the distribution of the induction arrows with the
rose histograms, we choose a strike direction as N65°E. This
direction shows good agreement with the strike of the Kuril
Arc and the elongated direction of the Bouguer anomaly dis-
tribution. Thus, we define here the transverse electric (TE)
and transverse magnetic (TM) modes as having the telluric
field parallel to and perpendicular to the strike direction of
N65°E, respectively.

Detailed inspection of the induction arrows reveals that
arrows in A-profile point in an E-W direction. We inter-
pret this as being due to the complex surface geology, which
makes a two-dimensional structural analysis impossible. In
the C-profile arrows tend to point towards the neighboring
coast line (the coastal effect). Two-dimensionality is not
necessarily satisfied due to the coastal effects. It seems that
the B-profile may be more two-dimensional than other two
profiles and in the present paper, therefore, our attention is
mainly focused on this profile.

Two-dimensional resistivity model calculations: The
decomposed data are still affected by site gain and aniso-
toropy, usually called static shift, which appears as a verti-
cal shift of the log apparent resistivity versus period curves
relative to the true regional values. If we use the undecom-
posed apparent resistivity data sets for model calculation, it
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Fig. 3. Distribution of the Bouguer anomaly in and around the eastern part of Hokkaido (modified from Yamamoto and Moriya, 1989). Contour interval
is 25 mgal. A, B and C denote drilling sites (Kametani and Yoshimura, 1964; Matsunami and Akita, 1989). MMB shows the location of Memanbetsu

Magnetic Observatory.

may lead to a false resistivity structure. Therefore, to con-
struct the resistivity model, we apply the two-dimensional
inversion method of Ogawa and Uchida (1996) which in-
cludes static shift correction; the static shifts for both TM
and TE modes at all sites are treated as model parameters
as well as the model resistivities. The misfit between ob-
served and model data is minimized so as to minimize the
model roughness and the static shift norms. As these norms
have a trade-off relation with each other, the misfit is deter-
mined to maximize the Bayesian likelihood: in other words
ABIC (Akaike’s Bayesian Information Criterion) is mini-
mized. The resistivity structure of the Sea of Okhotsk and
the Pacific Ocean is included in the modelling by specifying
the bathymetry along the measurement lines and giving sea
water a resistivity of 0.25 Qm.

Models with favorable responses are shown in Figs. 6(a)
and 6(b) for the C- and B-profiles, respectively. These mod-
els were constructed so as to satisfy the apparent resistivities
and phases deduced from the MT data. Beneath the Konsen
plain (Fig. 2), a conductive layer (a few to10 2m), having a
basin structure, occurs to a depth of about 6 km in the middle
to southern part of the B- and C-profiles.

In the middle to lower crust, we can see two common
features in the models of the B- and C-profiles. One is a

conductive layer (1040 Qm) extending from the volcanic
front toward the backarc side in the lower crust. In order
to examine whether the existence of this layer is meaning-
ful, we carried out sensitivity tests by replacing the structure
below 20 km in the B-profile by uniform layers of 100 2m
and 1,000 2m. The test responses showed little change in
the forearc side in comparison with the best fit responses. In
the backarc side, on the contrary, the apparent resistivity and
the phase responses of TM mode gave worse fit for periods
longer than several ten sec as shown in Fig. 7. Therefore, it
can be safely concluded that the lower crust in the backarc
side is significantly conductive.

The second feature is a highly resistive layer (more than
10,000 2m) distributed in the southern part of the study area
(the forearc side) in the middle to lower crust. The bottom
boundary of this layer is estimated as 30 km or so in depth.
We also carried out the sensitivity test by replacing the depth
of the bottom boundary by 40 km in the B-profile. This test
showed negligible change in the test responses of apparent
resistivity and phase in all observation sites, suggesting that
the bottom boundary was poorly determined. To overcome
such limitation, we need more longer period data than 1,820
sec. We, therefore, re-analyzed the network MT data which
cover a period range from 300 sec to 7,680 sec. We will
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Fig. 6. Resistivity models deduced from the conventional MT survey: (a) C-profile and (b) B-profile. Dashed curves in (a) represent the seismic reflectors,
while solid curve in (b) represents the boundary of the Neogene and the Cretaceous layers inferred from the gravity analysis. Q, N and C denote the
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present the procedure of the network MT data re-analysis in
the next chapter.

