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In the recently developed Spatial Reference System that is designed to check and control the accuracy of
the three-dimensional coordinate measuring machines and tooling equipment (Metronom US., Inc., Ann Arbor:
http://www.metronomus.com), the coordinates of the edges of the instrument are computed from distances
of the bars. The use of distances in industrial application is fast gaining momentum just as in Geodesy and in
Geophysical applications and thus necessitating efficient algorithms to solve the nonlinear distance equations.
Whereas the ranging problem with minimum known stations was considered in our previous contribution in the
same Journal, the present contribution extends to the case where one is faced with many distance observations
than unknowns (overdetermined case) as is usually the case in practise. Using the Gauss-Jacobi Combinatorial
approach, we demonstrate how one can proceed to position without reverting to iterative and linearizing procedures

such as Newton'’s or Least Squares approach.

Key words: Overdetermined planar ranging, overdetermined three-dimensional ranging, Gauss-Jacobi combinato-
rial algorithm, Groebner basis, Multipolynomial resultant, Least Squares.

1. Introduction

In Awange et al. (2003), we highlighted the importance
of ranging problem and presented algebraic procedures of
reduced Groebner basis and Multipolynomial resultant ap-
proaches for solving the minimum ranging problem directly
or explicitly in a closed form. In practise however, one is
often faced with a situation where more observations than
unknowns exist. In such cases, the usual practise is often to
rely on linearization or iterative procedures.

The bottleneck to the procedures of linearization and iter-
ative of relying heavily on the initial starting values to obtain
global minimum and faster convergence has been treated in
recent works of Xu (2002, 2003). In general, the problem
of nonlinear adjustment has been considered by among oth-
ers Teunissen (1990), Grafarend and Schaffrin (1989, 1991)
who extend the work of Krarup (1982) on nonlinear adjust-
ment with respect to geocentric interpretation and Guolin
(2000) who presents a procedure that uses F-distributions to
test whether the nonlinear model can be linearized or not.
An extensive analysis of the nonlinear problem with an elab-
orate literature review has been presented by Lohse (1994)
and Mautz (2001).

The common features with the non-algebraic approaches
in solving nonlinear problems is that they all have to do
with some starting values, linearization of the observation
equations and iterations. Although the issue of approxi-
mate starting values has been addressed in the works of Xu
(2002, 2003), the algebraic (approach e.g. Awange, submit-
ted) enjoys the advantage that all the requirements listed
above for non-algebraic approaches are immaterial. The
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nonlinear problem is solved in an exact form with lineariza-
tion permitted only during the formation of the variance-
covariance matrix to generate the weight matrix of the
pseudo-observations. No starting values, linearization of the
observation equations, iterations and convergence conditions
are required. The only requirement is to be able to solve in a
closed (exact) form systems of nonlinear equations, a condi-
tion already presented in Awange ef al. (2003). Other added
advantages of the algebraic approach is that during the so-
lution of the combinatorial subsets, any presence of outly-
ing observations can be diagnosed (e.g. Awange, in press)
and also that it provides an independent approach that can be
used to control the non-algebraic procedures.

The present contribution extends on the work of Awange
et al. (2003) by employing the Gauss-Jacobi Combinato-
rial approach presented in Awange and Grafarend (2003, in
press) to solve without linearization or iteration the overde-
termined ranging problem. We employ the algebraic ap-
proaches presented in Awange et al. (2003) as computing
engine. The contribution provides efficient techniques based
on algebra that have already been applied in Geodesy as evi-
denced in the work of Awange (2002) and Awange and Gra-
farend (2002a, 2002b, 2003). The technique could also be
applied in Geophysics and also in Industrial applications e.g.
in the work of Jurisch et al. (2003).

