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Effect of complex fault geometry and slip style on near-fault strong motions
and static displacement
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Although there are many studies that deal with complex slip distribution or rupture propagation on an earthquake
fault, they usually regard a fault system as a fault of simple geometry. Actual fault systems have highly heteroge-
neous slip distribution and very complicated shapes, as is often observed through field surveys of surface breaks.
In this study, we synthesize seismograms including static displacement near a fault using the discrete wavenumber
method in order to estimate the effects of the above types of fault complexity in a quantitative manner. We introduce
a complex slip distribution based on the Nojima Fault associated with the 1995 Hyogo-ken Nanbu earthquake. As
a result, we show that strong motions at a frequency of lower than 1.0 Hz are strongly affected by the complexity of
the fault geometry, at a scale of not more than several km, rather than the rupture propagation style. Distributions
of static displacement fluctuate, depending on the fault geometry characterized by the length of each fault segment.
Such small-scale variations in fault geometry (≤1 km) have been mostly ignored prior to this work. Our results
also suggest that details of fault segmentation and bending can be determined by dense observations (e.g., GPS or
geological surveys) of static displacement near a fault system, indicating the importance of simultaneous studies on
static and dynamic near-fault motions.
Key words: Near field, strong motion, fault geometry, kinematic model.

1. Introduction
High-frequency strong motions recorded near a fault

greatly depend on the variability or complexity of rupture
velocity and slip distribution on the fault. Synthesized seis-
mograms obtained from a simple Haskell model show good
agreement with observed data in the low-frequency range,
but it is still very difficult to explain observed high-frequency
waves, such as those in a frequency range higher than 1
Hz, in a deterministic manner. To reproduce a spectrum of
seismic body-waves (e.g., the ω-square model) at high fre-
quency, several studies have introduced kinematic stochas-
tic models (e.g., Herrero and Bernard, 1994; Bernard et al.,
1996; Hisada, 2000) considering various rupture velocities
and slip distributions on a fault.

On the other hand, we can often obtain a relatively precise
slip distribution, having a resolution of less than 1 km, at the
surface by a field survey around an earthquake or active fault
system. For example, Nakata et al. (1990) surveyed surface
fault breaks that appeared during the Philippine Earthquake
(Ms = 7.8) on July 16, 1990 and estimated its source time
function from the slip distribution along the fault. Nakata
and Yomogida (1995) obtained the slip distribution along the
Nojima Fault that broke during the Hyogo-ken Nanbu earth-
quake on January 17, 1995. These studies showed the exis-
tence of segmented subfaults with crack-like slip distribution
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along active fault systems.
Many studies have currently reproduced coseismic rup-

ture processes using inversion techniques (e.g., Hartzell and
Heaton, 1986; Kakehi and Irikura, 1996; Yoshida et al.,
1996). Slip distribution, rupture velocity, and some other
source parameters are obtained accurately by such studies,
but complex slip distributions whose scale is less than 1 km,
inherent to the generation of waves of a frequency higher
than several Hz, are generally not considered in the inversion
of rupture processes. In addition, these studies have adopted
quite simple fault geometry compared with actual fault sys-
tems (e.g., Yeats et al., 1997). Some studies with dynamic
fault models have clarified the effects of complex fault geom-
etry such as dip and fault orientations (e.g., Oglesby et al.,
2000; Aochi and Fukuyama, 2002). Harris and Day (1993,
1999) computed rupture propagations on parallel strike-slip
faults with 2-D and 3-D models. They showed that rupture
can be triggered on a separated segment if two segments are
overlapped. Aochi et al. (2002) showed that if two fault seg-
ments are disconnected from each other, rupture at one seg-
ment cannot jump into the other in some cases.

Fault segmentation is commonly observed in earthquakes.
For example, Li et al. (1994) showed the representative size
of fault segments (in the 1992 Landers Earthquake) as be-
ing several tens of kilometers and found that this feature
should exist underground as well as on the surface. Refer-
ring to the slip distribution of the Nojima Fault reported by
Nakata and Yomogida (1995), we consider a complex but
realistic slip distribution in a deterministic manner and cal-
culate near-field seismograms radiating from a fault system
in the frequency range of as high as 2.0 Hz. We study a
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Fig. 1. Fault geometry. L , W , φs , δ, and λ represent the length, width, strike, dip, and rake of the fault, respectively. The definitions are after Aki and
Richards (1980).

pattern of strong motions near the fault system in terms of
such complexity of slip distribution, together with its fre-
quency dependency. Another new attempt in this study is
to compare static and dynamic near-fault displacements for
complex fault models.