3. Data Processing of the Network MT Data

The network MT method is designed to acquire large-
spatial and averaged resistivity information by using long
electric dipole lengths (ranging from ten to several tens of
kilometers), associated with the telephone cable nets of NTT
(Nippon Telegraph and Telephone Corporation) (Uyeshima,
1990; Uyeshima et al., 2001). Figure 8 shows the distribu-
tion of the network MT nets (triangular sections) together
with the conventional MT sites. The method ensures the
electric fields have a high signal to noise ratio. This is be-
cause the electric potential difference is enhanced due to the
long dipole length, while the noise in the electric field is lo-
cally limited near the electrodes.

We recorded the electric fields every one minute using

several digital data loggers which were installed at each cen-
tral telephone station. To estimate the response functions for
each dipole, we used horizontal magnetic fields recorded at
Memanbetsu Magnetic Observatory (MMB in Fig. 3), sit-
uated at 150 km distant from the present observation sites
in maximum. We calculate the response functions between
the electrical potential difference and the magnetic field for
each dipole and then obtain the impedance tensors for each
triangular section (Fig. 8). The relationship between volt-
age difference for each dipole and two magnetic fields in the
frequency domain can be described by the following linear
relation:

V(w) = Is(@) - H(w) + Vew(o) - D(w)

where V(w) is the observed voltage difference for each
dipole, Vns(w) and Vgw(w) are the response functions.
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H(w) and D(w) are the NS and EW components of hor-
izontal magnetic fields, respectively. Fns(w) and Vew(w)
determined by the observed V (w), H(w) and D(w) are used
to calculate the impedance tensors which are expressed by
a linear combination of the two response functions. Time
series raw data were filtered through digital band pass filter
(Saito, 1978) with pass band from 5 to 200 minutes. The fil-
tered data were divided into some data sets. These data sets
were transformed to the frequency domain by Fast Fourier
Transformation (FFT). The response functions, Vns(w) and
Vew (w), were calculated using the least square method for
the period range from 5 to 128 minutes.

To estimate the regional strike direction, we applied the
Swift’s (1967) method for each triangular net shown by bold
lines in Fig. 8. Figure 9 shows the rose histograms in two
period bands (300-1,000, 1,000—10,000 sec). The estimated
strike direction is well consistent with that of the conven-
tional MT impedance as shown in Fig. 4, that is, N65°E or
N25°W.

4. Two-Dimensional Resistivity Model Deduced
from a Joint Analysis of the Conventional MT
and Network MT Data

Strike direction as determined by each triangular net, as
shown in Fig. 9, was almost coincide with that deduced from
the conventional MT data. Therefore, in order to improve

the model resolution and to establish a detailed resistivity
structure from the surface to the upper mantle, the apparent
resistivity and phase responses based on the conventional
MT and network MT data have been inverted together to
give a two-dimensional resistivity model. In the present
study, we used the triangular nets shown in bold in Fig. 8
along the B-profile.

We show a resistivity model with favorable responses and
its simplified expression in Figs. 10(a) and 10(b), respec-
tively. The model responses are shown with the observed

300 - 1000 (sec) 1000 - 10000 (sec)

Fig. 9. Rose histograms of the estimated strike directions determined by
network MT impedance tensors. The histograms are grouped in two
period bands. Upper direction denotes the north for each rose.
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Fig. 11.

Observed apparent resistivities and phases at all sites on the B-profile. Plus [+] and cross [x] signs with error bars denote the value of TM and

TE modes, respectively. The favorable model responses are also shown by solid (TM) and broken (TE) curves.

apparent resistivities and phases in Fig. 11. The results show
that we do not need any serious revision of the two conduc-
tive layers in the previous model determined only from the
conventional MT data: the surface conductive layer (C1) and
the lower crustal conductive layer (C2). As we lack the short
period data by the conventional MT observations within the
areas of the network MT nets 960 and 959, it is difficult to
clarify the extent of the C2 layer from the site 11 towards
the back arc side. Distribution of the resistive layer (5,000—
10,000 2m) in the southern part of the study area is well
determined in a depth range from 10 to 25 km (R1).

