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A modulation model for the solar and lunar daily geomagnetic variations
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The traditional Chapman-Miller analysis for the solar, S, and lunar, L, geomagnetic variations is generalized
by incorporating a time description of the seasonal changes of the harmonic coefficients. The modulation model
consists of the sum of harmonic oscillators with basic carriers having the fundamental frequencies of the solar and
lunar daily components, which are being amplitude and phase modulated by the annual variation and its harmonics.
The solar cycle effect is a priori taken into account by using the daily sunspot numbers as an auxiliary input and
including the Wolf ratios in the amplitude and phase terms. For the station Dourbes (Belgium), solar and lunar
harmonics show a marked increase in amplitude from winter to summer, but the seasonal changes of L significantly
exceed that of S. The phase shift from winter to summer in L is about three times that of S. The Wolf ratios
of the Fourier amplitudes are of the same order of magnitude for both the S and L variations. Removal of the
relatively important ocean dynamo contribution does not have an appreciable consequence for the determination of

the seasonal changes and the sunspot cycle influence.
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1. Introduction

The geomagnetic field measured at any point on the Earth
as a function of time shows periodic variations due to atmo-
spheric processes caused by the Sun and the Moon. Both S
and L, respectively the solar and lunar daily geomagnetic
variations, are commonly assumed to result mainly from
electric currents generated by dynamo action in the iono-
sphere, which is generally a much better conductor during
the day than during the night, except in the auroral regions.
This dynamo is powered by tidal motions of the conductive
layers of the ionosphere across lines of force of the Earth’s
magnetic field, the tides being of mainly thermal origin of
S and of purely gravitational origin of L. The currents flow
partly in the ionosphere, partly along lines of force, and also
within the Earth itself as a result of induction. Moreover, the
observed L variations contain a contribution from an ocean
dynamo (Malin, 1970).

Both the solar and lunar geomagnetic daily variations have
been known to vary with season. The seasonal changes of
S, particularly in its quiet day form, S, have been studied
in much detail, but the seasonal changes of L are less well
known. Of particular interest is the contrast between the
seasonal variations of S and L. It is also desirable to compare
the changes of S and L with the solar cycle. That the sunspot
cycle influences S has never been in doubt, but there is some
incertitude over the response of L to the solar cycle.

A high-resolution spectral analysis of the geomagnetic
data shows the splitting of the solar and lunar lines by the
annual variation and its harmonics. The minor spectral peaks
are attributed to a ~27-day amplitude modulation of the
solar diurnal line S; (Black, 1970). The Chapman-Miller
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(1940) method is generally used for the determination of the
first four harmonics of the solar and lunar variations in the
geomagnetic field. Important cyclic and seasonal changes
are present in the Fourier amplitudes and phases (De Meyer,
1986).

It is possible to interpret the main spectral peaks in the
diurnal band and its harmonics in terms of amplitude and
phase modulation of the solar and lunar lines. The associ-
ated modulation model is composed of the sum of harmonic
oscillators, with basic carriers having the fundamental fre-
quencies of S and L, respectively, which are being amplitude
and phase modulated by long-term variations that can be de-
scribed by a sum of trigonometric terms. The solar cycle
influence is modelled by incorporating the effect of the daily
sunspot numbers a priori in the amplitude and phase terms,
thereby simulating the high degree of day-to-day variation in
the harmonic coefficients.

The data used in this analysis consist of the hourly mean
values of magnetic declination (D-component), measured at
the station of Dourbes, Belgium (50°06'N, 4°36’E) for the
interval January 1, 1960 to December 31, 1999. The values
of D are given in minutes of arc and the first value of each
day corresponds to 00.30 UT. At the dip latitude of Dourbes
(51.7°N), periodic variations in the frequency interval 0 to 4
cycles per day are most conspicuous in the declination, so
that this magnetic element was chosen for the investigation.

2. Data and Spectral Analysis

With a view to analyse the frequency structure of the main
solar frequency bands separately, the following data process-
ing is performed on the original record of N = 350640
hourly readings. The power around the solar lines S,, n =
1,2, 3, 4, is isolated by applying four different band-pass fil-
ters, each of total bandwidth 0.03 cycles/hour, having the
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Fig. 1. Amplitude spectrum of the declination in the diurnal band.
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Fig. 2. Amplitude spectrum of the declination in the semi-diurnal band.

property that the four resulting output sequences only con-
tain the respective contributions of the input signal to the so-
lar diurnal band and its main harmonics. The specific band-
pass filter for the nth harmonic consists of 200 symmetri-
cal impulse response weights and removes the constituents
at the frequencies outside the tidal wave band (Winch and
Cunningham, 1972) of the solar daily harmonic of frequency
n cycles per mean solar day. The lunar variations are evi-
dently maintained in the output series by this numerical pro-
cedure. The frequency responses of these band-pass filters
are evidently taken into account when the amplitudes of the
magnetic variations are determined. No phase shift is intro-
duced by the symmetrical band-pass filtering.

Next, the four sub-sequences are summed and the result-
ing output is sampled by keeping every second point only,
thus obtaining a time series of N/2 = 175321 bi-hourly
data. Since observations are lost at the beginning and the
end of the input record as a consequence of the filtering pro-
cess, we end up with 175121 data which are restricted to
the frequency range (0, 6) cycles/day (cpd). As a result, the
high-frequency noise and the contributions outside the solar
bands are severely attenuated. It is important to note that this
band-pass filtering scheme acts as a trend-removal technique
in the sense that the long-term trend, originating from the

secular variation, is practically nullified.

To determine the fine structure of the solar frequency
bands, a high resolution spectrum was computed using the
Fast Fourier transform (FFT). Restricting the outcomes of
the spectral analysis to the diurnal and semi-diurnal fre-
quency bands, Figures 1 and 2 show sections of the ampli-
tude spectrum around 1 and 2 cpd for the filtered declination
data. The spectral peaks are conspicuously resolved because
of the very extended horizontal scale as we have used a fre-
quency resolution of 3.42 107> cpd. Analysis at this resolu-
tion splits the solar diurnal and semi-diurnal peaks into lines
S| and S, and sidebands at the frequencies (n + k/365.25)
cpd, n = 1,2;k = £1, £2, ..., originating from the mod-
ulation of the solar daily variation by the annual fluctuation
and its harmonics. Sidebands of S, up to the sixth order are
seen in Fig. 2. In general, these sidebands are denoted by
Sni-n=1,2,...;k = =%1,%£2,... (Chapman and Malin,
1970).

The investigation of small periodic variations with fre-
quencies in the neighbourhood of the lunar lines is particu-
larly enigmatic as it involves the identification of weak lines,
clustered in the vicinity of the lunar waves L; and L, and yet
in the presence of relatively strong noise in the solar bands.
The two dominating lines in Fig. 2 for the semi-diurnal band
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Table 1. Declination—Chapman-Miller harmonic analysis.

