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The high-degree Gauss coefficients (n ≥ 7) in the IGRF models for 1945–1955 exhibit some unusual and
unreliable behaviors in comparison with the models for other epochs. In this paper the method of Natural
Orthogonal Components (NOC) is used to revise these coefficients. The obtained result shows that the main
geomagnetic field can be approximated very well by the first a few NOC eigen modes. The high-degree Gauss
coefficients (n ≥ 7) are deduced for each of IGRF models using the first 6 eigen modes and low-degree Gauss
coefficients (n ≤ 6). The deduced high-degree coefficients are in very good agreement with the original ones for
all models except those for 1945, 1950 and 1955. In comparison with the unusual behaviors in the IGRF1945–
1955 models, the deduced high-degree coefficients for these models exhibit fairly smooth time-variations. Besides,
the magnetic energy and magnetic flux calculated by the revised Gauss coefficients show more continuous secular
variations and consistent characteristics.

1. Introduction
Since the adoption of the first International Geomagnetic

Reference Field (IGRF) model, designated IGRF 1965, by
IAGA in 1968 (IAGA Commission 2 Working Group 4,
1969; Zmuda, 1971), the IGRF series have been contin-
uously extended forward to 2000 and backward to 1900.
These models have been widely used to study secular vari-
ations of the Earth’s main magnetic field, dynamics in the
Earth’s core and space environment.

The time variations of the main magnetic field are believed
to be continuous and fairly smooth. However, Barton (1997)
noted some unusual variations in the high-degree Gauss co-
efficients (mainly for n = 7, 8) in the IGRF 1945–1955.
Xu (2000) tested all Gauss coefficients up to n = 10, and
indicated that these unusual behaviors would lead to unre-
liable jumps in the magnetic energy and magnetic flux for
1945–1955. Lowes (private communication) attributed these
unusual variations to that each of these models is based on
an independent data set. These coefficients need revision to
avoid misinterpretation of the secular variations.

A conventional approach to dealing with the problems is
to re-examine the original data, which were used to create
the models, and to re-calculate Gauss coefficients. Langel
and Estes (1987) and Langel et al. (1988) collected all data
available to them. By carefully considering the source and
location of the survey data, local biases for the fixed obser-
vatories and the secular variation (SV) of the field, they es-
tablished the models for 1945, 1950, 1955 and 1960, which
were adopted as DGRF 1945–1960. We cannot expect better
results than theirs, if the same procedure is repeated.

Another way is to fit the existing Gauss coefficients by, for
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instance, spline function (Sabaka et al., 1997), or to construct
time-spatial models (Golovkov et al., 2000) for obtaining
more or less smooth secular variations.

In this paper a new approach is pursued to improve high-
degree Gauss coefficients of the IGRF models. Since the sec-
ular variations of the main field are believed to be continuous
and fairly smooth, and its magnitude is much less than the
main field itself, the main field has a relatively stable spatial
structure. In this case, Method of Natural Orthogonal Com-
ponents (NOC) can be applied to extract principle composi-
tions of the main field from the existing series of the IGRF
models (Leove, 1963; Kendall and Stuart, 1976; Frynberg,
1975; Pushkov et al., 1976; Rotanova et al., 1982; Galovkov
et al., 1978; Sun et al., 1998, 2000). The obtained princi-
ple compositions are then used to reconstruct field models.
After comparing the reconstructed models with the original
IGRF and confirming their agreement, one can deduce high-
degree Gauss coefficients from low-degree coefficients for
IGRF 1945, 1950 and 1955.