The resistivity of the upper mantle is estimated as 40—
100 m. In addition, we propose a relatively resistive layer
(700—1,000 2m) distributed in the southern part of the study
area at depths from about 55 to 100 km (R2). A sensitiv-
ity test replacing the structure below 46 km by a uniform
layer of 100 2m showed little change in the test responses
in the backarc sites in comparison with the best fit responses.
However, at the forearc sites, the phase responses of the TM
mode showed considerably worse fit at longer periods than
10 sec. Thus, the model requires the resistive layer at depths
from 55 to 100 km.

5. Discussion

A conductive layer (a few to 10 2m) beneath the Konsen
plain is distributed widely and thickly in the middle to south-
ern part of the study area. The maximum depth to the bot-

tom of this conductor is estimated as about 6 km. Accord-
ing to geological investigations (e.g., Satoh and Yamaguchi,
1976), the study area is mainly composed of Quaternary and
Neogene sediments underlain by upper Cretaceous forma-
tion, lacking the Paleogene formation. Most of the Neo-
gene sediments in Japan produce large amounts of alteration
minerals (e.g., kaolinite, chlorite, alunite, sericite, montmo-
rillonite and so on) affected by diagenesis (Shirozu, 1988).
These altered minerals reduce the rock resistivity (Sen et al.,
1988; Takakura, 1995). The Neogene sediments may there-
fore play a key role as the origin of this conductor.

A recent seismic reflection survey along the solid line in
Fig. 2 (Hokkaido Mining Promotion Committee, 1990) de-
picted the detailed reflectors shown in Fig. 6(a). Analysis of
drill cores at Nishibetsu (A in Fig. 3) identifies the strongest
reflector as a boundary between the Neogene and the Cre-
taceous periods (Kametani and Yoshimura, 1964). This re-
flector agrees well with the bottom of the conductive layer.
In Fig. 12, we show the Bouguer gravity anomalies relative
to the maximum values (Yamamoto and Moriya, 1989). We
made a two-dimensional modeling of the density structure
(Talwani et al., 1959) by a trial and error method as also
shown in Fig. 12. The core density-depth relation obtained
at three drilling sites A, B and C were given in the model-
ing procedure. The result reveals that the maximum depth
of the boundary between the Neogene and the Cretaceous
periods is estimated as about 6 km as shown in Fig. 12 and
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Fig. 11. (continued).

Fig. 6(b). The seismic and gravity analyses strongly suggest
that the causative material of the upper crustal conductive
layer is the Neogene sediments.

Utada et al. (1996) proposed a conductive layer (a few
to 30 Q2m) in the lower crust of NE Japan. We also found
a conductive layer (1040 Q2m) in the lower crust, extend-
ing from the volcanic front toward the backarc side. Such
conductive layers have been reported in several subduction
zones; for examples, the NE Japan Arc, the Nazca plate,
the Juan de Fuca plate (e.g., Ogawa, 1987; Hyndman, 1988;
Jones, 1992; Marquis ef al., 1995; Utada ef al., 1996). The
cause of the lower crust conductive layer is not fully un-
derstood. However, there are several possible explanations:
conductive minerals (e.g., graphite), fluids (e.g., ionized free
water) and partial melt of rocks. Among these candidates,
conductive minerals have not been reported in the present
study area. Okubo (1999) calculated the temperature distri-
bution in the crust of the study area, assuming granite in the
upper crust and amphibolite and water unsaturated gabbro