Solar term S,, Lunar terms L,
n Sy "n o, n £, Lo A
All data 1 2.584° 0.011 57.2° 1 0.086 0.012 148.8°
2 1.767 0.006' 230.6° 2 0.168 0.006' 262.6°
3 0.789’ 0.004/ 79.5° 3 0.068 0.005' 128.5°
4 0.270' 0.003’ 273.8° 4 0.012 0.003' 310.7°
j -months 1 3.551 0.015 42.9° 1 0.199’ 0.017 120.7°
2 2.413 0.009’ 244.6° 2 0.302 0.010 275.1°
3 0.866' 0.008 87.7° 3 0.120 0.008’ 122.5°
4 0.038 0.006' 248.4° 4 0.006' 0.006' 223.5°
e -months 1 2.768 0.014 60.2° 1 0.113 0.015 159.3°
2 1.987 0.011 229.6° 2 0.166' 0.012 262.0°
3 1.083' 0.009’ 73.0° 3 0.082’ 0.009 134.8°
4 0.448 0.007’ 278.7° 4 0.035 0.007 327.7°
d -months 1 1.697 0.015 83.3° 1 0.085’ 0.017 261.4°
2 1.109 0.008 200.4° 2 0.078 0.008 202.8°
3 0.430’ 0.008 79.3° 3 0.003’ 0.008 204.3°
4 0.332 0.005 270.0° 4 0.004' 0.005 255.5°

are at 2 cpd and 1.93227 cpd and are the solar and lunar
semi-diurnal waves S, and L. The amplitude of the L; com-
ponent in the magnetic D-record at Dourbes is about 0.15'.
Since there is an annual change in the mean ionospheric con-
ductivity, splitting of the lunar semi-diurnal line is expected.
The triplet of peaks at the frequencies (1.92954, 1.93227,
1.93501) cpd in Fig. 2 is exactly at the frequency of L, and
its annual sidebands and they are accordingly denoted by
(Ly.—1, Ly, Ly 1). This is clear evidence for an annual modu-
lation in the L, lunar tide. Apparently the splitting of L, by
the semi-annual variation is too weak to rise distinctly above
the background noise.

A minor term is also expected in the diurnal band at the
frequency of the lunar wave L;. There is an indication
in Fig. 1 of a triplet of lines at the frequencies (0.92954,
0.93227, 0.93501) cpd in the vicinity of the wave L;. These
peaks are located exactly where the dynamo term L; and
its annual sidebands would be expected. For this reason the
lines are denoted by (L 1, Lj, Lj ;). Together these spec-
tral peaks in Figs. 1 and 2 almost certainly represent split-
ting of the lunar diurnal and semi-diurnal lines by an annual
modulation mechanism. In general, the sidebands of L, are
denotedby L, s, n =1,2,...; k==%1,£2,....

The sidebands of the 1 cpd peak in Fig. 1 at the frequen-
cies (1 + k/27) cpd, k = —1, 1,2, 3, suggest a mechanism
related to solar rotation (Black, 1970). Owing to the recur-
rence tendency of magnetic storms and disturbances to re-
peat after a solar rotation there will be a ~27-day period
amplitude modulation of the solar diurnal magnetic varia-
tion. The sidebands of S, at the frequencies (n + k/27) cpd,
k = £1,4£2, ..., due to the modulation by the ~27-day re-
currences and their harmonics, are denoted by R, 4 in Figs. 1
and 2. Such modulation lines are clearly seen in Fig. 1 at
frequencies above 1 cpd, but the asymmetry with respect to
the frequency of S; is not predicted by a model requiring

low-frequency modulation. The width of the 27-day modu-
lation bands of S;, approximately 0.007 cpd, contrasts with
the width of the solar diurnal peak of 7 10> cpd, which is
the natural width of a sinusoidal signal in the spectrum for
the present length of data. This large bandwidth substanti-
ates the view that these sidebands arise from the broad band
solar rotation period.

Similar sidebands of the 2 cpd line S, are also expected.
However, no prediction of the relative magnitudes of the two
sets of sidebands can be made, so that the apparent absence
of the sidebands of S, at (2+k/27) cpd in Fig. 2 does not dis-
prove the solar rotation mechanism. The lunar semi-diurnal
magnetic variation, L,, arises from the interaction of the lu-
nar semi-diurnal tide and the mean ionospheric conductivity,
and so this lunar line would be expected to show sidebands
at (1.93227 £ k/27) cpd. However, the 27-day sidebands of
the 1 cpd line S; have an amplitude less than 1/10 that of the
1 cpd line itself, and lines 1/10 of the amplitude of the lunar
peak L, of circa 0.15" would be completely hidden by the
background noise.

3. Harmonic Analysis of S; and L

The lunar variations, L, are given in terms of the ampli-
tudes ¢, and phase angles A, of the first four harmonics L,,
n = 1, 2, 3 and 4, and are represented by Chapman’s phase
law

4
L= t,sin(nt—2v+1,)

n=1

(M

(Malin and Chapman, 1970), where v = f — 7 is a measure
of the phase (or age) of the Moon. Here ¢ denotes mean solar
time, reckoned in hours from local midnight, and 7 is mean
lunar time, measured in hours from local lower transit of the
mean Moon.

The L variations are masked by the much greater solar
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Fig. 3. Harmonic dials showing the month-by-month changes of the diurnal and semi-diurnal harmonics of the solar and lunar daily variations (declination;

Chapman-Miller analysis).

daily variations, S = )" S,, which are similarly given in
terms of the amplitudes s, and phases o, of the main har-
monics S, as follows:

4
S = Zs,, sin (nt + 0,,).

n=1

2)

The frequency of S, is n cycles per mean solar day and
that of L, is n — 2/ M, where M = 29.530588 is the number
of solar days in a lunar month. Thus the periods of the first
four lunar component variations are as follows: Ly, 25.74352
solar hours; L,, 12.42060 solar hours; L3, 8.18478 solar
hours; Ly, 6.10334 solar hours.

The classical method of analysis is that of Chapman and
Miller (1940) as detailed by Malin and Chapman (1970).
The main advantage of the Chapman-Miller method is its
ability to analyse broken data sequences. To study the sea-
sonal variation of S and L it is almost a tradition to sepa-
rate the data into the Lloyd seasons (d -months: November
to February; e -months: March, April, September, October;
j -months: May to August).

The Chapman-Miller method also associates a probable
error with the estimates of the amplitude and phase of a par-
ticular magnetic variation, which is used to judge the signifi-
cance of the solar and lunar terms. The vector probable error
of the harmonic S,, of S with amplitude s, and phase o, will
be denoted by r,. Similarly, the L data consist of the pairs
(€., A,) and the vector probable errors p,. The results of a
Chapman-Miller analysis are represented in Table 1, giving
the amplitudes, vector probable errors and phases of the so-
lar and lunar harmonics, respectively. The first analysis uses
all data irrespective of any criterion of selection, whereas the
data are subdivided into the Lloyd seasons in the other three
analyses. All probable errors are less than 0.02’. Note that
the data are analyzed in terms of local time, which means
that the phases o, and A, are not corrected for the longitude
of the station to compensate for the difference between local
time and Greenwich time.

From Table 1, it follows that the solar harmonics S; and
S, and the lunar harmonics L; and L, show an obvious
increase in amplitude from d -months to j -months (winter
to summer), the equinoctial amplitude being intermediate

between the other two. Since this well-known effect is less
conspicuous for the harmonics of higher degree, the further
discussion and graphical representations will mainly concern
the changes in the amplitudes and phases of S;, S,, L; and
L;.

The results of an harmonic analysis may also be repre-
sented in a graphical manner. For instance, the pair (s,,, 0y,)
defines a plane vector so that in a plane coordinate system
the periodic component S, is represented by a point having
the Cartesian coordinates (s, cos o,, s, sin 0,,). The vector
from the origin to this point has the length s, and its incli-
nation to the horizontal axis is the phase angle o,,, measured
in the counter-clockwise sense. Supposing that a scale of
time is inserted on this harmonic dial (or vectogram), mea-
sured from the positive horizontal axis in the anti-clockwise
direction, the vector which targets the point with polar coor-
dinates (s,,, 0,,) will indicate the time of the maximum of the
sine wave of frequency n cycles per mean solar day.