2. Method and Models
We synthesize seismograms using the discrete wavenum-

ber method (Bouchon and Aki, 1977), because it can easily
introduce a finite fault with complex geometry. In addition,
this method can accurately calculate not only dynamic waves
such as P- and S-waves but also static displacement with cer-
tain criteria on numerical parameters. For example, we intro-
duce a new special potential in order to represent vertically
propagating S-waves. The effects of this potential on static
displacement are critical in some fault geometries (Honda
and Yomogida, 2003a; Honda and Yomogida, 2003b). Plane
wave formulations for P-, SV-, and SH-wave potentials radi-
ating from a finite fault are as follows:

φ = i D

2Lx L yk2
β

AIL IW

· exp i(kx (x − xo) + ky(y − yo) − ν(z − zo)), (1)

ψSV = i D

2Lx L yk2
β

Bsv IL IW

· exp i(kx (x − xo) + ky(y − yo) − γ (z − zo)),(2)

ψSH = i D

2Lx L yk2
r

Bsh IL IW

· exp i(kx (x − xo) + ky(y − yo) − γ (z − zo)),(3)

where

A = −k2
x

ν
Mxx − 2kxky

ν
Mxy

+2kxMxz − k2
y

ν
Myy + 2kyMyz − νMzz,

Bsv = −k2
x

kr
Mxx − 2kxky

kr
Mxy + kx (k2

β − 2k2
r )

γ kr
Mxz

−k2
y

kr
Myy + ky(k2

β − 2k2
r )

γ kr
Myz + kr Mzz,

Bsh = −kxky
γ

Mxx + k2
x − k2

y

γ
Mxy

+kyMxz + kxky
γ

Myy − kxMyz,

with moment tensors related to fault geometry (see box 4.4
of Aki and Richards, 1980), and

IL ≡ exp i L(ω/vr − C12kx − C22ky ± C32
) − 1

(ω/vr − C12kx − C22ky ± C32
)i
, (4)

IW ≡ exp iW (−C11kx − C21ky ± C31
) − 1

(−C11kx − C21ky ± C31
)i
, (5)

kr =
√
k2
x + k2

y are the horizontal wavenumbers, and kα and

kβ are the P- and S-wave wavenumbers. After analytical in-
tegration of the point sources distributed over a rectangular
fault, we obtain the above finiteness terms, IL and IW . 
 is
the vertical wavenumber (i.e., ν = √

k2
α − k2

r for P-waves or

γ =
√
k2
β − k2

r for S-waves; Imν, Imγ ≤ 0). D, L , and W

are the slip, length, and width of the fault, respectively. As
shown in Fig. 1, we assume a unilateral and unidirectional
rupture propagation. ξ represents the direction of rupture
propagation and η the other direction of the fault segment
(see Chin, 1992). The transformation matrix of the coordi-
nate systems in Eqs. (4) and (5) is
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Fig. 2. Configurations of (a) single left-lateral fault, (b) segmented fault, and (c) Nojima Fault models. Rupture propagates unidirectionally from west
to east. Slip distributions on a fault plane are illustrated at right. In the case of step dislocations, the slip at each point follows a step function and its
amount is constant in each fault segment, while the dynamic source factor (Bouchon, 1978) is used as a slip function in the case of shear cracks.

⎛
⎝C11 C12
C21 C22
C31 C32

⎞
⎠ =

⎛
⎝ sin φs cos δ cos λ − cos φs sin λ sin φs cos δ sin λ + cos φs cos λ

− cos φs cos δ cos λ − sin λ sin φs − cos φs cos δ sin λ + sin φs cos λ

− sin δ cos λ − sin δ sin λ

⎞
⎠ .

where φs , λ, and δ represent strike, rake, and dip angles,
respectively.

Using the above formulations, we next calculate and com-
pare the maximum velocity distributions for several fault
models to estimate the effects of kilometer-scale complex-
ity of fault geometry and slip distribution. We compare fault
models varying (1) the fault geometry and (2) the rupture
style; that is, the temporal and spatial function of slips over a
fault or each subfault. Three vertical strike-slip fault models
with a step dislocation in time are examined: a single-fault
model, segmented model, and Nojima Fault model. These
geometries and slip distributions are shown in Fig. 2. All the
models have a common rupture velocity (2.4 km/s) and total
moment release. The depth of the fault top is 10 m. Slip
distributions are illustrated at the right of each model with
the identification of “Dislocations.” The segmented model
and the Nojima Fault model consist of four segments, and
correspond to the fault geometry surveyed by Nakata and
Yomogida (1995), as shown in Fig. 3. The amount of slip
in each segment is constant to approximate the correspond-
ing average amount of slips. The segments of the Nojima
Fault model are not aligned in a straight manner.