We organize the present contribution as follows; in Sec-
tion 2, we present a summary of the Gauss-Combinatorial
algorithm while in Section 3, the overdetermined two-
dimensional ranging problem is solved. Section 4 considers
the three-dimensional case, while Section 5 concludes the
study.
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2. Gauss-Jacobi Algorithm

The Gauss-Jacobi combinatorial algorithm named after C.
F. Gauss (Awange and Grafarend 2003, appendix A) and C.
G. I. Jacobi operates in three phases. In the first phase, one
forms minimal combinations of the nonlinear equations from
the observation sample that are solved in a closed form using
the Groebner basis or Multipolynomial resultant algebraic
techniques discussed in Awange ef al. (2003) to obtain the
desired combinatorial solutions. The net result is that one
ends with pseudo-observations, which are within the solu-
tion space of the desired values. This first phase in essence
projects a nonlinear case into a linear case. The process
of solving the minimal combinatorial subsets is akin to the
Gauss-elimination technique used for solving linear system
of equations.

Once the first phase is successfully carried out with the so-
lutions of the various subsets acting as pseudo-observations,
the nonlinear variance-covariance/error propagation has to
be carried out in the second phase to obtain the weight ma-
trix of the pseudo-observations. This then requires that the
stochasticity of the initial observational sample be known in
order to propagate them to the pseudo-observations.

The final phase entails the adjustment step, which is per-
formed to obtain the barycentric values. Since the pseudo-
observations are linearly independent, the special linear
Gauss-Markov model (Awange and Grafarend, 2003, defi-
nition 2-1) is employed.

Stepwise, the Gauss-Jacobi Combinatorial algorithm dis-
cussed in detail in Awange and Grafarend (2003) operates as
following:

Step 1: Given an overdetermined system with n observations
in m unknowns, from the n observations form the

k(no. of combinations) =

(2-1)

m!(n —m)!

minimal combination that comprise m equations that are to
be solved in closed form using the Groebner basis or Multi-
polynomial resultant algebraic techniques.

Step 2: Solve each set of m equations from Step I above us-
ing either Groebner basis or Multipolynomial resultant alge-
braic techniques already presented in Awange et al. (2003).
Step 3: Perform the nonlinear error/variance-covariance
propagation to obtain the variance-covariance matrix of the
pseudo-observations obtained in the i-th combinatorial solu-
tions of Step 2. Once this has been done for all the k combi-
natorials, a unified variance-covariance/dispersion matrix for
the entire pseudo-observations is computed e.g. as in equa-
tion (3-2).

Step 4: Using the pseudo-observations of Step 2 and the
variance-covariance matrix from Step 3, adjust the pseudo-
observations via the special linear Gauss-Markov model.

Example 2-1 :

The following example based on a linear case illustrates
the principles behind the algorithm.

Consider a case where three linear equations have been
given for the purpose of solving the two unknowns
(x,y). Three possible combinations each containing
two equations necessary for solving the two unknowns
in a closed form can be formed. Each of the system
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Table 1. Distance observations to the unknown station N.

Pt. Easting Northing S;

No. x[m] ylm] [m]
1 48177.62 6531.28 611.023
2 49600.15 7185.19 1529.482
3 49830.93 5670.69 1323.884
4 47863.91 5077.24 1206.524

of two linear equations is either solved by substitution,
graphically or matrix form to give three pairs of solu-
tions {xl,z, V1,2, X2.3, ¥2.3, X1,3, y1’3}. The final step now
involves the adjustment of these pseudo-observations
{x1.2, ¥1.2, X2.3, ¥2.3, X1.3, 1.3} with the weight matrix
¥ obtained via nonlinear error/variance-covariance
propagation.

Extensive exposition of the Gauss-Jacobi combinatorial al-
gorithm is presented in Awange and Grafarend (2003, in
press).

3. Overdetermined Ranging
3.1 Overdetermined two-dimensional ranging

In order to solve the overdetermined 2d ranging problem,
we refer to the Gauss-Jacobi combinatorial algorithm dis-
cussed in Section 2. Combinatorials are formed using (2-1)
and solved in a closed form using