Suppose that at time ¢, the n-th harmonic of the
S and L variations in the frequency band consid-
ered is represented in a plane coordinate system by
points with coordinates [s,(¢) cos o, (¢), s,(¢) sin ,(¢)] and
[€,(t) cos A,(2), £,(¢t) sin X, (1)], respectively. A mean solar
vector (5,, &,) and a mean lunar vector (¢,, A,) can then be
computed by taking the average of the individual dial vec-
tors for a given time interval. In particular, the coordinates
(s, cos o,,5, sin 6,) of the mean solar variation vector of
the harmonic of degree 7, defined by the point with polar co-
ordinates (5, 0 ,), are obtained from the arithmetic means of
s, (t) cos 0,(t) and s, (¢) sin o, (¢).

Next, the 40 years of observations are divided into 12
monthly groups and the mean harmonic constants are ob-
tained for each individual calender month. Figure 3 shows
the harmonic dials of the month-by-month variations for the
first and second harmonics of S and L. Mean dial vectors are
also computed for the data grouped in the Lloyd seasons; the
¢’ in Fig. 3 indicate the mean dial vectors for the j-, e- and
d-months. The vectograms in Fig. 3 show that the annual
variation in the amplitude of S presents a maximum in sum-
mer with an important phase modulation of the solar daily
variation during the year. There also appears to be a signif-
icant enhancement of the lunar tide in the j-months with a
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Table 2. Declination—-Chapman-Miller harmonic analysis. Correlation coefficients » (in %) and Wolf ratios.

S S1 S S3 S4 (g} o o3 oy

r 95.4 95.5 94.3 314 —83.9 —45.2 —68.6 —17.9
10°M 51+2 36 +2 54+2 7+3 —19+£2 —2+1 —11+£2 —1+1

L l £y £ £y A A2 A3 A4

r 45.7 26.3 21.4 0.8 -3.8 24.1 9.8 10.5
10°M 83+ 8 24 + 11 17+ 11 1+£21 —-3+12 3+£2 5+8 13+ 17

considerable phase shift of the L current system between lo-
cal winter and summer. The total change in phase from win-
ter months to summer months is of the order of 50° in S and
about 150° in L. From the point of view of phase modula-
tion, the seasonal variations of L differ markedly from those
of S.

It is convenient to discuss the solar cycle effect on the solar
and lunar daily variations in terms of the annual means of the
daily dial vectors (s,, 0,) and (€,, A,,). The influence of the
solar cycle on any of the harmonic terms, 8 (which can be
the annual means of either of s,, o,,, £, or 1,), is expressed
numerically by a linear equation of the form

0=A+ BRor0 =A(1+ MR), where M = B/A. (3)

R is the annual mean sunspot number, which is considered
here as a representative index of solar activity. The hypothe-
sis of a linear relationship between the harmonic amplitudes
and the sunspot number is implicitly based on the physical
argument that the main effect of solar activity is to increase
the ionospheric conductivity. No significant departures from
linearity are found by Chapman et al. (1971) and Malin et
al. (1975). It is true that the amplitude of S increases with
sunspot number but there is still some controversy over the
response of L to R.

The constants 4 and B are determined by least squares
fitting of a straight line to the annual means of 6 and R.
Here, M is the Wolf ratio (Chapman et al., 1971; Malin et
al., 1975); 10* M represents the percentage change in 6 that
would accompany a change of R from 0 to 100, a fairly typ-
ical sunspot cycle. The probable error of M is deduced us-
ing the residuals from the best fitting straight line (Chapman
et al., 1971). Values of 10*M (& probable error) are given
in Table 2. Also included are the correlation coefficients r
between the annual means of the amplitudes (s, or £,) and
phases (o, or 1,,) of S, and L,,, n = 1, 2, 3,4, on the one
hand, and the annual means of the sunspot numbers, R, on
the other hand.

The main harmonic terms show an increase in amplitude
with increasing sunspot number for both S and L. Correla-
tion coefficients and Wolf ratios of the phase angles of L are
small, implying that the sunspot cycle effect on L is essen-
tially an enhancement of amplitude. As for the solar vari-
ation, only the Wolf ratio of the phase angles of S; and S;
appears to be significantly different from zero. Anyway, the
Wolf ratios for o, and o4 are below the acceptable signifi-
cance level. The criterion for judging the significance of the
Wolf ratio M is discussed by Chapman ef al. (1971).

Although S and L are both intensified at sunspot maxi-
mum, the results in Table 2 show that the increase of the am-
plitude of S; with sunspot number is about double that of the
main harmonic L, of the L variation. The manifest differ-
ences between the solar and lunar Wolf ratios are not readily
explained. From a study of 22 stations, the Wolf ratios for
ionospheric E-region electron density ‘were not only found
to be remarkably constant for each station, in the course of
the year, they were also found to be uniform the whole world
over, the grand average being 0.0033" (Malin ef al., 1975).

The solar cycle influence on S and L has been debated in
the past. Matsushita (1967) concludes that the current sys-
tems responsible for the solar quiet and lunar variations both
flow in the E-layer of the ionosphere. Moreover, Matsushita
and Maeda (1965) state that S and L are similarly influenced
during the sunspot cycle. On the other hand, Malin et al.
(1975) argue that S and L originate at different levels in the
ionosphere and propose an F-region location for the external
currents associated with L to account for the apparent differ-
ences between the response of S and L to R.

The lunar tidal movements in the ionosphere are gravita-
tionally induced, so it is reasonable to assume the change
of L with solar cycle to result purely from changes in iono-
spheric conductivity with R. Thus we might expect 10*M/
to be of the order of 33 for £; and ¢,. In fact, lunar Wolf
ratios (resulting from non-thermal tides) are very different
for L; and L;. Thus it appears that the main parts of S and
L originate at different levels in the ionosphere (e.g., Green
and Malin, 1971; Chapman et al., 1971; Malin et al., 1975).

An adequate representation of the quiet daily variation is
usually obtained with only four harmonics of S and L since
the 24, 12, 8 and 6 h spectral components are shown to rise
significantly above the background noise continuum for most
observatories (Campbell, 1987). Although the Chapman-
Miller method gives a good reconstruction of the Sq variation
at a station when only quiet days are selected, the analysis
merely obtains mean harmonic coefficients for a chosen time
epoch. When the representative quiet variations are deter-
mined for each month of a year, a second Fourier analysis of
these monthly coefficients for their annual and semi-annual
changes during the year provides a set of cosine and sine co-
efficients for the quiet year at an observatory (Chapman and
Malin, 1970; Campbell, 1987).

The splitting of the solar and lunar lines in Figs. 1 and 2
demonstrates the seasonal modulation of the solar and lunar
daily variations. Using continuous data so that the harmonic
amplitudes and phases include the influence of all days, a
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spectral analysis of the daily Fourier constants can be per-
formed to investigate the frequency structure of these daily
sequences of harmonic parameters (De Meyer, 1986). The
Fourier coefficients show a long-term solar cycle contribu-
tion as well as a ~27-day period amplitude variation origi-
nating from the solar rotation mechanism. The modulation
model to be presented in the next section is a generalization
of the traditional Chapman-Miller analysis in the sense that it
incorporates directly the continuous time description of the
seasonal variation of the harmonic coefficients. Moreover,
the effect of changes in solar activity is taken a priori into
account by inserting the time sequence of the daily sunspot
numbers as a additional input.