One may argue that fault breaks at the surface do not re-

flect the main features of underground fault geometry. Al-
though some previous studies have supported the hypothesis
that segmentations of several kilometers in size should ex-
ist under the ground (e.g., Li et al., 1994), it is necessary
to check the validity of the use of information on surface
fault breaks, as shown in Fig. 3, for seismic studies con-
trolled mainly by subsurface fault slips. Figure 4 shows a
fractal analysis of the surface fault geometry of the Nojima
Fault in Fig. 3 (Hayashi, 1996). Following the procedure of
Okubo and Aki (1987), the total length L of the fault system
is measured by filling it with circles of radius r . If the fault
system shows a self-similar character, the total length L fol-
lows a power of r , and its fractal dimension D is defined as
L ∝ r1−D .

It is clear that two types of self-similarity are observed:
log L = 4.02 + 0.04 log r for a scale of less than 40 m,
and log L = 4.14 − 0.03 log r for an equal or longer scale.
Their fractal dimensions are 0.96 ± 0.03 and 1.03 ± 0.02,
respectively. Fractal dimensions of major fault systems in
Japan are similar to the latter value at a scale of down to
several hundred meters (Matsumoto et al., 1992). That is,
a surface fault trace of larger than several hundred meters
appears to provide the overall character of major faults in
Japan. At a smaller scale, the complex surface breaks of the
Nojima Fault result in a clearly different fractal dimension
of larger than 1. The effect of surface soft layers should
modify the actual fault character of the overall subsurface
fault geometry. In contrast, the fault character revealed at the
larger scale in the above fractal analysis is likely to reflect
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Fig. 3. Surface fault ruptures associated with the 1995 Hyogo-ken Nanbu earthquake. The fault trace is not straight, and the distributions of horizontal
displacement show a crack-like shape (after figure 2 of Nakata and Yomogida (1995)).
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Fig. 4. Logarithmic relationship between the total length of fault segments L and the measured scale length r for the Nojima Fault (Hayashi, 1996). The
fractal dimensions are 1.03 ± 0.02 for r < 40 m and 0.96 ± 0.03 for r ≥ 40 m, respectively.
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Fig. 5. Peak velocities distributions and synthetic wave-forms of fault-normal-component in the frequency range of 0.1–2.0 Hz for (a) the single-fault
model, (b) the segmented model, and (c) the Nojima Fault model. The fat white lines represent the surface projections of the fault, and the dotted white
lines show the locations of observers of the waveforms.
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Fig. 6. Same as Fig. 5 for the fault-parallel component.

the overall subsurface fault geometry.
The above result supports the hypothesis that fault breaks

at the surface do not significantly differ from those under the
ground at a scale of 40 meters or more, for the Nojima Fault.
It should be noted that our main goal in the present study
is not to pursue the actual features of rupture propagation in
the Nojima Fault during the 1995 Hyogo-ken Nanbu earth-
quake, but to demonstrate a complex distribution of near-
fault ground motions for a segmented fault, compared with a
fault of rather simple geometry, using kinematic source mod-
els.

3. Effect of Fault Geometry and Slip Distribution
Let us first take the “Dislocations” model (Fig. 2) as a rup-

ture style, assuming the slip at each point as being a step in
time, in order to focus on the effect of fault geometry. Fig-
ures 5 to 7 show peak velocity distributions and waveforms

in the frequency range of 0.1–2.0 Hz for (a) the single-fault
model, (b) the segmented model, and (c) the Nojima Fault
model, respectively. These peak velocities are taken for the
normal, parallel, and vertical components independently. For
all three components, the most conspicuous phase that gen-
erates the peak velocity at each observation point is related to
the nearby passage of the rupture front. This phase is mainly
composed of near-field S-waves. Its apparent propagation
velocity is 2.4 km/s, corresponding to the rupture velocity.

In the single-fault model, the largest velocity in all three
components is located near the rupture initiation point, so we
can refer to it as the starting phase. Regions of high velocity
extend in the direction of rupture propagation, due to the
well-known directivity effect. The fault-parallel and vertical
component velocities are nearly one-half or one-third the
velocity of the fault-normal component.

The fault-parallel and vertical component velocities in the
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segmented model (b in Figs. 5 to 7) are higher than in the
single fault model even with the same total moment release.
This effect is due to the strong starting and stopping phases
of rupture at each fault segment.

