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A self-similar solution of expanding cylindrical flux ropes
for any polytropic index value

Hironori Shimazu'* and Marek Vandas?

Applied Research and Standards Division, Communications Research Laboratory, Koganei, Tokyo 184-8795, Japan
2 Astronomical Institute, Academy of Sciences, Bocni Il 1401, 141 31 Praha 4, Czech Republic

(Received December 6, 2001; Revised May 20, 2002; Accepted May 27, 2002)

We found a new class of solutions for MHD equations that satisfies the condition that cylindrical flux ropes can
expand self-similarly even when the polytropic index y is larger than 1. We achieved this by including the effects
of elongation along the symmetry axis as well as radial expansion and assuming that the radial expansion rate is the
same as the elongation rate. In previous studies (Osherovich et al., 1993a, 1995), a class of self-similar solutions
was described for which cylindrical flux ropes expand only in the medium where y is less than 1. We compare the
models including elongation and excluding elongation observationally by using the WIND key parameters. The
difference in the fitting results of the magnetic field between these two models is slight. However the fitting of
the velocity is improved when elongation is included and when new geometric parameters that are necessary to
represent the elongation are introduced. The values of these parameters are almost the same scale as the radius
of flux ropes, which is consistent with the assumption of the isotropic expansion. This new exact solution to a
time-dependent two-dimensional MHD problem can also be used to test numerical codes.

1. Introduction

Interplanetary magnetic flux ropes are structures in which
magnetic field vectors rotate in one direction through a large
angle. The sun often ejects flux ropes as coronal mass ejec-
tions (e.g., Marubashi, 1997). When a flux rope reaches the
earth, it often causes a geomagnetic storm (e.g., Tsurutani et
al., 1988). Observationally, Burlaga et al. (1981) first iden-
tified them as “magnetic clouds” in interplanetary magnetic
field data. Goldstein (1983) proposed explaining the rota-
tion of the interplanetary magnetic field vectors by using a
cylindrical force-free flux rope model, and Marubashi (1986)
confirmed this by using data taken in interplanetary space.
Several methods for determining the geometric and physical
parameters of flux ropes, such as the radius and the mag-
netic field, have been developed. Burlaga (1988) proposed
a constant-alpha force-free model for the internal magnetic
field configuration of flux ropes. Lepping ez al. (1990) devel-
oped a nonlinear least squares method to fit observed mag-
netic field variations to this model.

While the flux rope propagates in interplanetary space,
it expands because the ambient pressure decreases with its
distance from the sun. The technique of converting time
derivatives to self-similarity expansion parameters in MHD
(magnetohydrodynamics) equations was originally applied
by Bernstein and Kulsrud (1965) and Kulsrud et al. (1965)
to the explosion of a supernova. The self-similar approach
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simplifies time-dependent problems and makes them analyt-
ically tractable. Low (1982) found a class of self-similar so-
lutions of the expanding solar corona in the spherical coordi-
nates when the polytropic index y is exactly 4/3. Gibson and
Low (1998) used the same approach, and presented a theo-
retical MHD model describing the time-dependent expulsion
of a three-dimensional coronal mass ejection.

Osherovich et al. (1993a, 1995) analyzed MHD equations
and found a class of self-similar solutions. The solution
showed that cylindrical flux ropes expand self-similarly only
when y is less than 1 for this class of self-similar solutions.
Farrugia et al. (1993) applied this formulation to real inter-
planetary flux ropes. Osherovich et al. (1993b) interpreted
observations of solar wind electrons in interplanetary mag-
netic flux ropes as having y less than 1, and that is why flux
ropes expand in interplanetary space.

However, coronal mass ejections, or flux ropes, expand in
MHD simulations even when y is larger than 1 (Vandas et
al., 1995; Vandas et al., 1996; Wu et al., 1997; Odstréil and
Pizzo, 1999; Vandas and Odstr¢il, 2000). Moreover, theo-
retical models of Chen and Garren (1993) and Chen (1996)
showed expanding flux ropes with y > 1. Recent compre-
hensive analysis by Gosling (1999) has concluded that an
observed negative correlation between the temperature and
the density of electrons, on which the derivation of y was
based, cannot be a measure of y. Skoug ef al. (2000a, b)
showed that single-point measurements cannot be used to de-
termine y value. To determine y value observationally con-
tinues to be a matter for debate (Osherovich, 2001; Gosling
etal.,2001).