€2Y02 +e1Yy+e =0
(3-1)
LX:+ fiXo+ fo=0

with the coefficients as given in Awange et al. (2003). For
each minimal combinatorial set, one also computes in the
second step the dispersion matrix of the resulting pseudo-
observations using Egs. (3-8), (3-9) and (3-10) of Box (3-1)
and
Dix} = J'J, 2,0, (I (3-2)
with J, J, being the partial derivatives of (3-9) and (3-
10) with respect to x, y respectively at the Taylor points
(x> ). The approximate values of unknown parameters
{x1, ..., xn} € x appearing in the Jacobi matrices J,, J, are
obtained from Groebner basis or Multipolynomial resultants
solution of the nonlinear system of equations (3-5). Finally
the pseudo-observation are adjusted by the use of special
linear Gauss-Markov model in Step 3 with the unknowns
estimated via Best Linear Uniformly Unbiased Estimator
BLUUE (Awange and Grafarend, 2003, equation 15) as
E=UT a4z ly (3-3)
and the regular dispersion matrix of the estimated parameters
given by
D)= AT ') (3-4)
The procedure becomes clear once we consider as exam-
ple from Kahmen and Faig (1988) next.
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Box 3-1 (error propagation for planar ranging problem):

For the unknown point P(X, Y) € E? of the planar ranging problem, let distances S| and S, be measured to two known
points P (X, V1) € E? and P, (X5, 1) e E? respectively, the distance equations expressed as

St= (X =X+ (Y - Y) (3-5)
i ==X+ (- 1)
which we express in algebraic form as
ﬁ:(XI_X)2+(Y1_Y)2_S12:0 (3-6)
L= -X) P+ (L -Y)P-85=0"
On taking total differential of (3-6) we have
—2(Y1 = Y)dY —285/dS, =0 (3-7)

dfy = 2(X> — X)d X — 2(X> — X)dX + 2(Y, — Y)dY,—
—2(Y, — Y)dY —25,dS> =0

which on arranging the differential vector of the unknown terms {X, Y} = {x;, x,} € X on the left hand side and that of the
known terms {X, Y1, X2, Y2, S1, S} = {1, ¥2, ¥3. Vs, Vs, Vs} € p on the right hand side leads to

ds,
X,
dx | dY,
J, [dY] =J, ds, (3-8)
ax,
dY,
with
o af
dX 0Y _ _ _ _
J, = =[ A ?] (3-9)
3_fz 3_fz =2, = X) =2(1, - 7Y)
dX oY
and
d b d T
ook o o,
d8; X, oYy
Jy - =
af, af2 df
0 0 _— == = -
3%, 39X, oY, (3-10)
28 =200 —X) —2(Y, —Y) 0 0 0
1o 0 0 28 —2(X, — X) —2(Y, — 1) | |
If we consider that
0S21 Os1x; Os1v) O81x, 0518, 0511,
0x, 5 0)2(1 Ox,v; 0x18 Ox X, OX\1,
Dix) =%, = [ o G)(zy] and DY} = 5, = Oy,s, Oy x, 051 O'yl252 Ov,x, ONY, 3-11)
Oyx Oy i 05,81 05,41 98,71 05, 08X, 051,

2
0x,8 0x,%; Ox,7 0Xx,8, O, Ox,v,
2
01,8 o1, Onx, Oy,

Ov, X1 OnY

we obtain with (3-8), (3-9) and (3-10) the dispersion D{x}
{x1, x2} e x.

= J;'J,2,J,(J.") of the unknown variables {X,Y} =
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Example:

Let us consider the example of Kahmen and Faig (1988,
pp. 240-241) where the coordinates of point N are to
be determined from distance observations to four points
Py, P>, P; and Py (i.e. figure 6.4.4 of Kahmen and Faig, ibid,

p. 229). In preparation for adjustment, the distances are cor-
rected and reduced geometrically to Gauss-Krueger projec-
tion and are as given in Table 1.

In order to test the Gauss-Jacobi combinatorial algorithm,
we compute the coordinates of station N and compare it
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Table 2. Position of station N computed for various combinatorials.

Combinatorial Combinatorial X y
No. points [m] [m]
1 1-2 48565.2783 6058.9770
2 1-3 48565.2636 6058.9649
3 1-4 48565.2701 6058.9702
4 2-3 48565.2697 6058.9849
5 2-4 48565.3402 6058.9201
6 2-5 48565.2661 6058.9731

Table 3. Position of station N after adjustments.