In the Nojima Fault model, on the other hand, all three
component velocities show complex patterns, compared with
the other two models. There is a particularly noticeable
difference in the fault-parallel component (Fig. 6(c)). Areas
of high velocity are observed as small spots on and between
fault segments, as seen in Fig. 6(c), due to the combined
effect of the stopping phase and near-field S-waves related
to the nearby passage of the rupture front. The bending
of fault traces is effective in amplifying ground velocities
because large fault-normal components are observed in this
case. The vertical component velocity (Fig. 7(c)) shows a
similar pattern to the other cases.

4. Effect of Rupture Style
The temporal variation of slip at a given point on the fault

was assumed to be a step function in the previous exam-
ples. Referring to Bouchon (1978), we now introduce a 2-
D crack-like model whose final slip distribution is shown
in Fig. 2 with the identification of “Cracks”. The recent
rapid progress in research on the dynamic rupture process
should be taken into account fully, but the present kinematic
model gives very similar near-fault ground motions to such
dynamic cases, as confirmed later (see Section 5.3). Pre-
vious geophysical and geographical studies have suggested
that this crack-like rupture model can explain observed near-
field displacement seismograms well in some cases (e.g.,
Archuleta and Hartzell, 1981; Yomogida, 1988; Ruppert and
Yomogida, 1992). Final slip distributions at the surface also
support this type of slip model (e.g., Yeats et al., 1997). We
next compare ground velocity distributions for the step dislo-
cation model, as described in the previous section, with those
for the crack-like model in order to understand the impor-
tance of the rupture style, using the same fault geometries.

Here let us briefly explain numerical formulations for the
crack-like rupture model (Fig. 8), following Bouchon (1978).

Bouchon (1978) defined an approximate slip function for
two-dimensional shear cracks, as follows:

D(ξ, t) =
{ 2D(L/2,∞)

L

√
ξ(vr t − ξ)H(t − ξ/vr ), 0 ≤ t ≤ L/vr

2D(L/2,∞)

L

√
ξ(L − ξ), t ≥ L/vr

(6)
where vr denotes the rupture velocity and D(L/2, ∞) is
the final slip in the middle of the crack. ξ and L were
previously defined in Fig. 1. Equation (6) represents a semi-
ellipse that grows linearly with time until the rupture stops
at the other end of the crack. Since D(ξ, t) is distributed in
0 ≤ ξ ≤ vr t (≤ L), we approximate it by a broken line with
(M + 1) points (Fig. 8). The slip at ξ is given by

D(ξ, t) =
{
amξ + bmvr t for m−1

M vr t < ξ < m
M vr t

0 for ξ > vr t,

0 ≤ t ≤ L/vr , (7)

D(ξ, t) = amξ + bmL for (m − 1)	L < ξ < m	L ,

t ≥ L/vr , (8)

where

am = D(m	L , ∞) − D[(m − 1)	L , ∞]

	L
,

bm = m
D[(m − 1)	L , ∞]

L
− (m − 1)

D(m	L , ∞)

L
,

	L = L/M,

and

D(ξ, ∞) = 2D(L/2, ∞)

L

√
ξ(L − ξ). (9)

The Fourier transform of the slip function is given by

D(ξ, ω) =
∫ ∞

−∞
D(ξ, t)e−iωt dt.

The dynamic source factor S(ω) is defined by

S(ω) =
M∑

m=1

∫ m	L

(m−1)	L
D(ξ, ω)eiβξdξ, (10)
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Fig. 9. Comparison of distributions and waveforms of (a) fault-normal, (b) fault-parallel, and (c) vertical component peak velocities in the dislocation
model and the crack-like model. The fat and dotted white lines are the same as those in Fig. 5. The scale of waveform amplitude in the crack-like model
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with β = (−C12kx − C22ky ± C32
) expressing the en-
tire rupture process. The above two-dimensional crack-like
model can be obtained only by replacing IL in Eq. (4) by
S(ω). Hereafter, we call the model with a step function as
the “dislocation model” and that with S(ω) as the “crack-like
model.”

Figure 9 compares the peak velocity distributions and ve-
locity waveforms of the dislocation and crack-like models
with a single straight fault whose top is buried in at a depth
of 1 km. In the dislocation model, large velocity values are
observed along the fault in all the components with a strong
phase, which is related to the nearby passage of the rupture
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Fig. 9. (continued).
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Fig. 9. (continued).

front. Strong velocities are observed only around a rupture
stopping point (i.e., at one end of the fault) in the crack-like
model. This result is caused by the small slip rate in most of
the fault plane except near the stopping point, as illustrated
in Fig. 8(a).

