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Power-law indices of asteroidal grooves and strength
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The strength of an asteroid is a valuable parameter, but it is difficult to measure directly. Although impact
experiments have made a large contribution, the problem of the relationship between an asteroid’s size and its
strength has not been solved. This paper introduces a valuable parameter for natural bodies, the power-law index ¢

of the size distribution of fracture planes [Ny = kgS -4 ]. This index can be regarded as parameterizing the strength,
because strength is controlled by the size of the largest fracture. The power-law indices ¢ of the Martian satellite
Phobos and the asteroid Gaspra were found to be 5.9 and 6.5, respectively. These values are close to 6, which is the
theoretical value expected for the “fully cracked” condition of Housen and Holsapple (1999). The implications of
this result for the size-strength relationship of asteroids are discussed.

1. Introduction

The destiny of small asteroids is controlled by their me-
chanical strength, since such bodies are severely damaged
by impact processes during their evolution. We are inter-
ested in the destiny, lifetime and spatial distribution (as a
function of size) of such objects, as such information will
allow us both to reconstruct the history of the Solar Sys-
tem from the perspective of the origin of meteorites, and to
cope with the threat of near-Earth objects. Although we do
not have any means of measuring the strength of asteroids
directly, we have known for some time that the density of
flaws in a sample controls its static strength. Examples in-
clude the fracture mechanism of Griffith (1920), or Petch’s
law (o d~2, where o is the strength and d is a diameter
of the body). However, there is no information in the liter-
ature on a measured power-law index of the fracture distri-
bution of small irregular bodies. Strength, the upper limit
of failure stress, is determined by the growth and coalescing
of cracks. The growth of cracks is independent of size, be-
cause the growth rate is just the sound speed of the material,
while coalescence is directly controlled by the cracks’ spac-
ing. In order to apply the results of impact experiments to
natural bodies such as asteroids, we need to know the typ-
ical size and distribution of flaws, which gives the spacing.
Here, I submit measurements of the power-law indices of the
grooves of Phobos (the Martian satellite) and 951 Gaspra (an
asteroid) as fundamental data for discussion of this issue.

The morphological unit that I use here, a groove, is a type
of linear structure on the surface (Fig. 1). These bodies
show unconnected chains of depressions, rather than obvi-
ous “grooves,” but it is thought that these chains are open
fractures covered by a regolith layer. Their typical dimen-
sions are less than 10,000 m in length, less than 100 m in
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width, and ~10 m in depth; they are commonly found on
asteroids and small satellites such as Phobos (the Martian
satellite), 951 Gaspra, 243 Ida, and 433 Eros (Table 1). An
exception is the asteroid 253 Mathilde, on which no grooves
have been reported. This may be due to its extremely low
rigidity, which is inferred from its low density [1.3 g/cm?]
and similarity to primitive carbonaceous chondrites (as sug-
gested from the C-type spectrum). In the case of Pho-
bos, there are two competing models for the origin of the
grooves: outcrops of internal fractures or superficial traces
of impact craters (Fig. 2, right). Although some possible
origins for internal fractures have been put forward, such as
tidal stressing (Soter and Harris, 1977) and catastrophic im-
pact (Veverka and Duxbury, 1977; Thomas et al., 1978), lab-
oratory experiments support the suggestion that the grooves
originate directly from catastrophic impacts (Fujiwara and
Asada, 1983; Kawakami et al., 1991). The strongest sup-
port for this model comes from the observed similarity be-
tween the fracture patterns seen in impact experiments and
the grooves of Phobos (Fig. 2, left).

2. Method

In this study, only the spacing of grooves was measured,
because tracing the entire elongated structure of grooves on
a small body is difficult. Spacing is defined with respect to
a measured line on the surface of the body, and the spac-
ing of intersections between the measured line and grooves
is recorded. The two-dimensional (2D) size distribution of
the grooves, and the corresponding three-dimensional (3D)
distribution of fractures, are calculated. It should be noted
that geometric correction of apparent lengths on projected
images is required. In this study, I surveyed Phobos and
Gaspra, because I have otherwise been unable to find mea-
sured lines that have both sufficient illumination and suffi-
ciently detailed shape models to correct the projected im-
age geometrically. Shape models are commonly given by
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Table 1. Specifications of grooves of small irregular bodies.

