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This paper is concerned with the reflection and transmission coefficients of SH-waves at a corrugated interface
between two anisotropic heterogeneous elastic solid half spaces. Both the half spaces are taken transversely
isotropic and laterally and vertically heterogeneous. The Rayleigh’s method of approximation is adopted and
expressions for reflection and transmission coefficients are obtained in closed form for the first-order approximation
of the corrugation. In Rayleigh’s method, expressions in boundary conditions containing the function defining
the corrugated boundary are expanded in Fourier series and unknown coefficients in the solutions are determined
to any given order of approximation in terms of a small parameter characteristic of the boundary. The analytical
expressions of these coefficients show that they depend upon corrugation of the interface and are strongly influenced
by the anisotropy and heterogeneity of the half-spaces. Numerical computations are performed for the case
of a particular corrugated interface: ζ = c cos k∗x showing that the effect of heterogeneity on the reflection
and transmission coefficients is minimum near the normal incidence and dominance of this effect increases with
the angle of incidence. For incident wave striking at 45◦, the effect of the corrugation is found significant on
the reflection and transmission coefficients. The maximum effect of transverse isotropy on the reflection and
transmission coefficients is observed at normal incidence when the values of the anisotropy parameters are 0.5
and 0.8 for the upper and lower half-spaces, respectively. The effect of frequency of the incident wave is observed
on all reflected and refracted waves. The analytical expressions derived by Tomar and Saini (1997), Gupta (1987)
and Asano (1960) are obtained as particular cases with our formulation.
Key words: Reflection, transmission, SH-wave, Rayleigh’s method, heterogeneity, anisotropy, corrugation.

1. Introduction
Solving the problem of reflection and refraction of seis-

mic waves from discontinuities is of great help to better un-
derstand the internal structure of the earth, and to detect valu-
able materials as well as hydro-carbons beneath the earth sur-
face. Earth heterogeneities such as mountain basin, moun-
tain roots and ore bodies affect the reflection and transmis-
sion of seismic waves, thus the study of the reflection and
refraction coefficients due to rough surfaces is of great prac-
tical importance in Seismology.

A number of researchers have attempted the problem of
reflection and refraction of seismic waves at corrugated in-
terfaces using different methods. Sato (1955) investigated
the reflection of elastic waves at a corrugated, free surface
by using the Rayleigh’s method of approximation. Asano
(1960, 1961, 1966) also used the Rayleigh’s method to ad-
dress problems of reflection and refraction of elastic waves
at a corrugated interface between two uniform elastic half
spaces. Abubakar (1962a) and Dunkin and Eringen (1962)
used the perturbation method to study the problem of reflec-
tion of body waves from a rough surface of a semi-infinite
elastic solid. In perturbation method, the amplitudes of su-
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perposed scattered plane waves are expressed into sums of
terms whose order of magnitudes are proportional to the
powers of the amplitude of the rough surface, the curva-
ture of the rough surface should be small everywhere. Later,
Abubakar (1962b, c), using the perturbation technique, stud-
ied the reflection and refraction of SH-waves at an irregu-
lar interface between two uniform elastic solid half spaces.
Adams and Chung-Po-Chang (1964) applied Weber inte-
gral to solve wave equation and studied the wave propaga-
tion phenomenon at an irregular infinite interface. Aki and
Larner (1970) investigated the surface motion of a layered
medium with irregular interface due to incident plane SH-
wave. The effect of surface irregularity on the propagation
of waves in an elastic plate was studied by Sumner and Dere-
siewicz (1972) using the perturbation technique. Some no-
table references pertaining to the subject of waves on irreg-
ular boundaries are Gilbert and Knopoff (1960), Slavin and
Wolf (1970), Yamada and Sato (1976), and Gupta (1978).

In most of those investigations, the elastic media consid-
ered were homogeneous. Not much work has been done
on heterogeneous media with corrugated boundary. The re-
flection and transmission coefficients of elastic waves from
flat boundaries for the case of inhomogeneous media with
several types of velocity distributions have been studied
by Acharya (1970), Saini and Singh (1977b), Singh et al.
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(1978), Malhotra et al. (1982) among others. Chattopadhyay
and Pal (1982) studied the propagation of SH-waves in an
inhomogeneous medium with irregular interface lying over
an initially stressed elastic half space. Gupta (1987) studied
the problem of reflection and transmission of SH-waves in
laterally and vertically heterogeneous media at an irregular
boundary. She used the Rayleigh’s method to study the ef-
fect of lateral and vertical heterogeneities on the reflection
and refraction coefficients, and gave the mathematical treat-
ment to compute these coefficients for first and second order
approximation of the corrugation. Zhang et al. (1997) stud-
ied seismic waves in a laterally inhomogeneous medium.