4. Modulation Model

On close inspection of the spectra in Figs. 1 and 2 it is
possible to interpret the extra peaks in the frequency band
of the nth harmonic of S and L in terms of amplitude and
phase variations of a sum of two harmonic oscillators with
basic carriers at the frequencies of S, and L, respectively.
The sidebands of S,, are created by the main harmonics of
the annual and 27-day modulation periods. Splitting of the
lunar peaks L, by an annual and semi-annual modulation, as
well as a sunspot cycle contribution, will be incorporated in
the modulation model to be presented.

The model we propose to fit to the band-pass filtered dec-
lination data, D(¢), is a logical extension of the Chapman-
Miller harmonic analysis procedure. Writing D(¢) = S(¢) +
L(t), the combined luni-solar daily variation is a superposi-
tion of the solar model, S(¢), and the lunar component, L (¢),
which are represented by

4
S(t) = sy(t)sin[w) t + 0,(1)], 4)
n=1

and

4
L(t) = Z £, (1) sin [0k t + 1, (D], (5)
n=1

respectively. Here, ¢ denotes local solar time in hours. The
time origin #+ = 0 is chosen at the starting point of the ob-
servation interval, so that the phases o,,(¢) and A, (¢) relate to
January 1, 1960, 0". The corresponding periods of the fun-
damental solar and lunar variation lines are 7,5 = 27/} (=
period S,,) and ! = 27 /wk (= period L,). It is empha-
sized that a model for a variable mean of the data, as con-
sidered by De Meyer (1998) for the Wolf sunspot numbers,
is not needed in this context since the band-pass filtering in
the data processing effectively removes the long-term trend.
Nevertheless, the arithmetic mean of the band-pass filtered
observations is eliminated.

In general, the amplitude modulation part, s, (¢), and phase
modulation constituent, o, (¢), of the solar variation compo-
nent are described by an harmonic model of the form

Sp() = Sno [1 + M;:R(t)]

N,
+ Z o Sin(@, 1t + @, 1), (6)
k=1

on(t) = Onpo [1 + M,?R(t)]

F. DE MEYER et al.: MODULATION MODEL SOLAR AND LUNAR VARIATIONS

N,

+ Z o i sin(wy  t+ oy 1),
=1

(7

where R(¢) denotes the daily sunspot number at time ¢,
which is taken to be the same for all hours of the day. For the
lunar variations we have an analogous representation:

£,(t) = En,o [1 + anR(t)]
N,
+ cﬁyk sin(a)f;’kt + go,f!k),
k=1
An(t) = Ano [1+ MyR(1)]
Niw
+ Z cﬁ,k sin(a),ik t+ go,’}’k) —2v,.
k=1

®)

)

The associated modulation periods will be denoted by
T = 2njwy ;s Ty = 27/0f 4, T,fk = 2n/wfl‘k, and
T} =27 /w) . Writing T, = 365.242199 days for the tropic
year (Winch and Cunningham, 1972), i.e., the period of vari-
ation of the mean longitude / of the Sun, the modulation pe-
riods in this context are: 7)), = T7, = T\, = T}, = T;/k,
forn = 1,2,3,4;, k = 1,2,.... Note that we have not
considered the modulation periods 7)), and T}, for k = 3
and £ = 4, which means that the seasonal change of the
L variation is only described by the first and second har-
monic of the annual variation (i.e., N5, = N,, = 4 and
Ny, =N, =2,n=1,2,3,4).

Using Eq. (3), the solar cycle effect on the solar and lu-
nar daily variations is estimated a posteriori by the Wolf ra-
tios M for the amplitudes and phases obtained by the har-
monic analysis. Since we assume a linear dependence on the
sunspot numbers R, the Wolf ratios M, M?, M!, and M}
are now introduced a priori as extra optimization parame-
ters in Egs. (6), (7), (8), and (9) for the amplitudes and the
phases of S,, and L,,. To make the results for 5,0, 0.0, £n.0
and A, , independent of solar activity the arithmetic mean is
eliminated from the sequence of sunspot numbers.

The value of 1, defined in Eq. (1), is based on local lunar
time and local solar time, whereas the lunar variation model,
L(t), in Eq. (5) is completely described in terms of local
solar time. This implies that a correction 2v, is made to the
phase A, (¢) in Eq. (9), where v, is the value of the lunar
phase v at the initial date of the observing interval (here
2v, = 62.011°). In this way the resulting values for 1, ,
will be directly comparable with the values of the phases A,
obtained by the Chapman-Miller harmonic analysis.

In consequence, spectral contributions will appear at the
frequencies ] + j  (amplitude 3¢5, 1 <k < Ny)), 05 £
] , (amplitude 35,0 ;. 1 < k < Ny,), and 0+, + o] ;
(amplitude %Cf.,kc;’,j: 1l <k <N, 1 =<j=<N,,), arising
from the amplitude and phase modulation of the solar line S,,
(Coulson, 1955).

Likewise, sidebands of the lunar line L,, will be generated
at the frequencies w’ =+ “’ﬁ,k (amplitude 1ct,, 1 < &k <

2%n,k>
Ny,), oF + o}, (amplitude 10, ¢k, 1 < k < Nj,), and
L ¢ Py : 1.6
w, * w,; £ o, ; (amplitude zc¢,,c, ;. 1 < k = N,

1 < j < N,,). As a result, sidebands of more than the
fourth order would be created, even if Ny, and N, are 4
and Ny, and N,, are 2. For instance, sidebands of the solar
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Table 3. Declination—Modulation model solar variation.

Amplitude modulation s, (¢):

n Sn.o Asy o k Tk Cok Acy ok Ay,
1 2.7034' 0.0038’ 1 TJ 1.1139 0.0040 278.321° 0.289°
2 1,/2 0.1079’ 0.0006 295.767° 1.315°
3 1,/3 0.0216¢' 0.0001" 7.073° 0.044°
4 1,/4 0.0370/ 0.0002’ 146.526° 0.901°
2 1.8389 0.0038’ 1 T, 0.7747 0.0037 275.101° 0.406°
2 1,/2 0.2392 0.0013' 256.340° 0.939°
3 T,/3 0.0928 0.0005’ 172.137° 1.023°
4 T,/4 0.0220/ 0.0001" 30.275° 0.189°
3 0.8000’ 0.0033' 1 T, 0.2457 0.0019 273.118° 1.082°
2 T,/2 0.3284’ 0.0021’ 273.820° 0.869°
3 1,/3 0.057% 0.0005’ 181.752° 1.333°
4 T,/4 0.0573’ 0.0004’ 70.549° 0.477°
4 0.2626' 0.0020’ 1 T 0.1701 0.0011" 101.714° 0.705°
2 1,/2 0.1709’ 0.0012’ 266.701° 1.326°
3 1,/3 0.0612’ 0.0004’ 286.019° 1.756°
4 1,/4 0.0515 0.0004’ 68.156° 0.469°
Phase modulation o, (¢):
n Ono Aoy, k Ty co i Acy 9 Apy
1 62.325° 0.063° 1 T, 23.320° 0.073° 100.474° 0.203°
2 1,/2 1.551° 0.009° 125.822° 0.731°
3 1,/3 2.238° 0.012° 88.327° 0.462°
4 T,/4 2.035° 0.011° 208.091° 0.976°
2 223.878° 0.106° 1 T 27.372° 0.111° 267.266° 0.319°
2 T,/2 6.424° 0.035° 279.145° 1.016°
3 T,/3 3.733° 0.020° 85.897° 0.482°
4 T,/4 3.891° 0.024° 215.424° 0.981°
3 78.558° 0.164° 1 Tx 7.049° 0.056° 239.873° 1.094°
2 1,/2 4.370° 0.028° 106.308° 0.784°
3 7,/3 5.642° 0.043° 79.486° 0.580°
4 1,/4 5.385° 0.032° 254.758° 1.278°
4 260.616° 0.606° 1 T, 26.698° 0.153° 129.174° 0.805°
2 T,/2 29.991° 0.192° 289.855° 1.323°
3 1,/3 22.563° 0.181° 123.798° 0.766°
4 T,/4 12.699° 0.101° 317.630° 1.800°