This paper describes a new class of solutions for MHD
equations that satisfies the condition that cylindrical flux
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ropes can expand self-similarly even when y is larger than
1. We achieved this by including effects of elongation along
the symmetry axis, which is not included in the previous so-
lutions. This new class of solutions puts new light to the very
discussed problem on the relation between y and the expan-
sion. Mainly it emphasizes a role of flux rope elongation for
its expansion. We also compare the models including elonga-
tion and excluding elongation to interplanetary observations
by using the WIND key parameters.

2. Solution
The MHD equations are solved as follows:

B
—'O+V~(pv)=0,

a7 (D

p@—l-p(v-V)v:—VP—i—i(VxB) X B, 2)
at In
A(Pp™Y
WD L wwen =0, 3)
and
aB—V (v x B) 4
T x (v x B), 4)

where ¢ is time, p is mass density, P is pressure, [ is per-
meability, v is velocity, and B is the magnetic field. These
MHD equations will be solved in cylindrical coordinates (7,
0, z) moving with a flux rope. The cylindrical flux rope has
its axis along z and an axial symmetry is assumed, that is,
the flux rope has a circular cross section and the quantities
do not depend on 6.
2.1 Previous self-similar solution (without elongation)
Before showing the new solution, we will review the
previous solution. This solution assumes self-similarity
and no dependence on z (one-dimension and r-dependence
only). Following the procedure described in Osherovich et
al. (1995), the solutions for Egs. (1), (3), and (4) were

Uy = le’ (5)
By = (—nf'/2) "y, (6)
B. = (uSD)'*y2, (7
p=-Dn"'y7, (8)
and

P =KDy, ©)

where

f+nf/2

D=21_Y'= 10
257 (10)

and x, S, and K are positive constants. The center dot means
the derivative by the time ¢, and the prime is the derivative
by the self-similar parameter 7 satisfying

n=ry’', (11)
where y is the evolution function of time. The f is the
generating function of n, satisfying

/=0, (12)
f+nf/2=0, (13)
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and

(f+nf/2) <0.

From the r component of the equation of motion (2), y
satisfies

(14)

dUu

V= a0 (15)
2-2 -2
U— 2;/——2y Y+ (1/2)Sy "+ xShny (y #1)
(xS —K)lny+ (1/2)Sy~2 (y =1).
(16)

Equation (15) can be regarded as an equation of motion
under potential U. When y is larger than 1, U takes a
minimum value. Thus, flux ropes do not expand but oscillate
when y is larger than 1.

2.2 New solution (with elongation)

In this study we include effects of axial elongation (z-
dependence) as well as radial expansion. The vy and B, are
assumed to be 0. An additional self-similar parameter & is
introduced by

£=zy . (17)

This is consistent with the assumption that the radial expan-
sion rate is the same as the elongation rate. We will solve
Egs. (1)—(4) that satisfy

(18)

for the simplest case. A new solution for Egs. (1), (3), and
(4) is given by

v =1y, (19)
v =&y, (20)
By = (—nf'/2)' 7y, 1)
B. = 2uSD)'?y72, (22)
p=—-Gn'y3, (23)
and
P=KGy™™, (24)
where G is a function of  and &.
From the r component of Eq. (2), U is expressed as
—— 4 (D'/GHSA = x)y! 1
U=13,-3" +(D/G)SA -y ¥ #1)
—KIny+(D'/GYS(1 - x)y~! (y =1,
(25)

where D is also defined by Eq. (10) in this new solution.
The 6 component of Eq. (2) is zero under the condition (18).
From the z component of Eq. (2), we get

K 3-3y n(0G/a§)

3y =3 E0Gn)
1, 10G/08)

TE@G/on)

y#1
=1).

U= (26)
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Fig. 1. Profiles of quantities in the r direction on the z = 0 plane obtained at an arbitrary time. The radial distance is measured in the flux rope radius (7).

It is 0.0 at the flux rope axis and 1.0 at the boundary.