On the other hand, a very strong phase not observed in
the dislocation model appears clearly in the fault-parallel
component (the thin dotted line in Fig. 9(b)). Since the slip at

each fault point terminates simultaneously, corresponding to
the stopping time of the rupture, the so-called stopping phase
is radiated from every point on the fault plane. This is an
artifact due to 2-D modeling, and we shall construct a more
realistic 3-D crack-like model in the next section. As far as
the maximum ground velocity distribution is concerned, the
existence of this phase does not alter our results significantly,
as shown later.
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Fig. 10 Same as Figs. 5(c), 6(c), and 7(c) for the crack-like model.

Next, we apply the above crack-like slip distribution to
the Nojima Fault model (Fig. 2(c)) to estimate more realistic
peak velocity distributions for this earthquake. The obtained
peak velocity distributions are shown in Fig. 10 compared
with (c) in Figs. 5 to 7 for the previous dislocation model
(i.e., temporal slip as a step function). The peak velocity
of the fault-parallel component becomes larger (∼1.6 m/s)
than that of the dislocation model (∼1.3 m/s) (Fig. 6(c)), and
larger than the fault-normal component, that is dominant in
the dislocation model (Fig. 5(c)). Very strong motions only
near the fault in the fault-normal component were reported
for this earthquake; for example, the “damage belt” and
“characteristic velocity pulses” observed in Kobe (Kawase,
2000). Complex superposition of refracted and direct waves
caused such phenomena in Kobe. Our results show that com-
plex fault geometry and crack-like propagation can cause
such a complex strong motion distribution pattern. Simi-
larly to the present result for the Nojima Fault, the very com-
plex fault geometry of the underground fault system in Kobe
should be responsible for such strong motions. Although de-
tailed waveform inversions have already spotted several lo-
cal areas on the fault system radiating large seismic energy
(e.g., Sekiguchi et al., 1996; Kakehi and Irikura, 1996), the
above result clearly shows that velocity distribution can be
easily modified by even small changes in fault segmentation
and bending as well as rupture style. It is necessary to take
these factors into consideration when we try to retrieve more
details of the fault process.

5. Frequency-Dependent Characteristics
Generally speaking, the overall slip distribution and rup-

ture propagation pattern can be obtained by waveform in-
version in the frequency range of lower than 1.0 Hz. In or-
der to understand the frequency dependence of the veloc-
ity distribution near a fault, we apply band-pass filters to
the synthetic seismograms obtained in the previous sections.
Peak velocity distributions in three frequency ranges (0.1–
1.0 Hz, 1.0–2.0 Hz, and 2.0–4.0 Hz) are shown in Figs. 11
to 13. First, we compare these results among the three fault-

geometry models, that is, the single-fault, segmented, and
Nojima Fault models using the dislocation model (i.e., slip
as a step). Next, we compare the difference between the dis-
location and crack-like models with the Nojima Fault model,
which we hereafter refer to as the first and second Nojima
Fault models, respectively.
5.1 Comparison among dislocation models

In the frequency range of lower than 2.0 Hz, the distri-
butions of fault-normal component peak velocities (on the
left in Figs. 11 and 12) are not largely affected by the fault
geometry (i.e., bending or segmentation) except for their ab-
solute values. The largest amplitude appears grossly in the
middle of the fault in each case. This component includes
the major phase corresponding to the nearby passage of the
rupture front. In contrast, the distributions of the other two
components (i.e., the fault-parallel and vertical components)
are strongly affected by the fault geometry even in the low-
frequency range (Fig. 11). The more complex the fault ge-
ometry becomes, the larger the velocities observed in these
two components. For example, a region of large amplitude
(∼1.2 m/s, as much as the largest value of the fault-normal
component) is observed near the second segment of the fault
system in the Nojima Fault model, which consists of the
stopping phase generated in the end of the first segment and
the nearby passage of the rupture front.