1T, =365.242199 days.

semi-diurnal line, S,, up to the sixth order are noticed in
the amplitude spectrum in Fig. 2. This could explain the
different observed amplitudes of the symmetrical sidebands,
respectively surrounding the lines Sy, S,, L; and L, in Figs. 1
and 2, because different amplitude and phase modulation
periods may contribute power to the same frequency.

The fundamental concept of the modulation model there-
fore consists of the sum of harmonic oscillators with ba-
sic carriers having the primary frequencies (@S and wf,
n = 1,2,3,4) of the solar and lunar daily variations, re-
spectively, which are being amplitude and phase modulated

by fluctuations that can be described by a sum of trigono-
metric terms with frequencies fixed by the annual variation
and its harmonics. Representing the solar cycle contribution
by the daily sunspot numbers in a way which is compatible
with Eq. (3), Wolf ratios for the amplitudes and the phases of
the solar and lunar variations are introduced as additional re-
gression coefficients to be optimized together with the other
model parameters. This means that the effect of changes in
solar activity on the harmonic terms is incorporated by using
the sunspot numbers as a supplemental input into the modu-
lation model.
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Table 4. Declination—-Modulation model lunar variation.

Amplitude modulation £, (¢):

n Lo Al k Tf,k Cf,k Acﬁ,k %l;,k Aﬁﬂﬁ,k
1 0.1096 0.0007 1 TJ 0.0690’ 0.0006 286.413° 2.306°
2 T, /2 0.0227 0.0002’ 79.695° 0.756°
2 0.1854' 0.0013’ 1 T, 0.1302 0.0009 273.695° 1.634°
2 Tn/2 0.0163’ 0.0002’ 162.470° 1.310°
3 0.0659 0.0006 1 T 0.063% 0.0005’ 276.267° 2.105°
2 T/2 0.0150' 0.0001" 284.212° 2.463°
4 0.0213' 0.0002’ 1 T, 0.0041 0.0001" 289.311° 2.232°
2 T, /2 0.0134’ 0.0001" 304.897° 2.131°
Phase modulation A, (¢):
n Ao Ado k Tnxk Cz,k AC;);,k ¢3,k A@?,k
1 195.011° 1.049° 1 T 82.577° 0.593° 96.741° 0.693°
2 T,/2 12.690° 0.122° 134.639° 1.103°
2 262.291° 1.007° 1 T, 48.200° 0.393° 239.389° 1.425°
2 T/2 19.042° 0.161° 275.637° 2.273°
3 174.581° 1.146° 1 T, 78.184° 0.657° 120.435° 0.975°
2 T/2 43.699° 0.419° 124.792° 1.214°
4 300.535° 2.281° 1 T, 65.486° 0.589° 130.876° 1.126°
2 T,/2 69.799° 0.530° 241.318° 2.006°
17, =365.242199 days.
Table 5. Declination—Modulation model. Wolf ratios.
n 10* M; 10* M7 10* M,f 10* M,f
1 26.93 £0.19 —14.53 £ 0.09 31.57 £0.27 —0.94 + 0.01
2 26.93 £0.21 —0.92 +0.01 31.24 +£0.30 —1.90 + 0.02
3 32.83 £0.26 —2.254+0.02 34.02 £ 0.30 —1.99 + 0.02
4 24.99 £+ 0.25 —2.28 +0.02 35.83 £0.23 —1.11 £ 0.01

Initial estimates of the amplitudes (s,,o, cfh o c;” w5 Lnos
¢t ch ) and phases (Ouo. @5 4o 9540 Anos @p 4o Phy) are
obtained as follows. Figure 3 visualizes the results of an
harmonic Chapman-Miller analysis for each calender month.
For instance, since the frequencies w;, ; are chosen a priori
estimates of the amplitudes, s, , and Cf,, > and phases, gozq o of
the model (6) for the amplitude factor s, (¢) result from least
squares fitting of a trigonometric model of the form

4
S0+ Z(af,,k cos wy, ;¢ + by, sin w; 1)
k=1

to the 12 monthly values of the amplitude of S, visualized
in Fig. 3. The amplitudes ¢, ; and phase ¢, , are readily
obtained from the estimated values of a; ; and b, ;. The
value 0.0033 is taken as the initial estimate of the Wolf M-
ratios (Malin et al., 1975).

These starting approximations are used for a non-linear
optimization of the model parameters, which are estimated
by minimizing the sum of squares of the differences between

the filtered declination data and the sum of the synthetic val-
ues S(¢) and L(¢) obtained from Egs. (4) and (5). For a de-
tailed description of the theoretical basis of the maximum
neighbourhood technique the reader is referred to Marquardt
(1963). Moreover, as the computer program obtains and im-
proves an approximation to the first derivative matrix follow-
ing the ideas of Broyden (1967), Marquardt’s method also
provides standard errors of the parameter estimates.

5. Results of the Modulation Model

The optimized parameters of the modulation model for the
declination data are summarized in Table 3 and Table 4, re-
spectively for the solar and lunar variations, and the Wolf ra-
tios (£probable error) are compiled in Table 5. The number
of digits is large relative to the expected confidence intervals
of the physical parameters and only relate to the computer
output. The columns A refer to the standard errors of the es-
timated parameters by the non-linear optimization method.
Note that the phases are not corrected for the longitude of the
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Dourbes observatory so that phases refer to local solar time.
The model accounts for 82.7% of the total sum of squares
of the filtered observations and the residual standard devia-
tion is estimated at 1.16’. The band-pass filtered data and
model values are visualized in Fig. 4, whereas Figures 5 and
6 show the residual periodograms, converted to amplitude on

the ordinate scale, around 1 and 2 cpd, respectively. These
diagrams are to be compared with Figs. 1 and 2. Whereas the
residual spectra in Figs. 5 and 6 contain some small peaks,
the signal-to-noise ratio in the peaks is of the order of 10 and
it is concluded that the filtered declination data are essen-
tially reduced to white noise by the algorithm.
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Fig. 7. Vectograms showing the time changes of the diurnal and semi-diurnal components of the solar and lunar daily variations (declination; modulation

model.)

Table 6. Declination-Modulation model. Ratios of seasonal amplitude to mean amplitude. Differences of seasonal phase and mean phase.