Groove Size [m]

Size [km] Length, Width, Depth Reference
Phobos 13.5x10.8 x 9.4 8000, ~100, 10-20 Thomas et al. (1979)
Gaspra 19 x 12 x 11 <1500, ~100, <20 Veverka et al. (1994)
Ida 56 x 24 x 21 <4000, <100, <60 Sullivan et al. (1996)
Eros 33 x 13 x 13 <2000, <200, ~30 Veverka et al. (2000)
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Fig. 1. Appearance of grooves (Phobos). The upper is the grooves from
the Stickney crater. The bottom left is an idealized “exposed groove.”
The bottom right is idealized fissure covered with a regolith layer, and
this looks like a chain of cones.

numerical shape models such as those of Simonelli et al.
(1993) and Thomas (1993). The longest line on a body is
a great circle, and the best region for reading a topographic
pattern is located along the terminator line. In the case of an
image of the subsolar region, with a phase angle of close to
zero, any small change in elevation is hard to detect. In view
of this restriction in observations and the simplicity of this
analysis, I measured a trace of the grooves along a measured
line, not the size distribution of the length of the grooves.
The areas, lengths, and intervals of fractures are assumed
to show a power-law form for the size-frequency distribu-
tion. If we assume that all fractures show a similar shape, a
specific definition of the size measurements is not required;
all size parameters in the same dimension can be converted
to each other by means of certain coefficients, but the power-

law index is constant. It should be noted that if the extent of
each fracture plane is isotropic, the power-law indices for
spacing and real size may be interchangeable. The dimen-
sional analysis given below shows that the power-law index
of the size-frequency distribution is also easily converted.

The relationships for the 3D size-frequency distribution,
2D trace, and 1D trace of a 2D trace are summarized.
These correspond to fracture planes, grooves, and spacing
of grooves, respectively. First, the cumulative number of
fractures with a characteristic length of fracture, S, is given.
The function D[ ] denotes the dimension of the physical
quantity in the parenthesis; L means a dimension of length.
The cumulative power-law distribution can be represented
as follows:

Ns =ksS~%, where D[Ns]=[#/L*].
D[S] = [L], D[kS]=[L?].

This formulation follows Housen and Holsapple (1999). If
¢ is equal to 6, the factor kg is a non-dimensional parameter.
This condition means that the interval between fractures is
equal to the characteristic length of the fractures. Housen
and Holsapple (1999) call this the “fully cracked” condition.
This is a lower limit on ¢, because at this value failures are
perfectly connected with each other.

Next, the trace of the fractures is considered. The cumu-
lative size distribution of a trace can be parameterized by the
characteristic length R, which corresponds to the length of
the grooves, as follows:

Ng = f(ks. ¢, R),

where D[Nz] =[#/L*], D[R]=I[L].

This size-frequency distribution also shows a power-law
distribution, because this operation does not change the orig-
inal functional form. The left-hand side can be made dimen-
sionless by multiplying by R?. Then, because the power-law
distribution does not show any characteristic scale, the left-
hand side of the equation is simply proportional to the func-
tion’s arguments. The following distribution can therefore
be derived:

NxR = f (kS/R*?) o« ks/RT".

This relation can be rearranged to give an equation with
another coefficient:

Np x kSRl_% = kRR]_%,
where D[kg] = [LL] — D[ks].
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Fig. 2. Origins of grooves. The left shows grooves as outcrops of internal fractures after Kawakami et al. (1991). The right shows proposed origins of

grooves.

In the same way, a trace of the grooves is derived as follows:
No = f(kg, ¢, R),
D[Nol=1[#/L], D[Q]=IL]
2 -6 [}
Thus, NoQ® = f (kn/ Q") o ke/ Q™"
Nop kg Q> % = ko 0> %,
where D[kg] = [LL] — D[kg] = D[ks].

where

Discrete, counting datasets of this quantity for the two
objects studied can then be represented on a log-log plot
as a function of length. Although Pickering et al. (1995)
noted that the biasing effect of truncation is much larger for
the left side than the right side of such a plot, I eliminated
both terminal values before plotting the data. Moreover,
I confirmed that the number of samples was much larger
than the number of bits of dynamic range (steps between
the maximum and minimum values). The sampling bias is
therefore as small as possible in the discussion that follows.

3. Results

The measured values are plotted in Fig. 3. The measured
circle on Phobos was the primary meridian (0° and 180°
in longitude), and the measured line on Gaspra was from
(35°N, 10°W) to (80°N, 190°W). The derived power-law
indices were converted to values for the index ¢ of the
fracture planes, using the results derived above. Both indices
are nearly equal to 6, the fully cracked condition. Phobos’s
smaller ¢ indicates that Phobos has been more fractured than
Gaspra. The two values are as follows:

Ng = ksS~%  for Phobos, ¢ = 5.9;

for Gaspra, ¢ =6.5.