Henneke (1972) studied the effect of anisotropy on reflec-
tion and refraction of stress wave at a plane boundary be-
tween anisotropic media. Daley and Hron (1977) studied
reflection and refraction coefficients at a plane interface due
to incident P and SV waves in transversely isotropic elas-
tic media. Saini and Singh (1977a) investigated the effect
of transverse isotropy on reflection and transmission coeffi-
cients of SH-wave at a plane interface between a homoge-
neous isotropic half-space and a transversely isotropic half-
space. Rokhlin et al. (1986) studied these coefficients on
a plane interface between two generally anisotropic media.
The problems of wave propagation from plane boundaries
in anisotropic media have also been studied by Musgrave
(1960), Keith and Crampin (1977), Mandal (1991), Ruger
(1997) among others. Tomar and Saini (1997) studied the
reflection and refraction of SH-waves at a corrugated inter-
face between two transversely isotropic elastic half spaces.
Recently, Tomar et al. (2002) investigated the reflection and
transmission coefficients of SH-waves at corrugated inter-
face between transversely isotropic and visco-elastic solid
half-spaces.

The earth medium is complex in nature and full of various
types of anisotropy and heterogeneity (see Sheriff and Gel-
dart, 1995; Lay and Wallace, 1995; Shearer, 1999). More-
over, discontinuities in the earth are not perfectly flat (in fact,
these discontinuities are stochastically irregular up to some
extent). This motivated us to formulate the present model.
The present work deals with the problem of reflection and re-
fraction of SH-waves at a corrugated interface between two
transversely isotropic and laterally and vertically heteroge-
neous elastic solid half spaces. Rayleigh’s method of ap-
proximation has been followed to derive the expressions for
reflection and transmission coefficients only for first order
approximation of the corrugation due to incident SH-waves.
The problems discussed by Tomar and Saini (1997), Gupta
(1987) and Asano (1960) have been reduced as particular
cases of the present problem.

2. Formulation of the Problem and Its Solution
We consider two laterally and vertically heterogeneous

anisotropic elastic solid half spaces H1 and H2, separated
by a corrugated interface. The x-axis and y-axis are on the
horizontal plane, whereas the z-axis is pointing vertically
downwards. The elastic constants, densities and velocities in
media Hi are given by Mi , Ni ; ρi and βvi , βhi (i = 1, 2)

respectively. The quantities concerning the upper and lower
medium will be denoted by subscript 1 and 2, respectively.
The equation of the boundary surface (corrugated interface)

Fig. 1. Geometry of the problem.

is assumed to be

z = ζ (1)

where ζ is a periodic function of x , independent of y, whose
mean value is zero. The geometry of the problem is shown
in Fig. 1. The Fourier series representation of ζ is given by

ζ =
∞∑
n=1

[
ζn e

ιnk∗x + ζ−n e
−ιnk∗x] , (2)

where ζn and ζ−n are Fourier expansion coefficients, n is the
series expansion order and ι = √−1. Introducing constants
c1, cn and sn as

ζ1 = ζ−1 = c1

2
, ζ±n = cn ∓ ιsn

2
,

n = 2, 3, 4, . . .

(3)

we obtain

ζ = c1 cos k∗x + c2 cos 2k∗x + s2 sin 2k∗x + c3 cos 3k∗x
+ s3 sin 3k∗x + · · · + cn cos nk∗x + sn sin nk∗x + · · ·

If the interface shape can be expressed by only one cosine
term i.e. ζ = c1 cos k∗x , the wavelength of corrugation is
2π/k∗, where k∗ is the wavenumber.