S S1 S $3 S4 o] oy 03 oy
j -months 1.36 1.36 1.08 0.14 —13° 14° 8° —12°
e -months 1.06 1.14 1.38 1.65 30 —1° —6° 5°
d -months 0.66 0.62 0.55 1.24 23° -30° -3° —6°

L £ £ £3 Uy A A2 A3 A4
j -months 2.42 1.76 1.85 1.43 -30° 11° —1° —57°
e -months 1.17 0.99 1.01 1.97 21° 2° —1° 44°
d -months 0.84 0.46 0.14 0.81 105° —57° 29° —11°

6. Discussion

The models S(¢) and L(¢) in Egs. (4) and (5) can
be thought of in geometrical terms, as, for example,
with the aid of vector diagrams. For instance, the so-
lar term S(¢) is specified by the time variation of the
amplitudes s,(¢) and the associated phase angles oy, (¢).
At time ¢, the n-th harmonic of the S and L vari-
ations is represented in a plane coordinate system by
points with coordinates [s, (¢) cos o, (?), s,(¢) sin o, (¢)] and
[£,(¢) cos Ay (2), £,(t) sin A,(2)], respectively. To proceed
with a coherent notation the constituents of the solar and lu-
nar variation models S(¢) and L(¢) will now be denoted in
the frequency band » as S, and L, respectively. The sym-
bols [s,(#), 0,(¢)] used in the modulation model (4) will be
interpreted as the variation in time of the harmonic coeffi-
cients (s, 0,) for S,. In like manner, [£,(t), A, (¢)] are re-
lated to (¢, A,,) for L,,. A mean solar dial vector (5,,, 5,) and
a mean lunar vector (¢, A,) can then be computed by taking
the average of the dial vectors for a given time interval. The
day-to-day variability of the dial vectors [s,(¢), 0,(¢)] and
[£,(?), 1, (¢)] is shown in the vectograms of Fig. 7.

We computed the mean dial vectors for the three Lloyd
seasons j, e, d, which are also shown in Fig. 7; moreover,
the mean amplitude and phase for the S and L variations
were obtained using all data. As a measure of the seasonal
variation in a form suitable for comparison between S and
L, we adopt the ratio of the seasonal amplitude to the overall
amplitude; the difference between the seasonal phase and the

mean phase is also examined. The seasonal amplitude ratios
and phase differences of S and L are given in Table 6.

For S; and S,, the amplitudes behave as expected, be-
ing greatest for the summer months and least for the winter
months. The mean ratio of summer to winter amplitude (ob-
tained from the summer/mean and winter/mean ratios) are
2.06 and 2.18 for S; and S;, respectively. It is interesting
to see that the e -month amplitude only slightly exceeds the
overall mean amplitude. As was found for S, the lunar har-
monics L; and L, for the magnetic declination also show a
marked increase in amplitude from d -months to j -months,
the equinoctial ratio being again intermediate between the
other two. The amplitude ratio of L, in Table 6 is always
smaller than the corresponding ratio of L;. The percent-
age change in amplitude from summer to winter is about the
same for S; and S,, but it is greater for the L variation, the
summer to winter ratio being 2.89 and 3.85 for L; and L,
respectively. Comparing these values with the corresponding
ratios for S; and S, we conclude that the amplitude ratios for
L are some 50 per cent greater than the solar ratios. This
result confirms that the seasonal change of L noticeably ex-
ceeds that of S.

Figure 7 displays the explicit increase in amplitude of the
solar and lunar variations from winter to summer. The phase
angles of S| and L; vary in the clockwise sense from d -
months to j -months (maximum earlier in summer, later in
winter), whereas the phases of S, and L, vary in the opposite
sense. Also, the exceptional change in phase of L, from d -
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Fig. 8. Harmonic dials of year-by-year changes of the diurnal and semi-diurnal components of the solar and lunar daily variations (declination; modulation

model).

months to j -months is obvious. The total change in phase
from winter months to summer months is of the order of
50° in S and about 140° in L. Consequently, there exists
an important phase change in the L current system between
local winter and summer and it is about three times that of
the S system.

The effect of solar activity on the amplitude and phase of
the solar and lunar variations, obtained from a Chapman-
Miller harmonic analysis, is estimated a posteriori by the
Wolf ratio M in Eq. (3). Postulating a linear relationship be-
tween the annual means of the harmonic coefficients and the
annual sunspot numbers the Wolf ratio is defined as the ratio
of the least squares estimates of the slope B and the intercept
A. In this way the results in Table 2 were obtained. However,
S and L present an important seasonal variation and also de-
pend significantly on the sunspot number, whereas the linear
equation is fitted to data where both effects intervene. As
can be seen from Table 6, the amplitudes and phases of the S
and L variations exhibit a strong seasonal dependence. Even
if the slope B is found to be the same for the three Lloyd’s
seasons, the intercept 4 would exhibit a strong seasonal de-
pendence and the Wolf ratio M would be concluded to be
largely dependent on the season.

On the other hand, Wolf ratios are incorporated a priori in
the time description of the amplitude and phase terms in the
modulation model through additional regression coefficients
and are optimized independently by minimizing the residual
sum of squares. In this way the Wolf ratios in Egs. (6), (7),
(8), and (9) are only indirectly related to the intercepts s, o,
On.0» Ln.0, and A, o, respectively. In consequence, the numer-
ical outcomes of the estimation of the sunspot cycle effect on
the solar and lunar daily variations, respectively obtained by
the harmonic analysis and the modulation model, may turn
out to be different.

The Wolf ratios estimated by the modulation model are
summarized in Table 5. The standard errors of the M values
are unexpectedly small. However, computational problems
frequently arise in non-linear minimization techniques when
calculating adequate error estimates for the optimized model
parameters. After the observational equations have been lin-
earized by retaining only the terms through the first deriva-
tive in a Taylor expansion, changes of the model parame-

ters are determined using a least squares procedure. These
changes are then added to the previous parameters, and the it-
eration scheme is continued until the desired convergence of
the residual sum of squares is reached. Denoting by F the es-
timated first derivative matrix of the original set of non-linear
observational equations with respect to the model parameters
(Broyden, 1967) and by F’ the transpose of F, the inverse
(FF)~" of the cross-product matrix F'F is used to estimate
the linearized covariance matrix for the parameters. It is of-
ten found that the normal matrix FF is ill-conditioned near
the minimum of the objective function in parameter space
(Tarantola and Valette, 1982), leading to poorly estimated
standard errors for the model parameters. Therefore, trun-
cation of the numerical outcomes to significant digits was
avoided.

From Table 5 it follows that the values of 10* M for the am-
plitude of the L variations are only slightly greater than the
corresponding Wolf ratios for the S variations, ratifying the
view of Matsushita and Maeda (1965) that S and L are sim-
ilarly influenced during the solar cycle. However, non-linear
optimization problems may be very sensitive to the choice of
the starting estimates of the model parameters. With a view
to check the initial value effect, the non-linear iteration pro-
cedure was restarted by varying the initial approximation to
the Wolf ratios M in the neighbourhood of 0.0033, which
is the mean value for ionospheric E-region electron density
(Malin et al., 1975). Yet, it was found that starting values
differing up to 10 per cent of 0.0033 resulted in nearly the
same Wolf ratios as compiled in Table 5. The Wolf ratios of
the phase angles o, and A, are small, implying that the so-
lar cycle effect on S and L is essentially an enhancement of
amplitude. This is confirmed by the harmonic dials in Fig. 8
showing the long-term solar cycle contribution to S and L.