2. NOC Analysis of IGRF Models
2.1 Method of NOC

Method of Natural Orthogonal Components (NOC) is
widely used to calculate the principle compositions in a se-
ries of data samples (e.g. Yamada, 2002). In this paper the
original data samples are 21 IGRF models for 1900–2000
at 5-year interval. The Gauss coefficients gmn and hmn (120
for each model) are directly used as the elements of the
data sample (IAGA Division 5 Working Group 8, 2000).
Using Langel’s development to the present case (Langel,
1987), we let Vi j represent the Gauss coefficients at epoch ti ,
i = 1, 2, . . . , I (I ≤ 21), and j = 1, 2, . . . , J (J = 120).
Thus, the original data can be expressed by a rectangular ma-
trix V with I rows and J columns. An expansion is sought in
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terms of functions Fkj , j = 1, 2, . . . , J , k = 1, 2, . . . , K ≤
min(I, J ),

Vi j =
k∑

k=1

Aki Fkj + δ
j
i (K ) (1)

where δ
j
i (K ) are the errors when we use truncated NOC se-

ries to fit the original Gauss coefficients. Fkj are orthogonal
over the data locations, i.e.

J∑
j=1

Fkj Fl j =
{

1 k = l

0 k �= l
(2)

The amplitudes Aki in Eq. (1) represent the intensities of Fkj
and describe the contributions of Fkj to the main field. They
are functions of time with

I∑
i=1

Aki Ali =
{

λk k = l

0 k �= l.
(3)

To find Fkj and Aki , minimize

δK ≡
I∑

i=1

J∑
j=1

[δ j
i (K )]2 =

I∑
i=1

J∑
j=1

[
Vi j −

K∑
k=1

Aki Fkj

]2

(4)

with respect to Aki and Fkj . We obtain

WFk = λkFk, k = 1, 2, . . . , K (5)

where

Fk = (Fk1, Fk2, . . . , FkJ )
T (6)

W ≡ VTV. (7)

Equation (5) can be solved for eigen modes Fk and eigen
values λk . Once Fk is found, the amplitudes Aki can be
computed from the following equation

Ak = VFk . (8)

Equation (1) indicates that each magnetic field model can
be expressed by a summation of NOC terms, each of which
has definite spatial structure Fk and varying intensity (or
amplitude) Ak .
2.2 NOC analysis of all IGRF models for 1900–2000

First of all, the method of NOC is used to all of 21 ge-
omagnetic field models of the 8th generation IGRF during
1900–2000 (IAGA Division 5 Working Group 8, 2000).

The eigen modes Fk are calculated and ordered according
to decreasing eigen-value λk . In the left panel of Fig. 1 the
elements (or Gauss coefficients) of the first 5 eigen modes
Fk (k = 1, 2, . . . , 5) are illustrated by columns, and are
arranged according to the order of gmn (n = 1, . . . , 10,
m = 0, 1, . . . , n), hmn (n = 1, . . . , 10, m = 1, 2, . . . , n).
In the right panel the corresponding contour maps of vertical
component Z are depicted for each Fk . Obviously, the first
eigen mode F1 represents the average pattern of all IGRF
models, since the mean values of the Gauss coefficients for
this period are not removed in the present calculation. Other
modes show short wavelength structures, describing mag-
netic local anomalies with different spatial scales.

Figure 2 illustrates the time variations of amplitudes Ak ,
and clearly shows the secular variations of the intensities of
the modes Fk . It is interesting to note that the variations of Ak

exhibit different periodic characteristics: the magnitude of
A1 decreases from −32438 nT in 1900 to −30735 nT in 2000
with a mean decay rate of 0.05% (or 17 nT/a), same as the
dipole moment decay rate, A2 varies from 1646 nT to −1708
nT with a much greater rate of 2%, while A3, A4 and A5

oscillate with periods ∼110, ∼80, ∼60 years, respectively.
These features imply some possible relationship between the
time period and spatial wavelength in the main field.

A sharp decline of the magnitudes of Ak with k is noted in
Fig. 2, implying rapid convergency of the natural orthogonal
series.
2.3 NOC analysis of 18 IGRF models except for 1945,

1950 and 1955
In order to detect influences of the unreliable high-degree

coefficients of IGRF 1945–1955 to eigen modes and eigen
values, three IGRF models for 1945, 1950 and 1955 are
removed from the data sample set, and NOC analysis is
carried out again by using the rest of IGRF models.

The eigen values λk , eigen modes Fk and amplitudes Ak

calculated from this reduced sample set are very similar to
those from the complete sample set (see Figs. 1 and 2) for
k ≤ 7. This fact suggests that deleting 3 samples from
all 21 samples has no essential influence to NOC analysis,
implying stability of the principle eigen mode structures.