in the lower crust. The result is that the temperature attains
to the solidus temperature (900°C) of the lower crustal rocks
in the backarc side because of the high terrestrial heat flow
(>120 mW/m?). Therefore, the origin of the lower crust
conductive layer is probably ascribed to the effect of partial
melting of the crustal rocks. However, we cannot rule out
the effect of the trapped free water supplied from the sub-
ducting plate. It can be considered that both of these play
a role in forming the low resistive crust as the presence of
water decreases the melting temperature of the rocks (e.g.,
Wyllie, 1971) to facilitate the network-formation of melt.
We found a highly resistive layer (5,000—-10,000 2m) dis-
tributed in the southern part of the study area (forearc side).
This is an important result of the present study. The distribu-
tion of the resistive layer is consistent with that of the large
and positive gravity anomaly (Fig. 3), suggesting that the
causative material is common. The existence of this layer
may be related to the collisional event between the Eura-
sia plate and the Okhotsk Paleoland in the Cretaceous pe-
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Fig. 12. A comparison of observed and calculated Bouguer anomalies along the B-profile (upper part). VF indicates the volcanic front. Observed and
calculated values are shown by the solid circles and solid line, respectively. A density model are also shown (lower part). Q: Quarternary; N: Neogene;

C: Cretaceous.

riod, although the detailed tectonic implications are left to
be solved.

The upper surface of the relatively high resistive layer
(700—1,000 2m) tends to be deeper towards the north (deep-
ening from 55 to 100 km within the study area). Hypocenter
distribution determined by the Institute of Seismology and
Volcanology, Hokkaido University, is plotted on the resis-
tivity model in Fig. 10(b). In the study area, seismic activ-
ity can be classified into two main groups according to the
hypocenter distribution. Vertically distributed seismic activ-
ity is found from the surface to 20 km in depth near site 13.
These earthquakes under the Quarternary volcanoes may be
mainly caused by the present tectonic movement of the colli-
sion between the Kuril forearc sliver and the NE-Japan fore-
arc (Moriya, 1986). Deeper activity forming double seismic
planes dips to north, indicating the subducting Pacific plate
motion (Suzuki et al., 1983). Thus the resistive layer is prob-
ably identified as a part of the Pacific plate. The resistivity
value is almost consistent with that found in the NE-Japan

Arc (500 Qm).

In the present study, we could not define a thin conduct-
ing layer on the top of the subducting plate, as found in NE
Japan (Utada et al., 1996) and SW Japan (Yamaguchi et al.,
1999). Utada et al. (1996) and Yamaguchi et al. (1999) gave
a priori structural boundaries, such as the plate configuration
and the Moho boundary, based on seismological evidence,
and estimated the resistivity of each structure so as to in-
terpret the observed electromagnetic data. This method of
analysis could enable the identification of a thin conducting
layer on the top of the subducting plate. However, we did
not assume a priori structural boundaries and, therefore, a
resolution of modeling is too crude to delineate such a thin
conducting layer.

6. Conclusions

The first attempt of the joint analysis of conventional MT
and network MT data successfully delineates detailed resis-
tivity structure in the eastern part of Hokkaido, Japan to a
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depth of about 100 km. The resistivity model is character-
ized as follows;

(1) In the upper crust, a conductive layer (a few to 10
Qm), having a basin structure, is distributed widely in the
middle to southern part of the study area to a maximum
depth of about 6 km. Considering the results of seismic,
gravity and drill core analyses, the bottom of this layer is in-
terpreted to the boundary of the Neogene and the Cretaceous
sediments.

(2) A conductive layer (1040 Qm) extending from the
volcanic front toward the backarc side is situated in the
lower crust, in common with a similar feature in the NE-
Japan Arc (a few to 30 Q2m). The origin of the conductive
layer is not fully understood but the partial melting of rocks
is a candidate because of the high terrestrial heat flow in this
region. Trapped free water may not be ruled out as the origin
of the conductive layer. Both effects are possible because the
existence of free water decreases the melting temperature of
the rocks.

(3) In the middle to lower crust, a highly resistive layer
(more than 10,000 2m) is found in the forearc side of the
study area. The distribution of this layer is consistent with
that of a high positive gravity anomaly, suggesting that the
causative material is common, although the material cannot
be identified at present. This resistive layer should be taken
into account when we construct the tectonics of the present
study area.

(4) The resistivity of the upper mantle is 40—100 Qm.

(5) The resistivity of the Pacific plate is indicated to be
700-1,000 Qm. These values are almost the same as that
for the NE-Japan Arc (500 2m).
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