As a matter of fact we will now follow the same procedure
as outlined in Section 3, and estimate the seasonal change
of the Wolf ratios from the output of the modulation model
by the procedure described in Section 3. The intercepts, A4,
slopes, B, and Wolf ratios, M, are compared in Table 7. As
could be expected the overall values of 10*M for the ampli-
tude of S, are found to be of the order of 33. Hence, the
sunspot cycle enhances the amplitudes of the solar harmon-
ics in the same proportion. The value of 10% A for the ampli-
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Table 7. Declination-Modulation model. Regression coefficients of the solar cycle effect.

all days Jj -months e -months d -months

A 10°B 10*M A 10*°B 10*M A 10*°B 10*M A 10°B 10*M
sp 214 69.4 32 3.07 71.1 23 228 70.5 31 1.2% 74.9 61
52 1.45 46.5 32 207 49.3 24 1.6%8 48.0 29 075 51.7 69
s3 0.61 26.0 42 0.6%8 25.8 38 09V 25.4 28 025 27.2 109
Sy 0.23 5.7 25 0.1% 3.9 31 0.39’ 6.6 17 028 7.0 25
¢ 0.06 1.6 26 0.15 3.4 23 0.06' 3.0 49  0.04 3.4 93
4 013 4.5 34 0.2% 5.6 22 013 5.1 40  0.04 5.7 158
£ 0.05 1.0 19  0.10 22 23 0.05 1.6 32 0.0V 0.3 33
Ly 0.01" 0.4 41 0.0l 0.6 51 0.02 0.5 28 0.0 0.5 80
ol 62° 788 —12.6 50 —-910 —18.2 66° —881 —133 87°  —945 —10.8
oy  233°  —378 —1.6  246° 204 —-0.8 231° 229 —-1.0 202° =275 —14
03 79 —173 -2.2 88>  —185 -2.1 74° —174 —24 77° —157 -2.0
oy 280° —835 -3.0 307°  —491 —-1.6 283° =574 —-2.0 273° —652 —24
A 155° 594 3.8 131°  —168 —-13  180° 72 04  265° =717 —0.3
Ay 283° 892 —-3.1 291° —469 —-1.6 283 524 —-19 230° —895 -39
A3 134° 149 1.1 136°  —349 —-2.6 134 —117 —-0.9 107° 789 7.4
Ay 303° —488 —1.6 247° —653 -2.6 344° —180 —0.5 283° 696 2.5

tude of L,, is somewhat smaller. Because of the coincidence
of these figures with the corresponding value of 0.0033 for
the Wolf ratio M of the electron density in the ionospheric
E-region (Malin et al., 1975) it is traditionally accepted that
the overhead S, and L current systems are located in the E-
region. In this respect the solar cycle effect on the amplitudes
ofthe S and L variations can be entirely attributed to changes
of the E-layer conductivity.

Also very striking is the change of the Wolf ratio during
the year in Table 7. The maximum of M for s; and s;
occurs during the d -season, when M exceeds the j -value by
a factor of more than 2. A similar effect is present in the M
values for £; and ¢,, the Wolf ratio being about three times
greater in winter than in summer. Since the Wolf ratio for
E-region electron density is found to be remarkably constant
in the course of the year (Malin et al., 1975), the solar cycle
effect in winter is larger than can be explained by changes in
ionospheric conductivity alone.

Moreover, the lunar tidal movements in the ionosphere
are gravitationally induced and are therefore not expected to
vary appreciably with sunspot number, so it is reasonable
to assume the change of L with solar cycle to result purely
from changes in ionospheric conductivity with R. Thus we
might expect 10*M to be of the order of 33 for £; and £5.
But the slopes, B, of the amplitudes of S and L in Table 7
are essentially the same for the three Lloyd seasons, whereas
the intercepts, 4, change considerably through the year. This
seasonal variation of the intercepts seems to be the reason for
the different estimates of the Wolf ratios M obtained by the
ratio B/ A in Eq. (3). The same conclusion can be reached
for the phases of the S variation but for the phases of L the
outcome is indistinct.

The observed lunar daily variation, L, contains contribu-
tions from the ionospheric dynamo, and also from an ocean
dynamo powered by the tidal motion of the sea across the

Earth’s main magnetic field. Because the modulation model
incorporates four harmonics of L we can apply the method
of Malin (1970) for the separation of the contributions from
the two dynamos. The amplitude, £p, and phase, Ao, of the
ocean dynamo variation Lo= {£¢ sin (27 +A¢) are computed
from

4
Lo cos Ao = Z £, cos A,, (10)
n=1
4
Lo sin Ag = Z £, sin A,,.

n=1

)

The ionospheric dynamo part, Ly, of the L, variation is
described by L= ¢; sin (2t + A1), where the amplitude, |,
and the phase, A, are obtained by

£r cos Ay = —(£1 cos Ay + €3 cos A3 + €4 cos Ag),(12)

KI sin )\I _(Zl sin )\.1 +€3 sin )L3 +£4 sin )L4). (13)

Thus, the ionospheric dynamo part of L consists of the con-
tribution of the terms L, L, L3 and L4. Using the results of
the Chapman-Miller analysis in Table 1 it is found that the
amplitude £o = 0.123’ 4+ 0.015’ of the ocean dynamo effect,
Lo, is well determined at the inland station of Dourbes at
about 180 km from the North Sea and is comparable to the
amplitude ¢; = 0.137" £ 0.014’ of the ionospheric dynamo
part, Li. So there is a relatively important ocean dynamo
contribution to the total lunar daily variation at the station
and this effect should be removed before studying time vari-
ations of L.

It is interesting to see how this constant amplitude con-
stituent, Lo, in the measured amplitude of L, could affect
the Wolf ratios M! and M} when the influence of the night-
time tide is eliminated by subtracting the single harmonic
term £g sin (2t + Ao) from the original observations. As
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Table 8. Declination—-Modulation model lunar variation. Removal of ocean dynamo contribution.

n oo o 104 M! 104 M*

1 0.1206' & 0.0006' 195.501° + 1.037° 22.98 +0.26 —0.84 £ 0.01
2 0.1357' 4 0.0011’ 293.766° + 1.101° 27.75 +0.28 —1.88 4 0.02
3 0.0668' & 0.0005' 175.509° + 0.919° 28.68 + 0.28 ~1.92 4 0.02
4 0.0217’ 4 0.0002’ 304.383° +2.201° 38.36 + 0.25 ~1.03 4+ 0.01

expected, it is found that the amplitudes, phases, and Wolf
ratios for the solar variation S(¢) in Eq. (4), with the ocean
dynamo contribution removed, are practically unchanged as
compared with the results in Tables 3 and 5. The principal
outcomes of the modulation model are summarized in Ta-
ble 8 and concern only the amplitudes, ¢, ,, and the phases,
An.o, Of the lunar variation L(¢) in Eq. (5), which is now
mainly of ionospheric origin. These values should be com-
pared with the corresponding ones in Table 1, resulting from
the Chapman-Miller analysis.

After elimination of the ocean dynamo effect, the results
for cf;’ o goﬁ’ o cﬁq , and Q";, « are found to be nearly the same
as those given in Table 4, which implies that the seasonal
variation parts in the second terms in the right-hand side
of Egs. (8) and (9) are virtually unchanged by removal of
the ocean dynamo contribution from the observations. From
Table 8 it follows that only the mean amplitude, ¢ ,, of the
dominant L, harmonic is significantly changed. The values
of 10* M! for the sunspot number influence on the amplitude
of the L variation are somewhat reduced with respect to the
values given in Table 5 and are now of the order of the
magnitude of the Wolf ratios 10* M? for the solar variation,
whereas the factors 10 M* remain small. So it is concluded
that the ionospheric part of L. comprehends almost the same
Wolf ratios as S. The Wolf ratios for both L and S are of
the same order of magnitude for all harmonic numbers #,
which means that the Wolf ratios are nearly independent of
frequency.