For Eq. (25) to agree with Eq. (26), the conditions

x=1 (27)
and
10G 109G
e T (28)
non & 0§
must be satisfied. From Eq. (28) we get
G =aexp[—c(® +£7)]. (29)

where a and ¢ are constants. Thus, the pressure distribution
is expressed as

P =Kaexp[—c(® +2)/y*]y7. (30)
The p is given from Eq. (23) by
p = 2acexp [—c(r2 + 22)/y2] y3. (31)

For the density to be positive anywhere and to be zero in in-
finitely distant regions, a and ¢ must both be positive. In this
new solution we do not need the condition (14), under which
the density was positive or zero in the previous solution. The
temperature 7 is expressed as

K
T =22 (32)

where k is Boltzmann’s constant and m is the average mass
of the solar wind particles.
There is also another solution for Eq. (28):

G=—alf’ +&)+c, (33)
which gives
mK 2 2 —3y+3
=—[- . 34
2ka[ a’ + &%) +cly (34)
This solution is not realistic because in some cases T is
negative.
Finally, we get
K 3-3y
1
U=1{3,-3" v#D (35)

This expression shows that U is a monotonically decreasing
function of y. Thus, flux ropes obeying this solution expand
for any y value.

Equation (15) with the given potential (35) can be inte-
grated yielding

1/2
T I R

dy/dt = 3 -3y (36)
+[2KIny +c¢i]'? (y =1,

where ¢; is a constant. In case y = 5/3, we can integrate
this equation further, and get

y=[ei(t + 1) + KJer]?, (37)

where £y is a constant; v, = v, = 0 everywhere at t = —¢,.
We took the plus sign assuming that y is a monotonically
increasing function of ¢. In our solution y~! is finite at
t = —ty, while in the previous solution y~! is infinitely large.
Thus, an infinitely large magnetic field strength is suppressed
in our solution.

Figure 1 shows sample profiles of quantities in the » di-
rection when we take f as it is most frequently used in a
description of a cylindrical flux rope:

f = BHJs (in) + J{ (rn)}, (38)
where Jy and J; are Bessel functions of the first kind of or-
der 0 and 1, and B; and «; are constants. One can directly
compare this figure with a similar figure shown by Vandas
and Odstrcil (2000, figure 7) for the previous solution with-
out elongation, but with the same generating function. While
in the previous solution the density and pressure drop to zero
at the flux rope’s boundary, these quantities remain positive
in the new solution.

2.3 Features of the new solution

The most important effect of elongation of the axial length

appears in the azimuthal component of the magnetic field:

1

By ~y~ (excluding elongation) 39)
is modified into
By ~ y~% (including elongation). (40)
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The difference of By dependence on y comes from the vol-
ume increase in the axial direction. This is the essential ef-
fect of the elongation. Chen (1996) suggested the lack of a
three-dimensional effect as the reason the Osherovich ef al.
(1995) solution does not expand when y is greater than 1.
This statement agrees with our solution.

We consider that a flux rope has a finite volume. The
radius r; = rqy and the axial length / = [y are determined
by the initial radius 7 and the initial length /, (at t = —1),
respectively. 7 is taken for B, to be zero at the boundary.

Kumar and Rust (1996) constructed a flux rope model
for interplanetary magnetic clouds assuming that the total
magnetic helicity is conserved. Our model agrees with their
model in the dependence on / of the magnetic field strength,
mass density, radius, and volume. Their results also showed
that a flux rope evolves self-similarly, which agrees with our
assumption.

Chen (1996) investigated the dynamics of flux ropes. His
model starts with an equilibrium state of pressure between a
flux rope and the ambient medium. He treated propagation
in interplanetary space by the change of physical parameters
of the ambient medium. In our model, we do not assume
an initial equilibrium as other self-similar models do not
assume. However, our model can trace a flux rope evolution
during propagation in interplanetary space by the decreases
of the ambient pressure and density with time.

In our solution the magnetic flux is expressed as

r ro
f B2mrdr = f 2w 2uSD) 2 ndn. (41)
0 0
The magnetic flux is independent of y and is conserved at all
times. The magnetic energy is expressed as

1 l r
o / / (B} + B})2nrdrd:
nJo Jo

Iy pro
/0 /0 QuSD — nf' /ndnds.  (42)

Ir
Y
The magnetic energy decreases with increasing y and with
increasing time. In the models of Kumar and Rust (1996)
and Chen (1996), the magnetic energy decreases as the flux
rope expands. Our solution agrees with their results.