Approach x(m) y(m) o (m) o, (m) A, (m) A, (m)
Least Squares 48565.2700 6058.9750 0.006 0.006 — —
Gauss-Jacobi (BLUUE) 48565.2709 6058.9750 0.0032 0.0034 —0.0009 0.0000
Gauss-Jacobi (arithmetic mean) 48565.2813 6058.9650 — — —0.01133 0.0100
Scattered (X,Y) combinatorial positions around adjusted value
0.09 T T T T T T T
0 ©) Combinatorial scatter
0081 * GJ Adjusted value )
' o . Kahmen and Faig 1988
+ GJ Arithmetic mean
© O Gauss Jacobi & KF 1988
0.07 O _
@) +
© 0.06 b
[ce]
79
o
©
X
£
> 0.05F |
0.04 - b
0.03 b
002 | | | | | | | A
0.06 0.07 0.08 0.09 0.1 0.1 0.12 0.13 0.14 0.15

X(m)+48565.2

Fig. 1. Plot of the position of N from various approaches.

with the Least Squares value of Kahmen and Faig (1988,
p. 242). From (2-1), six combinatorials in the minimal sense
are formed with each combinatorial solved for {x, y}y for
point N using (3-1) as discussed in Awange et al. (2003).
The combinatorial solutions are presented in Table 2.

The barycentric coordinate of station N is now obtained
either by (a) simply taking the arithmetic mean of the com-
binatorial solutions in columns 3 and 4 of Table 2 (an ap-
proach which does not take into account full information

in terms of the variance-covariance matrix) of the pseudo-
observations or (b) by using special linear Gauss-Markov
model through the estimation by the Best Linear Uniformly
Unbiased Estimator BLUUE in Eq. (3-3) and the dispersion
obtained by (3-4). The results are presented in Table 3 and
plotted in Fig. 1. In Table 3, we present the coordinates
{x, y} of station N obtained using the Least Squares ap-
proach in Kahmen and Faig (1988), Gauss-Jacobi combina-
torial (BLUUE) and the Gauss-Jacobi combinatorial (arith-
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Deviation of the Gauss Jacobi Combinatorial scatter from the adjusted value

0.08 T T T T T T T T T

—— Deviation in X

—— Deviation in Y
0.06 .
0.04 .
0.02 i

Deviation in X(m)/Y(m)

-0.02 -

-0.04 -

~0.06 1 1 1 1

2.5 3

1
3.5 4 4.5 5

Combinatorial number

Fig. 2. Deviations of the combinatorial scatter from the BLUUE adjusted position of N.

metic mean) in columns 2 and 3 with their respective stan-
dard deviations {oy, 0, } in columns 4 and 5. In columns 6
and 7, the deviations {A,, A, } of the computed coordinates
of station N using the Gauss-Jacobi combinatorial (BLUUE
and arithmetic mean) from the values of Kahmen and Faig
(1988) are presented. The deviations of the exact solutions of
each combination (columns 3 and 4 of Table 2) from the ad-
justed values of Best Linear Uniformly Unbiased Estimator
BLUUE (i.e. second raw of Table 3) obtained using Eq. (3-3)
are plotted in Fig. 2.

From the results in Table 3 and Fig. 1, it is seen that
when the full information of the observation is taken into
account via the nonlinear error/variance-covariance propa-
gation and the parameters estimated via BLUUE for the lin-
ear Gauss-Markov model in the final step for the barycen-
tric coordinates, the Gauss-Jacobi combinatorial algorithm
gives the same results as Least Squares adjustment (from
Kahmen and Faig, 1988). In addition to giving the barycen-
tric coordinates, the Gauss-Jacobi algorithm can accurately
pin point a poor combinatorial geometry (e.g. combination
5) although this is taken care of through weighting. Fig-
ure 1 shows the combinatorial scatter denoted by {o} and the
Gauss-Jacobi combinatorial adjusted value with {x}. Least
Squares estimation from Kahmen and Faig (1988) by {e} and
the arithmetic mean by {4}. One notes that the estimates
from Gauss-Jacobi’s BLUUE {x} and Least Squares estima-
tion from Kahmen and Faig (1988) almost coincide. In the
Figure, both estimates are encircled by {0} for clarity pur-
poses.

These results indicate the capability of the Gauss-Jacobi
combinatorial algorithm to solve overdetermined planar
ranging problems.