Fig. 2. Time variations of the intensities Ak for the first 5 eigen modes.

Fig. 3. Eigen values in NOC analysis of IGRF models.
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For a given truncation level K , one can construct NOC
models of the main field from Fk and Ak . Choice of K is
dependent upon the convergency of the series. As mentioned
in Subsection 2.2, the amplitudes of eigen modes decline
very rapidly with increasing k. This feature can be seen
even more clearly in eigen values λk , as shown in Fig. 3.
The rapid decrease of the eigen values suggests that only the
first a few terms in the NOC series (1) are important for the
IGRF models, while other higher-degree NOC terms only
have trivial contributions to the IGRF models.

In order to quantitatively assess the convergency of the
NOC series, we calculate the Gauss coefficients of the
NOC models for different truncation level K , and com-
pare them with the original IGRF Gauss coefficients. In
Fig. 4 the differences δ

j
i (K ) of these two sets of Gauss

coefficients for K = 1, 2, . . . , 10 are shown, where the
superscript j of δ

j
i (K ) are arranged according to the or-

der of gmn (n = 1, . . . , 10 m = 0, 1, . . . , n), hmn (n =
1, . . . , 10, m = 1, 2, . . . , n), namely, j = 1, 2, 3, . . . , 65
for g0

1, g
1
1, g

0
2, . . . , g10

10, and j = 66, 67, 68, . . . , 120 for
h1

1, h
1
2, h

2
2, . . . , h10

10. It is noted that δ
j
i (K ) rapidly decrease

with increasing K . For K ≥ 6, most of δ
j
i (K ) for low-

degree Gauss coefficients (n ≤ 5) are less than 5 nT, while
most of δ

j
i (K ) for high-degree coefficients (n ≥ 6) are less

than 2 nT. In other words, the NOC series (1) converges very
rapidly, and the IGRF models can be approximated very well
by NOC models with a low truncation level.

3. Calculation of High-Degree Gauss Coefficients
from Low-Degree Ones

In order to make distinction between the IGRF models and
individual eigen models, we use notations gmn (ti ) and hmn (ti )
to represent IGRF Gauss coefficients, and use gnmk and hnmk
to eigen modes. Equation (1) is rewritten as follows

gmn (ti ) =
K∑

k=1

Aki g
nm
k , hmn (ti ) =

K∑
k=1

Akih
nm
k . (9)

The elements gnmk and hnmk of eigen modes have been ob-
tained in Subsection 2.3. Using these eigen modes and the
low-degree (for instance, n ≤ 6) Gauss coefficients gmn and
hmn of each IGRF model, one can solve Eq. (9) and obtain
amplitudes Aki . Equation (9) is usually an overdetermined
family of equations. For instance, taking K = 6 and n ≤ 6,
we have 6 unknowns Aki (k = 1, 2, . . . , 6) and 48 equa-
tions.

Once Aki are obtained, all Gauss coefficients gmn and hmn ,
including both low- and high-degree ones, can be deduced
using Eq. (9). These deduced Gauss coefficients are called
‘revised Gauss coefficients’ or ‘Gauss coefficients of NOC
model’. The closeness of a NOC model to the original IGRF
model is described by root-mean-square (rms) of the devi-
ations of NOC Gauss coefficients from original IGRF co-
efficients. In Fig. 5 the rms deviations are shown for each
model at different truncation levels K . It is noted that if
K ≥ 6, the rms deviations are close to the rounding error
of the IGRF Gauss coefficients for all models except 1945,
1950 and 1955. This fact implies that the NOC models with
K ≥ 6 represent very well the original IGRF models. Con-
sidering the errors in IGRF models (Langel et al., 1988;

Fig. 5. Rms deviations of the revised Gauss coefficients for different
truncation levels K .

Lowes, 2000), we set the truncation level K = 6 in the fol-
lowing discussion. As for IGRF 1945, 1950 and 1955, the
great deviations are attributed to unusual jumps of the high-
degree Gauss coefficients of these models.