The » component of the Lorentz force is given by

(1/W((V x B) x B), = (x = DSD'y™>.  (43)
The other components are 0. Thus, when x = 1 (Eq. (27)),
a force-free state is maintained at all times. Expansion is
caused by the pressure gradient force. The ambient and in-
ternal pressures control the expansion. This point is differ-
ent from the Osherovich et al. (1995) solution, in which the
force-free state occurred only for one specific time.

Our solution is different from the models of Kumar and
Rust (1996) and Chen (1996) in maintaining the force-free
state. In their models the force-free state was not main-
tained. The difference comes from the internal magnetic
field configuration, which may be caused by the curvature
of the cylindrical axis. If we consider a curved tube as a flux
rope like Kumar and Rust (1996) or Chen (1996), it may be
difficult to maintain the force-free state.
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Fig. 2. Relation between the temperature and density while a virtual
spacecraft moves across an evolving flux rope for 20 hours. 7y and pg
are the temperature and density observed at the spacecraft encounter,
respectively. The parameters of the flux rope geometry are Ry = 0.25 AU
(radius of the flux rope at spacecraft encounter), o = 100 hours (defined
in Eq. (37)) 61 = 45.0 degrees (ecliptic latitude angle of the symmetry
axis), ¢1 = 45.0 degrees (ecliptic longitude angle of the symmetry axis
measured from the line connecting the sun and the earth), and p = 0.5
(impact parameter).

As with some other self-similar solutions, velocity grows
without limit as » or z increases. Although we consider
finite volume around the origin as a flux rope, infinitely large
velocity in infinitely distant regions (for large » as well as
for large |z|) seems strange. However, in our opinion it is
significant to show possible expansion in the medium where
y is greater than 1 in the same framework of self-similarity
as Osherovich ef al. (1995) showed.

The relation between 7 and p is considered. From
Eq. (32) T decreases with time when y is greater than 1.
Thus T and p show a positive correlation in this case. If y is
less than 1, they show a negative correlation. If y is equal to
1, T is constant. The relation between the correlation and y
is the same as the previous solution.

We examined this fact with a virtual spacecraft passing.
Figure 2 shows an example of the relation between 7 and
o while a virtual spacecraft moves across an evolving flux
rope. In this figure the slope of the curve represents y. The
results are consistent with the above analytical consideration.

The anti-correlation between the electron temperature and
density observed by Osherovich ef al. (1993b) cannot be
reproduced if y is greater than 1. The anti-correlation seems
possible when the spacecraft moves rapidly to the center of
the flux rope, but the correlation is positive when it moves
from the center to the outer side. When we put them together,
the correlation becomes positive. However in this paper we
do not discuss determination of y observationally because it
would carry us too far away from the purpose of this paper.
We may leave the details to Osherovich (2001) and Gosling
et al. (2001). The purpose of this paper is to show that
cylindrical flux ropes can expand self-similarly even when
y is larger than 1.

3. Application to Interplanetary Flux Ropes
3.1 Method

Applying the new solution, we can construct a new model
to be fitted to real interplanetary magnetic field data. In this
section we consider which model can fit better to the real
observational data, the model excluding elongation or the
new model including elongation.
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Fig. 3. New parameter z; is the axial distance from the center of the flux rope to the location of the spacecraft encounter and z; is the one from the center

to the location where the spacecraft detached from the flux rope.

As already shown, the most important effect of elongation
of the axial length appears in the 8 component of the mag-
netic field. When f is represented by Eq. (38), we substitute
it into Egs. (6) and (7). Then, the magnetic field of the model
excluding elongation is expressed as

By = BoJi(ar/(1 +1t/19))/(1 +t /1),
B. = BoJo(ar /(1 +1/10))/(1 + t/19)*,

(44)
(45)
where By and « are constants (Farrugia et al., 1992).
The magnetic field of the new model including elongation
is expressed by substituting Eq. (38) into Egs. (21) and (22)
as
By = Boi@R)/ [(1 +1/10)* + K/(c{5)].
B. = BoJo(@R)/ [(1 +t/10)* + K /(c}1)]

(46)
47

where By, = Bl/(Cltoz), o = Oll/(Cll‘g)l/z, and R =
/(1 +t/1)* + K /(2] We assumed y = 5/3 here
to get similar expressions for the magnetic field to the previ-
ous solution.