The data for Phobos can be divided into sufficient inter-
vals for fitting, but not those for Gaspra. Although both
sides of a power-law plot are biased by truncation effects
(Pickering et al., 1995), the value for Gaspra regressed with

all the data points is similar to that obtained when only the
central two data points are used (so as to minimize the bi-
asing). Thus, I adopt a value of —1.3 for Gaspra’s spac-
ing power-law index. On the other hand, Phobos’ regressed
value without both terminal data points gives a confidence
factor for the regression of close to 1, and I adopt a value
of —0.94 for Phobos’s spacing power-law index. The good
confidence factors for these fits support the hypothesis that
the size distributions are power-law in nature.

4. Discussion

Based on the terrestrial database of faults and micro-
cracks, Housen and Holsapple (1999) anticipated that the
asteroidal power-law index would be equal to 6, the fully
cracked condition. This study supports that expectation,
although compressional strength is greater than tensile
strength. Fracturing in terrestrial samples is chiefly con-
trolled by compressional strength, whereas in asteroids frac-
turing caused by impacts would be controlled by tensile
strength. However, the result presented here suggests that
in asteroids the difference is negligibly small.

In the case of Phobos, parallel grooves along the equa-
tor have been reported (e.g., Thomas et al., 1978). This
anisotropic distribution of grooves would cause a depen-
dence of the results on the choice of measuring line. Gener-
ally traces are blind to direction. If a trace of a 3D body is
a plane, the trace cannot detect any planes and lines that are
parallel to it. If a trace is an infinite straight line on a sphere,
the trace cannot detect any lines and planes that are parallel
to the circle, and the result only reflects specific components
of the strength. If the trace is a great circle, the detectable
components are obvious; Phobos’s fully cracked condition
reflects only components perpendicular to the measured cir-
cle. The terminator is regarded as a great circle of the body,
but the limited terminator that was adopted as the measured
line for Gaspra might have produced ambiguities in the di-
rection of the specific components of strength measured by
these results, because of the irregularity of the body. These



1068

100

I S

10

Counts

—y = 64.0 % x*-0.94)
Confidence factor: R= 0.98
| N

0.1 1 10 100

0.1

Spacing for ~100m grooves [*100m]

H. DEMURA: POWER-LAW INDICES OF ASTEROIDAL GROOVES AND STRENGTH

Measured Line

(35°N,10° W)~
(80°N,190°W)

Cumulative number of grooves (Gaspra)

100 F

Counts
Vs
7
l—,—#!

\ ‘
\
9 1
F ——-y=48.5% x"(-1.27)
Confidence factor: R=0.88
[y = 69.] * xN-1.26) |
] j

0.1
0.1 1

Spacing for ~100m grooves [*100m)]

10 100

Fig. 3. Cumulative number plots of grooves of Phobos and Gaspra.

results should therefore be applied cautiously.

Generally, strength is defined as a threshold stress or as a
specific energy per volume. Housen and Holsapple (1990)
and Housen (1991) treated the latter as strength (Q*), and
derived it from a power-law distribution of flaws by dimen-
sional analysis:

My /M = F[Q* D"/ @¢=3dy3n=2],

where M is the largest fragment mass, w is the coupling

parameter, D is the diameter of the target, and U is the
impact velocity. In the case of catastrophic impacts that
produce a given mass fraction in the largest fragment, the
argument of the unknown function F[ ] on the right-hand
side of this equation is constant. A relationship between the
strength and the target size can therefore be derived:

Q* x D79;/./(2¢73) . U273;/..

In this study, Phobos and Gaspra displayed the fully
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cracked condition, with the lowest possible ¢. The above-
stated relationship under these conditions gives rise to the
largest possible scaling effect of size on strength. Al-
though recent works on scaling laws have considered this
size-dependence factor, the results presented here suggest
that typical irregular bodies are in the fully-cracked limit,
and therefore have a very strong size-strength dependence.
Strengths derived without taking this factor into account are
simply ideal values, representing the upper limits of the true
strengths. However, in order to verify that such bodies are
commonly in the fully cracked condition, further studies of
other bodies that exhibit grooves (such as Eros) are required.

5. Summary

The grooves of Phobos and Gaspra follow a similar
power-law distribution, close to the theoretical expectation
of the fully cracked condition of ¢ ~ 6 in Ny = kSS_%,
with the caveat that only axial strength was measured by
the analysis. This is the lowest possible value of ¢, im-
plying that the characteristic length of fractures was almost
equal to the interval between fractures. This implies that the
dependence of mechanical strength on target size is signifi-
cant. This fully cracked condition may well be common in
the solar system, according to the prediction of Housen and
Holsapple (1999). If this is the case, asteroids are weaker
than previously thought.
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