3.2 Overdetermined three-dimensional ranging

Having solved the overdetermined planar ranging prob-
lem in Section 3.1, we extend the use of the Gauss-Jacobi
combinatorial algorithm to solve the overdetermined three-
dimensional ranging problem in this section. An example
based on the test network “Stuttgart Central” in Fig. 3 is
considered.

Example

The test network “Stuttgart Central” in Fig. 3 consists
of distance observations from station K; to seven other sta-
tions. Desired are the three-dimensional coordinates X, Y, Z
of the unknown point K obtained by solving three nonlin-
ear distance observation equations in closed form discussed
in Awange ef al. (2003).

From Fig. 3 and using (2-1), 35 combinatorial subsets are
formed whose systems of nonlinear distance equations are
solved for the position X, ¥, Z of the unknown point K; in
closed form using either Groebner basis approach derived
equations (e.g. Awange et al., 2003, box 3-4)

_ M(ance —anci)Z + an for — ao fi2}
(an2b12 — ai2bp2)

Y

(3-12)

and

=Y +cnZ+ fi)

an

X
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K1

Eduardpfeiffer
(542.261 m)

Haufmannstr. (1324.238 m)

Lindenmuseum (364.980 m)

Schlofplatz (566.864 m)

Dach FH (269.231 m)

Dach LVM (400.584 m)

Liederhalle (430.529 m)

Fig. 3. Test network “Stuttgart Central”.

or

_ {(boac12 — b12c02) Z + boa f12 — D12 fo2}

X
(ao2b12 — ainbpo)

(3-13)

or Multipolynomial resultant approach derived equations
(e.g. Awange et al., 2003, box 3-5)

_ A — boeaci2)Z + bz foo — boa f12}

X
(bo2aiz — bi2ap)

(3-14)

and

_ M(ancer —apci)Z + ap for — a fr2}

Y
(an2b12 — ai2bo2)

(3-15)
35 different positions X, Y, Z|p of the same point P to-
talling to 105 (35 x 3) values of X, ¥, Z which are treated as
pseudo-observations are obtained. One then proceeds in two
steps as follows:
Step 1: From the 35 combinatorials obtained using (2-1),
solve for X, Y, Z in close form using either (3-12) and (3-
12) or (3-14) and (3-15).
Step 2: (Error propagation to determine the dispersion ma-
trix ¥ based on linearized approximation):
The variance-covariance matrix is computed for each of the
combinatorial set j = 1,...,35 using error propagation.
The closed form observational equations for the first com-
binatorial subset j = 1 (i.e. tetrahedron P P P, P;) Awange
et al. (2003) are written algebraically as

fimX =X 4+ =Y+ (21— 2P - S;

=X X 4+ (HLh-Y)?+(Z, -2} -5,

=G —X) 4+ (- Y+ (23— 2 - 53
(3-16)

where S/ |i € {1,2,3}|j =1 are the distances between
known GPS stations P; € E®|i € {1,2, 3} of the test net-
work “Stuttgart Central” and the unknown GPS point P €
[E* for first combination set j = 1. With (3-9) and (3-10) we
have the Jacobi matrices respectively as

Caf o 0T
0X 0Y 0Z
X1 =X) - —-Y)—(Z,-2)
df> dfy 0
J, = %;a_{fa_j; =|:—(X2—X)—(Y2—Y)—(22—Z)
(X -X)—(Y:-Y) —(Z43—-2)
o of 3
LoX 0Y 07
(3-17)
and
[0 0/ O/ 8A 0K K Bf 9K Bf 9K Bf O/
0S] 05, 083 09Xy 9Y, 0Zy 0X, 0Y, 0Z, 0X3 0Y; 073
Jo_|manan ap ap ap an an op ap ap ap
YT 881 38y 383 9Xy 3Y) 9Zy 90X, dY, 0Z; 90Xz 0Y3 073
L dS; 08 953 00X, oY) 0Z; 0X, oY, 0Z, 0X3 0Y3 073
[S1 0 0 jisa isjic 0 0 0 0 0 0
=1 0SS0 0 0 0 ja7j8j9 0 0 0
L0 0SS 0 0 0 0 0 0 jioJjuji2
(3-18)
where
Ju=—X-X1), jis=—-M-Y), jis=—(Z1—2)
Jr=—X2=X), ju=—0r—Y), jw=-—(Z—2)
Ju=—X:=X), ju=—-H-Y), ju=-(Z;-2).