The limit K — 0 is considered here. This limit corre-
sponds to the low B limit. The B value of interplanetary
flux ropes is usually significantly less than 1 (Burlaga et al.,
1981). Then,

By = BoJi(ar/(1+t/t)/(1 +t/t)?,
B. = BoJo(ar/(1 +1t/1))/(1 + t/15)%.

(43)
(49)

B, is expressed in the same way as in the model excluding
elongation. We shall compare the model excluding elonga-
tion (Egs. (44) and (45)) and the new model including elon-
gation (Egs. (48) and (49)).

We used the key parameter data obtained by the WIND
spacecraft. The WIND spacecraft observes the interplane-
tary magnetic field and plasma parameters in the solar wind
(Lepping et al., 1995; Ogilvie et al., 1995). We used the data
on magnetic fields, proton density, bulk velocity, and proton
thermal velocity of the solar wind from 1 Jan. to 31 Dec. in
1995. We examine the 31 flux ropes selected by Shimazu and
Marubashi (2000) using 60-min and 30-min values of these

key parameters. To fit the data to models, we used the same
method as that used by Marubashi (1997), who employed the
Osherovich et al. (1995) self-similar solution. We compared
the difference (2 value) between the model magnetic field
and the observational one to determine which model is better.
The x? value is defined by

1
=5 D Ab) = by

+ ) =B+ B2 =627, (50)
where b? is the i-th component of the interplanetary mag-
netic fields, blM is the i-th component of the model mag-
netic fields obtained after fitting, and N is the number of
data points (Lepping ef al., 1990). Both bio and b are unit
normalized. Note that this x? is different from the x defined
in Subsection 2.1.

After fitted the magnetic field to the model, we fitted the
velocity. To represent the elongation, we must introduce
new geometric parameters. In this paper we introduce two
geometric parameters z; and z,. The new parameter z; is the
axial distance from the center of the flux rope to the location
of the spacecraft encounter and z; is the one from the center
to the location where the spacecraft detached from the flux
rope (Fig. 3). These parameters are determined as a result
of the fitting to minimize the velocity difference between the
model and the observation.

3.2 Results

The magnetic field data showed that By = ByJi(ar/(1 +
t/t))/(1 + t/ty) type (excluding elongation) was better in
17 events, and that By = BoJi(ar/(1 + t/1))/(1 + t/1)?
type (including elongation) was better in 14 events. Thus,
approximately half of the flux ropes were fitted better to the
model including elongation and the remainders were fitted
better to the model excluding elongation.

Figure 4 shows an event on Feb. 8, 4:30-19:30. When we
use the model excluding elongation, the fitting parameters
for this event are: Uy, = 414.3 km/s (bulk velocity), By =
—22.2 nT, Ry = 0.0922 AU (radius of the flux rope at
spacecraft encounter), 8; = —10.8 degrees (ecliptic latitude
angle of the symmetry axis), ¢; = 64.6 degrees (ecliptic
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Fig. 4. Flux rope observed by the WIND spacecraft on Feb. 8, 1995. n
is the proton number density, and v, is the thermal velocity of protons.
The GSE coordinates are used. The dots are the 60-min averages of the
observation, the lines numbered 1 or dashed lines are the fitted model
fields excluding elongation, and the lines numbered 2 or solid lines are
the fitted model fields including elongation.

longitude angle of the symmetry axis measured from the
line connecting the sun and the earth), p = 0.224 (impact
parameter), and x2 = 0.0290.

When we use the model including elongation, the fitting
parameters for this event are: U, = 414.3 km/s, By =
—22.6nT, Ry = 0.0802 AU, 6, = —18.0 degrees, ¢; = 65.5
degrees, p = 0.264, and x? = 0.0234. In this case fitting is
better when the effect of elongation is included.