Figure 6 shows a comparison between the original (de-
noted by open circles) and revised (solid circles) Gauss co-
efficients gm10 and hm10 for K = 6. The maximum revision (13
nT) occurs in h3

10. It is noted that the unusual jumps in the
original Gauss coefficients during 1945–1955 are removed in
NOC models, while there are almost no revisions for other
epochs.

In fact, ragged time-variations occur not only in the high-
degree coefficients (n ≥ 7), but also in some lower-degree
coefficients, for instance, g3

4, g0
5, g2

5, g0
6, g4

6, h5
5, h3

6 (see
figure 2 in Barton (1997), and figure 1 in Xu (2000)). A
complete comparison for all Gauss coefficients is made and
shown partly in Fig. 7, in which the revised coefficients show
fairly smooth variations.

The contour maps of the differences of Z component be-
tween IGRF and NOC models are shown in Fig. 8 for 1945,
1950 and 1955, where the map for 1980 is also shown for
comparison. The differences at most of points for 1980 are
less than 10 nT, although the maximum difference is 40 nT,
which is typical value for most of IGRF models. In con-
trast, the maximum differences for 1945, 1950 and 1955 are
respectively 773, 532 and 345 nT. The great deviations for
IGRF 1945, 1950 and 1955 are expected and attributed to
unusual jumps of the high-degree Gauss coefficients of these
models.

Rising the truncation level K will lead to further decrease
of rms deviation of the revised Gauss coefficients, although
more ragged variations of the Gauss coefficients will occur.

4. Test of the NOC Models
In order to examine the NOC models, the magnetic energy

beyond the core-mantle boundary is calculated by using the
revised Gauss coefficients, and compared with those by the
original IGRF models (Xu, 2000), as shown in Fig. 9. The
unusual variations in the original 1945–1955 models are re-
placed by fairly smooth changes in the revised models. Sim-
ilar comparisons are made for the magnetic multipole energy
and for the magnetic flux at different depths.
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Fig. 8. The contour maps of the differences of Z component between IGRF
and NOC models for 1945, 1950, 1955 and 1980. The contour interval
are 100, 100, 100 and 10 nT, respectively.

Fig. 9. Comparison of the magnetic energy beyond the core-mantle bound-
ary calculated by using the original IGRF models (left) and the revised
Gauss coefficients (right).

5. Discussion and Summary
The essence of NOC analysis is to reconstruct the main

field model on the basis of the information in IGRF models,
and to represent the field by the NOC series (1). It is shown
that the NOC series converges very rapidly, and the main
magnetic field can be approximated very well by the first a
few lower-degree eigen modes, each of which includes all
120 Gauss coefficients. Consequently, the information of
higher-degree Gauss coefficients is not lost. When we use
lower-degree Gauss coefficients to determine the amplitudes
(or intensities) of the eigen modes, we will obtain both low-
degree and high-degree Gauss coefficients.

Since the high-degree Gauss coefficients during 1945–
1955 are questionable, the IGRF 1945–1955 are removed
when we calculate the eigen modes. Fortunately, the deleting
these 3 samples from all 21 samples has no essential influ-
ence to NOC analysis, as pointed out in Subsection 2.3. Only

the reliable lower-degree Gauss coefficients of IGRF 1945–
1955 are used to determine the amplitudes of eigen modes
for these epochs.

The main results of this paper are summarized as follows:
1. NOC analysis of the IGRF 1900–2000 shows that the

main geomagnetic field can be approximated very well by
the first a few NOC eigen modes.

2. From the first 6 eigen modes and 48 low-degree Gauss
coefficients (n ≤ 6) of the original IGRF models we deduced
72 high-degree Gauss coefficients (n ≥ 7). For all models
except those of 1945, 1950 and 1955 the deduced high-
degree coefficients coincide very well with the original ones,
while for 1945, 1950 and 1955 the deduced high-degree
coefficients show smooth time variations.

3. The magnetic energy and magnetic flux calculated by
the revised Gauss coefficients show rather smooth variations
in comparison with the unusual behaviors in original IGRF
1945–1955.
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