The values {X, Y, Z} appearing in the Jacobi matrices J., J,
are obtained from the closed form solution using either (3-
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3d plot of the scatter of the combinatorial solutions around the adjusted value(set10)

0.008

Y(m)+671429.66(m)

0.025

0.005

X(m)+4157066.1(m)

Fig. 4. Scatter of combinatorial solutions.

12) and (3-12) or (3-14) and (3-15). From the dispersion
matrix X, of the vector of observations y and with (3-17) and
(3-18) forming J = J;lJy, the variance-covariance matrix
¥, is finally obtained from (3-2) as

2
Oy Oxy Oxz
2
Oyx Oy Oyz

2
Ozx Ozy Oy

_U§] 051520'51530 00 0 0O0O0O0 07

0‘52510520'5253000 000 00O

0‘3351053520‘5%3 000 O0O0O0OTO0OO0O0

0 0 006300000000

000005100000000
_4 0 0 00003000000/,

710 0 0 0000},00000

0 0 0 0000030000

000000000%2000

0 0 0 0000000300

0 0 0 000000 0020

L 0O 0 0 0000000 00}
(3-19)

with the 3 x 3 elements of X, on the right hand side of (3-
19) given from error propagation. The variance-covariance
matrix computed as explained above is obtained for every
combinatorial set j = 1, ...,35. Given J; = J;lin from
the i-th combination and J; = J;ley/ from the j-th combi-
nation, the correlation between the i-th and j-th combination

is given by
S =J%,,J (3-20)

Finally we obtained the dispersion matrix ¥ from the sub-
matrices variance-covariance matrix for the individual com-
binatorials X, ¥, X3, ..., X, (where k is the number of
combinations) obtained via (3-2) and the correlations be-
tween combinatorials obtained from (3-20) as

DIFEDYET RN Y4
Yo X, ... X

T = s (3-21)
i pr

for the entire £ combinations.

Step 3: (Rigorous adjustment of the combinatorial solution
points in a polyhedron):

For each of the 35 computed coordinates of point K1 in
Fig. 3 in Step 2, we write the observation equations as

XJ:X+8§'<|,je{1,2,3,4,5,6,7, ...,35)
Y/i=Y+e)ljefl, 23,4567 ...,35)
Zl=Z+¢l| je{l,2,3,4,56,7,...,35).

(3-22)

With the values {X7, Y/, Z/} treated as pseudo-observation
and placed in the vector of observation y, the coefficients
of the unknown position {X, ¥, Z} being placed in the co-
efficient matrix 4 and x comprising the vector of unknowns
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Table 4. Position of station K; computed by Gauss-Jacobi combinatorial algorithm.

Exp No. X (m) Y(m)

Z(m) ox oy oz

1 4157066.1121 671429.6694

4774879.3697

0.00005 0.00001 0.00005

Table 5. Deviation of the computed position of K in Table 2 from the real
measured GPS value.

Exp No. AX(m)
1 —0.0005

AY (m)
—0.0039

AZ(m)
0.0007

{X, Y, Z}, The solution is obtained via (3-3) and the disper-
sion of the estimated parameters through (3-4).

In the experiment above the computed position of point
K using the Gauss-Jacobi combinatorial approach is given
in Table 4 with the deviation of the Gauss-Jacobi combina-
torial solutions from the true (measured) GPS value given
in Table 5. Figure 4 indicates the plot of the combinatorial
scatter {e} around the adjusted values {x}.

4. Conclusion

For problems that require the solution of overdetermined
ranging, and whose initial starting values are not known such
as in photogrammetry, the Gauss-Jacobi combinatorial algo-
rithm offers an alternative approach provided the full infor-
mation of the underlying observation is taken into consid-
eration via the nonlinear variance-covariance/error propa-
gation. The advantage of the Gauss-Jacobi combinatorial
being that no starting values, linearization or iterations is re-
quired as is the case with other procedures. Outlying com-
binations and observations are also identifiable. With high
processing computers currently available, the issue of many
combinatorials formed as a result of large observations is im-
material nor is the computing time. Routines are written that
repeatedly execute the desired task once the statement that
executes the combination has been written.
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