In the panels of the magnetic fields in Fig. 4, the lines
numbered 1 are the fitted model fields excluding elongation,
and the lines numbered 2 are the fitted model fields including
elongation. The difference between the two models is slight.
The other events also showed that the difference is very
small.

However the panels of velocities show that the fitting is
improved when the elongation is included. In this case,
the value of the new parameters are z; = —0.030 AU and
z; = —0.026 AU.

Figure 5 shows another flux rope event of Oct. 19, 1995,
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Fig. 5. Flux rope observed by the WIND spacecraft on Oct. 19, 1995. The
GSE coordinates are used. The dots are the 60-min averages of the obser-
vation, the dashed lines are the fitted model fields excluding elongation,
and the solid lines are the fitted model fields including elongation.
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Fig. 6. Distribution of z; and z; for the 31 flux ropes. |z —z1] is the vertical
distance from each dot to the z; = z| line.

which was analyzed by Larson et al. (1997). This figure also
shows that the difference in the magnetic field between the
two models is slight. However the velocity fitting is better,
especially in the y component, when the elongation and the
new parameters are considered. In this case z; = —0.11 AU
and z; = 0.073 AU. Since the variation in the velocity is
not as smooth as that in the magnetic field, the fitting of the
velocity is worse than that of the magnetic field.

We plotted the values of z; and z, for the 31 flux ropes
to examine the fitting validity (Fig. 6). |z — z1|, which is
the vertical distance from each dot to the z, = z; line in
Fig. 6, is the axial component of the spacecraft trajectory in
the flux rope (see Fig. 3). This value obtained from the fitting
is almost the same scale as the radius of flux ropes, which is
consistent with the assumption of the isotropic expansion.
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3.3 Discussion

The magnetic field data showed that approximately half
of the flux ropes were fitted better to the model including
elongation and that the remainders were fitted better to the
model excluding elongation when we examined 31 flux ropes
obtained from the WIND key parameters for the year 1995.
In fact, the difference between these two models was slight.
When we observe near the sun, where the expansion is rapid,
a large difference may arise. Using data observed near the
sun is a task for the future.

We omitted the term including K in Egs. (46) and (47)
in order to compare the two models. However, this term
may have to be considered because fitting results often show
unrealistic 7, values, which represents the propagation time
of a flux rope from the sun to an observation point. There
is the possibility of getting realistic ¢y values by considering
this term.

Our model did not include the following effects that
should be considered in real magnetic clouds: 1) Magnetic
clouds are not two-dimensional straight cylindrical struc-
tures. At least some magnetic clouds have their foot points
connected to the sun (e.g., Larson ef al., 1997). In our model,
the curvature of the axis was not included. 2) Cargill et al.
(1996)’s computer simulation of a magnetic cloud showed
that an initial circle cross section is transformed into a non-
circular cross section during propagation. The noncircular
cross section was not considered in our model.

4. Summary

We showed a theoretical basis for the fact that y can
be larger than 1 when a cylindrical flux rope expands self-
similarly by considering the effects of axial elongation as
well as radial expansion. We found a new class of solutions
for two-dimensional MHD equations that satisfies the condi-
tion that a cylindrical flux rope can expand self-similarly for
any y value. This new class of solutions puts new light to the
very discussed problem on the relation between y and the ex-
pansion. Mainly it emphasizes a role of flux rope elongation
for its expansion. This new solution modified the azimuthal
component of the magnetic field from Eq. (44) to Eq. (48).
This solution also showed that the flux rope expands main-
taining a force-free state.

The models including elongation and excluding elonga-
tion were compared with observations. The difference in the
fitting results of the magnetic field between these two models
was slight. However the fitting of the velocity was improved
when elongation was included and when new geometric pa-
rameters z; and z,, which were necessary to represent the
elongation, were introduced. The values of these parameters
were almost the same scale as the radius of flux ropes, which
was consistent with the assumption of the isotropic expan-
sion.

As we close, we would like to emphasize one important
aspect of this work. The new solution represents an ex-
act time-dependent two-dimensional solution of ideal MHD
equations and therefore it is suitable for tests of current or
developing MHD numerical codes. There are not many such
solutions in literature. The former solution was only one-
dimensional, which was used to test a code by Vandas and
Odstr¢il (2000).
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