As the frequency increases (Fig. 13), the distributions be-
come quite different in all the components, particularly be-
tween the single-fault model and the others. Very strong
fault-normal velocities (∼2.8 m/s) are observed in a large
region extending in the direction of the rupture propagation
in the other two models, because of the directivity effect. Ve-
locity spectra in the frequency domain in such a region have
a peak around 2.0 Hz, and this frequency is defined by the
length of the fault segments and rupture velocity (see, for
example, section 14.1.5. of Aki and Richards (1980)). As
a result, the ground velocity distributions are quite different
between the frequencies that are lower (Figs. 11 and 12) and
higher (Fig. 13) than this frequency.
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Fig. 11. Filtered peak velocity distributions for all models. The frequency range is 0.1–1.0 Hz.
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Fig. 12. Same as Fig. 11 for the frequency range of 1.0–2.0 Hz.
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Fig. 13. Same as Fig. 11 for the frequency range of 2.0–4.0 Hz.

5.2 Comparison between dislocation and crack-like
models

Next, we compare ground velocity distributions for two
slip styles, that is, between the first and the second (crack-
like slip) Nojima Fault models as shown in the lower two
figures of Figs. 11 to 13. In the frequency range of lower
than 2.0 Hz (Figs. 11 and 12), there is little difference in
ground velocity distribution, although the absolute values are
slightly smaller in the second model.

Figure 14 shows a comparison of the waveforms of these
two models in the same frequency range as Fig. 11; that is,
0.1–1.0 Hz. Although the distributions of peak velocities,
which are largely controlled by high-frequency waves, are
similar (Fig. 11), their waveforms are quite different even
in such a low-frequency range because of the different spa-
tial and temporal slip distributions (Aki and Richards, 1980;
Yomogida, 1988). This is because near-field terms of rela-
tively low frequency are dominant and different between the
two slip models. In other words, the slip style has less effect
than the fault geometry on peak ground velocity distribution
in the low-frequency range in spite of the waveforms them-
selves are rather different.

Since smooth rupture propagation in the second Nojima
Fault model excites fewer high-frequency seismic waves, the
distribution in the high-frequency range shows much smaller
amplitude than in the first model (Fig. 13). The dominant
feature of the velocity spectra in the second model is a peak
around 1.0 Hz from the slip duration time determined by the
segment length (1–2 km) and rupture velocity (2.4 km/s). In

the second model, high-frequency seismic waves are gener-
ated only around the termination point of the rupture at each
segment, and the pattern does not show a conspicuous fea-
ture of directivity as in the model of simple fault geometry
(the top of Fig. 13).
5.3 Comparison between 2-D and 3-D crack-like mod-

els
The crack-like model used above has some unrealistic

features of rupture propagation; for example, as shown in
Fig. 9(b). Here, we introduce a more realistic 3-D rupture
model in order to confirm the effect of such artifacts on our
results, particularly on near-fault ground velocity distribu-
tion. The configuration of the new model is shown in Fig. 15.
We divide each segment into 3×5 subfaults that have various
amounts of slip. The total seismic moment is same as in the
2-D crack-like model. The rupture is initiated at the left end
of the first segment (the asterisk in Fig. 15) and propagates
circularly with a constant velocity of 2.4 km/s. Each point
starts slipping when the rupture front reaches that point and
stops at the arrival of a healing front propagating backwards
at S-wave velocity (Archuleta and Hartzell, 1981). This rup-
ture model is purely kinematic, but it gives a very similar
spatial-temporal distribution of slips to that of a single fault
segment or a block of the entire fault system, based on recent
dynamic rupture propagation models, including laboratory-
based friction laws (e.g., Fukuyama and Madariaga, 1998;
Inoue and Miyatake, 1998; Miyatake, 2000). Note that the
length of one fault segment in Fig. 15 is about 2 km, while
the dynamic rupture processes referring to any observations
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Fig. 15. Configuration of a more realistic 3-D fault model. Top: Schematic
representation of rupture propagation. The rupture starts at the center of
the first segment (represented by the asterisk) and propagates circularly
with a constant velocity. Bottom: Final slip distribution in each segment.

in the previous studies exceed 5 km or more. Only numeri-
cal studies have adopted a dynamic rupture of a smaller scale
than the present one.

Figure 16 shows maximum ground velocity distributions
for a block of the 3-D crack-like model (Fig. 15) in three
frequency ranges. These results should be compared with