7. Conclusions

A spectral analysis is performed to determine the compo-
nents of the solar and lunar variations present in the Dourbes
magnetic declination record, data for a period of 40 years
(1960-1999) being used. The amplitude spectrum shows
prominent solar peaks at 1, 2, 3, 4 cycles/day (cpd), and lunar
peaks at 0.93227 cpd and 1.93227 cpd. The high resolution
spectral analysis also displays splitting of the solar diurnal
and semi-diurnal lines, S| and S;, by the annual variation
and its harmonics, and an annual splitting of the lunar semi-
diurnal line, L,. Sidebands of the solar diurnal peak S, at
(1 £ k/27) cpd, k = 1, 2, 3, are attributed to an amplitude
modulation mechanism related to solar rotation.

The extra peaks in the solar frequency bands are inter-
preted in terms of amplitude and phase modulation of the
main dynamo constituents by the annual variation of iono-
spheric conductivity. As a generalization of the harmonic
model used in the Chapman-Miller analysis it is possible to
describe the solar and lunar geomagnetic variations in con-
tinuous time as phenomena of the modulation type and thus
give up the idea of periodic behaviour that is resolved into

a discrete set of amplitudes and phases of pure harmonic
waves. The fundamental concept of the modulation model
consists of the sum of harmonic oscillators with basic car-
riers having the primary frequencies of the solar and lunar
daily variations, which are subjected to amplitude and phase
variations that can be represented by a sum of trigonomet-
ric functions with frequencies given by the harmonics of the
annual variation. The effect of changes in solar activity is ex-
plicitly taken into account by incorporating the daily sunspot
numbers as an additional input into the modulation model.

The solar and lunar daily variations exhibit important sea-
sonal amplitude and phase modulations. When the data are
examined month by month, some striking changes are found
in the solar magnetic variation resulting from thermal tides
and also in the lunar tides, involving an exceptional phase
shift between local winter and summer with rapid changes in
the equinoctial months. From the point of view of amplitude
amplification, the enhancement of L from winter months to
summer months significantly exceeds that of S. The phase
change in the lunar current system between local winter and
summer is more than twice that of the S system.

The long-standing question of whether S and L respond
similarly to the sunspot cycle is re-examined using 40 years
of data and ranging over nearly four solar cycles. There-
fore, intermediate values of R between sunspot minimum
and sunspot maximum are included so that the outcomes may
be interpreted to be fairly representative of the average so-
lar cycle influence on S and L. The sunspot cycle influence
on the amplitude and phase of the solar and lunar variations
is estimated a priori by incorporating the Wolf ratios in the
modulation model as additional regression parameters. The
Wolf ratios for the amplitude of the S and L variations are
found to be nearly the same, but no systematic changes in
the phase angles with increasing sunspot number are dis-
cernible, implying that the solar cycle effect on S and L is
essentially an enhancement of amplitude. As the analysis
only uses the data from one magnetic observatory, no affir-
mative statement concerning the possible different response
of S and L to sunspot number can be made.

The amplitude of the ocean dynamo contribution to the
lunar daily variation is relatively large in the magnetic decli-
nation data for a station at a distance of about 180 km of the
coast, and is comparable to the ionospheric dynamo ampli-
tude. Lunar Wolf ratios for the sunspot cycle influence are
of the order of the Wolf ratios associated with the solar vari-
ation when the ocean dynamo effect is separated from the
lunar daily variation. Then the lunar Wolf ratios are reduced
by about 10 per cent.

Acknowledgments. Special thanks are due to G. Simon of the



418

observatory of Dourbes for producing a virtually gapless record of
high quality hourly magnetic data over the past 40 years. The author
is very indebted to the referees for useful comments.

References

Black, D. I., Lunar and solar magnetic observations at Abinger: Their de-
tection and estimation by spectral analysis via Fourier transforms, Phil.
Trans. R. Soc., 268 A, 233-263, 1970.

Broyden, H., Quasi-Newton methods and their application to function min-
imisation, Math. Comp., 21, 97-105, 1967.

Campbell, W. H., The regular geomagnetic-field variations during quiet
solar conditions, in Geomagnetism, vol. 3, edited by J. A. Jacobs, 76 pp.,
Academic Press, New York, 1987.

Chapman, S. and S. R. C. Malin, Atmospheric tides, thermal and gravita-
tional: nomenclature, notation and new results, Journ. Atmos. Sci., 27,
707-710, 1970.

Chapman, S. and J. C. P. Miller, The statistical determination of lunar daily
variations in geomagnetic and meteorological elements, Mon. Notices
Roy. Astron. Soc., Geophys. Suppl., 4, 649—669, 1940.

Chapman, S., J. C. Gupta, and S. R. C. Malin, The sunspot cycle influence
on the solar and lunar daily geomagnetic variations, Proc. R. Soc. London,
A 324, 1-15, 1971.

Coulson, C. A., Waves, 159 pp., Oliver and Boyd, Edinburgh, 1955.

De Meyer, F., Modulation of the solar daily geomagnetic variation, J. Atmo-
sph. Terr. Phys., 48, 115-130, 1986.

De Meyer, F., Modulation of the solar magnetic cycle, Sol. Phys., 181, 201—
219, 1998.

F. DE MEYER et al.: MODULATION MODEL SOLAR AND LUNAR VARIATIONS

Green, P. and S. R. C. Malin, Lunar and solar daily variations of the geo-
magnetic field at Waterhoo, West Australia, J. Atmosph. Terr. Phys., 33,
305-318, 1971.

Malin, S. R. C., Separation of lunar daily geomagnetic variations into parts
of ionospheric and oceanic origin, Geophys. J. R. astr. Soc., 21, 447-455,
1970.

Malin, S. R. C. and S. Chapman, The determination of lunar daily geophys-
ical variations by the Chapman—Miller method, Geophys. J. R. astr. Soc.,
19, 15-35, 1970.

Malin, S. R. C., A. Cecere, and A. Palumbo, The sunspot cycle influence
on lunar and solar daily geomagnetic variations, Geophys. J. R. astr. Soc.,
41, 115-126, 1975.

Marquardt, D. W., An algorithm for least squares estimation of nonlinear
parameters, Journ. Soc. Industr. Appl. Math., 11, 431441, 1963.

Matsushita, S., Solar quiet and lunar daily variation fields, in Physics of
Geomagnetic Phenomena, edited by S. Matsushita and W. H. Campbell,
pp. 302424, Academic Press, New York, 1967.

Matsushita, S. and H. Maeda, On the geomagnetic solar quiet daily variation
field during the I. G. Y., J. Geophys. Res., 70, 2535-2558, 1965.

Tarantola, A. and B. Valette, Generalized nonlinear inverse problems solved
using the least squares criterion, Rev. Geophys. & Space Physics, 20,
219-232, 1982.

Winch, D. E. and R. A. Cunningham, Lunar magnetic tides at Watheroo:
seasonal, elliptic, evectional, variational and nodal components, J. Geo-
mag. Geoelectr., 24, 381-414, 1972.

F. De Meyer (e-mail: Frans.DeMeyer@oma.be)



	1. Introduction
	2. Data and Spectral Analysis
	3. Harmonic Analysis of Sq and L
	4. Modulation Model
	5. Results of the Modulation Model
	6. Discussion
	7. Conclusions
	References