those for the 2-D crack-like model of the same Nojima Fault
geometry (i.e., the second Nojima Fault model) in Fig. 11
(0.1–1.0 Hz), Fig. 12, (1.0–2.0 Hz) and Fig. 13 (2.0–4.0 Hz),
as well as Fig. 10 for all the frequency ranges. The over-
all feature (e.g., large amplitude in the fault-normal and the
fault-parallel components amplified in a narrow region) is
similar to that in the previous 2-D crack-like model except
for some minor aspects. For example, the fault-parallel com-
ponent in the range of 1.0–2.0 Hz has a slightly larger am-
plitude than in the 2-D model (the bottom of Fig. 12). In
the realistic 3-D case, the rupture propagates not only in the
fault-strike or horizontal direction but also in the down-dip
direction. Such an anti-plane rupture propagation generates
strong motions in the fault-parallel component (Miyatake,
2000). Fault-parallel motions are dominant around the sec-
ond and third segments because these segments are shorter
than the other segments with dominant anti-plane fault mo-
tions at the segment edges, as seen in Fig. 15. In the high-
frequency range of 2.0–4.0 Hz, the amplitudes are generally
smaller than in the 2-D model (the bottom of Fig. 13), par-
ticularly in the fault-parallel component, because the slip at
each point stops not simultaneously but gradually as the heal-
ing phase propagates backwards. This result confirms that
our use of the 2-D crack-like model is not problematic, as
long as we pay attention to the ground velocity distribution
near a fault, compared with dynamic rupture models. This
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Fig. 16. Maximum ground velocity distributions in the 3-D fault model in various frequency ranges. Note that the amplitudes in the highest frequency
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Fig. 17. Static displacement distributions in all models.
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Fig. 18. Cross section of the observers on the dotted lines of Fig. 17.

model appears to generate excessive high-frequency waves
over 2 Hz, but we must remember that, as explained in the
previous section, the complexity of the fault geometry also
becomes effective or important in such a case.

6. Static versus Dynamic Motions
Honda and Yomogida (2003a, b) showed that both dy-

namic and static displacements around a fault can be pre-
cisely computed by the discrete wavenumber method under
a certain criterion of the involved parameters. In addition
to the frequency dependency discussed in the previous sec-
tion, we next compare static displacements with the above
dynamic motions in the four fault models of Figs. 11 to 13.
Figure 17 shows the corresponding distributions of static dis-
placement. The static slip distribution can be readily sur-
veyed after the main shock, so relating the surface displace-

ments and the rupture process is very important. Joint in-
version of both static (i.e., crustal movement) and dynamic
motions has been proven to be powerful in imposing strong
constraints to the rupture process (e.g., Wald et al., 1996).

The single-fault model gives a static-displacement distri-
bution quite different from the other three models, suggest-
ing that the fault segmentation is an essential factor in the
generation of complex patterns in static displacement, al-
though they appear only near the fault system. The fault-
parallel component static displacement has the largest am-
plitude, agreeing with the slip component on the fault, while
dynamic motions are usually the largest in the fault-normal
component. Spatial variations of static displacement in the
present models of complex fault geometry have a character-
istic wavelength of 1.5–2 km, which corresponds to the scale
of fault segmentation (Fig. 18). Since the static displace-
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ment is not affected by the rupture style (i.e., the spatial and
temporal distribution of coseismic slips) but only determined
by the final slip distribution, the difference between the two
Nojima models (the bottom two rows in Fig. 17) is virtu-
ally zero. Although we do not show the result here, static
displacement is also similar in the realistic 3-D crack-like
model introduced in the previous section, for the same rea-
son. The effect of either small fault bending or detailed slip
distribution in each segment does not alter the overall pattern
of static displacement.

Combining this result with those obtained in the previous
sections, it is evident that the feature of fault segmentation is
critical, particularly at a low frequency, including static dis-
placements (ω = 0). GPS, In-SAR, and SPOT observations
will be helpful in providing accurate data on surface gaps
across the fault trace, although other data should be used
concurrently because of errors such as the bias of satellite
motion (Michel and Avouac, 2002).

7. Conclusions
Both dynamic and static displacements near a fault sys-

tem were synthesized by the discrete wavenumber method
for complex fault geometry and various rupture styles, down
to the order of less than a kilometer in a deterministic man-
ner. We first used a fault model with complex geometry
that has often been obtained in recent field surveys of active
fault systems (e.g., the 1995 Hyogo-ken Nanbu earthquake
and the 1999 Chi-Chi earthquake). According to our stand
point that such information on fault systems is very useful in
the quantitative estimation of complex near-field ground mo-
tions, we introduced our Nojima Fault model as an example
of highly segmented faults and demonstrated how complex
ground motions can be radiated from segmented fault ge-
ometry alone. Compared with a single straight fault, actual
faults with segmentation into several subfaults and the fluc-
tuation of segment orientations result in quite variable strong
motions near the fault even at a relatively low frequency
(0.1–1.0 Hz). For example, ground velocities are weak in the
fault-parallel component for a straight strike-slip fault even
close to the fault, while this component has a comparable
amplitude in the fault-normal component, which is generally
large, even with the introduction of a slight bending of fault
segments.

Another important factor is how slips expand over a fault
plane. If the fault slips in a single-crack manner (i.e., a long
source-time duration at the initiation point of the rupture and
very short at the stopping point), the stopping phase becomes
much stronger than the phase related to the nearby passage
of the rupture front, while the rupture-passage phase is the
largest in a conventional slip model such as the Haskell-type
dislocation model of the constant source-time duration on
the fault. For a strike-slip fault, a pulse-like phase in the
fault-parallel component is clearly observed only along the
fault trace, and the amplitude is the largest where the rupture
stops. The fault-normal component is very small on the
fault but strong outside of the fault near the stopping point
(Fig. 9). These results strongly suggest that we cannot even
predict the overall strong motion pattern only by estimating
a detailed slip distribution on a fault without knowledge of
the rupture style.

In the frequency range of lower than 1.0 Hz, fault-parallel
component motions are strongly affected by the effects of
fault geometry (i.e., bending and segmentation), but this does
not hold true for the fault-normal component. Although the
effect of the rupture style on peak velocity distribution is
small in this low-frequency range, the waveforms are quite
different. While the waveform of the fault-normal compo-
nent is symmetric before and after the nearby passage of
the rupture front in the dislocation model, the crack-like
rupture gives an asymmetric waveform due to an asymmet-
ric stress distribution with respect to the rupture front (Aki
and Richards, 1980). In actual seismic observations, high-
frequency waves are strongly affected by complex propaga-
tion path and site effects even if a station is very close to a
fault. Near-field terms with relatively low-frequency com-
ponents, however, have the potential to retrieve the rupture
style only by the gross feature of recorded seismograms (e.g.,
Yomogida, 1988).

In the high-frequency range of 2.0–4.0 Hz, the directivity
effect is dominant. Since the corresponding wavelength is
less than the scale of each fault segment in this study, stop-
ping phases generated at the edge of each segment become
very strong. Smooth rupture propagation in the crack-like
model is effective in producing much smaller ground veloci-
ties than the dislocation model.

Since our dislocation model and 2-D crack-like model
may be criticized as unrealistic, we have introduced a more
realistic kinematic fault model that follows recent 3-D dy-
namic rupture models, including the propagation of a healing
phase (Fig. 15). These rupture features are consistent with
some recent seismic observations (e.g., Wald and Heaton,
1994; Sekiguchi et al., 2000). The more realistic 3-D kine-
matic rupture model gives a slightly smaller amplitude at
high frequency (≥2 Hz) than our 2-D crack-like model, par-
ticularly in the fault-normal component (Figs. 13 and 16).
Nevertheless, the overall ground velocity distribution, in-
cluding its amplitude, will not alter if we simulate a realistic
dynamic rupture process carefully with the rupture model of
Fig. 15.

Since the Hyogo-ken Nanbu earthquake, many studies
have attempted to solve the mechanism of the damage belt in
Kobe caused by strong fault-normal motions (e.g., Inoue and
Miyatake, 1997; Furumura and Koketsu, 1998). Our results,
however, suggest that fault systems constructed by segments
having a scale of less than 1 km will be able to generate very
strong motions in a narrow region around the fault, not only
in the fault-normal but also the fault-parallel components.

The majority of current source studies uses a very com-
plex slip distribution over a fault with simple geometry. Al-
though the extent to which segmentations appearing at the
surface reflect the underground features should also be dis-
cussed, this study emphasizes the importance of fault geom-
etry complexity as well as rupture style (i.e., whether or not
the rupture front propagates smoothly over each fault seg-
ment in the manner of a single crack-like model) in future
studies on strong motions near a fault.

Static displacement is also strongly affected by fault seg-
mentation or overall slip distribution. Since it is determined
by the final amount of slip, neither the rupture style nor mi-
nor subfault bending is important. We may be able to ob-
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tain precise information on the fault segmentation if there
are dense observation points (e.g., GPS reference points and
control points) around the fault system. After constraining
the fault geometry and slip distribution in this manner, we
may be truly able to retrieve details of the rupture style;
that is, the “dynamic source model” in recent literature (e.g.,
Beroza and Mikumo, 1996; Cotton and Coutant, 1997; Kase
and Kuge, 2001). Since our approach can simultaneously
compute static and dynamic motions near a fault system
(Honda and Yomogida, 2003b), it will become a powerful
tool in future to retrieve complex source processes with GPS
as well as near-fault strong motion data composed of both
static and dynamic components.
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