The equation of motion for SH-wave propagation in a
transversely isotropic, inhomogeneous elastic medium with
zero body forces can be written as follows:

∂

∂x

(
Ni

∂Vi

∂x

)
+ ∂

∂z

(
Mi

∂Vi

∂z

)
= ρi

∂2Vi

∂t2
, (4)

where the constants Ni and Mi and ρi are defined earlier and
Vi is y-component of the displacement vector in medium Hi .
Since the medium is assumed to be laterally and vertically
heterogeneous, we shall take

{Ni , Mi , ρi } (x, z) = {Nio, Mio, ρio} p(x)ri (z), (5)

where Ni0, Mi0 and ρi0 are constants. We assume the solu-
tion of Eq. (4) in the form

Vi (x, z, t) = 1√
Mi (x, z)

X (x)Z(z) exp(ιωt), (6)
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where ω is the angular frequency. Substituting (5) and (6)
into (4), we get the following differential equation:[

d2X

dx2
− ε2X

]
Z = −Mi0

Ni0

[
d2Z

dz2
−

{
b2
i − ρi0

Mi0
ω2

}
Z

]
,

(7)

where ε and bi are given by

ε2 = 1

2p

d2 p

dx2
− 1

4

(
1

p

dp

dx

)2

,

b2
i = 1

2ri

d2ri
dz2

− 1

4

(
1

ri

dri
dz

)2

.

(8)

For wave propagating in positive x-direction, let us take
X (x) = exp(−ιkx), and plugging it into Eq. (7), we obtain

d2Z

dz2
− Ni0

Mi0

(
k2 + ε2 + Mi0

Ni0
b2
i − ω2

β2
hi

)
Z = 0, (9)

where βhi = √
Ni0/ρi0. The solution of Eq. (9) can be

written as

Z = Ae−si z + Besi z, (10)

where A and B are constants and

si =
√√√√ Ni0

Mi0

(
ε2 + k2 + Mi0

Ni0
b2 − ω2

β2
hi

)
.

Thus the time harmonic solution of Eq. (4) may be written as

Vi = 1√
Mi0 p(x)ri (z)

[
Ae−si z + Besi z

]
eι(ωt−kx),

k = ω sin θ/βh is the horizontal component of the wave
number given by Gupta (1965), βh = √

N0/ρ0 and θ is the
angle between the normal to the wavefront and the positive
direction of z-axis.

Equations in (8) may be written as

d

dp

{
1

p

(
dp

dx

)2
}

= 4ε2,
d

dri

{
1

ri

(
dri
dz

)2
}

= 4b2
i .

(11)

On integrating these equations twice, we obtain

x + ε2 = ±1

2

∫ (
ε2 p2 + ε1 p

)−1/2
dp,

z + ε4 = ±1

2

∫ (
b2
i r

2
i + ε3ri

)−1/2
dri ,

(12)

where ε1, ε2, ε3 and ε4 are constants of integration. In
particular, when ε1 = ε2 = 0, we can obtain the form of
p(x) = exp(±2εx) and when ε3 = ε4 = 0, we obtain
the form of ri (z) = exp(±2bi z). In case, when ε = 0 and
ε1ε

2
2 = 1, we obtain p(x) = (1 + x/ε2)

2 and when bi = 0,
ε3ε

2
4 = 1, we obtain ri (z) = (1+z/ε3)

2. If ε1 = ε2 = 0, then
we obtain p(x) = sinh2(x+ε2)ε, and when ε3 = b2

i = 0, we
obtain ri (z) = sinh2(z + ε4)bi (cf. Singh et al., 1976). Thus
we see that the solutions of equations in (8) are of the form

exp (ax), (1 + ax)2 or sinh2 ax . In the present analysis, we
shall take for convenience, the exponential form of p(x) and
ri (x).

Considering an incident SH-wave of unit amplitude, the
displacement in the medium H1 due to both incident and
reflected SH-wave, is given by

V inc+re f l= 1√
M10 p(x)r1(z)

{
e−qz + Beqz

}
e
ιω

(
t− x sin γ

βh1

)
,

(13)

where B is the amplitude of reflected SH-wave (this reflected
wave is called regularly reflected wave), γ is the angle of
incidence and

q =
√√√√ N10

M10

(
ε2 + k2 + M10

N10
b2

1 − ω2

β2
h1

)
. (14)

Similarly, the displacement in medium H2 is given by

V ref r = 1√
M20 p(x)r2(z)

D e−uz e
ιω

(
t− x sin δ

βh2

)
, (15)

where D is the amplitude of refracted SH-wave (this re-
fracted wave is called regularly refracted wave) and

u =
√√√√ N20

M20

(
ε2 + k2 + M20

N20
b2

2 − ω2

β2
h2

)
, (16)

δ is the angle between the refracted wave and the z-axis,
connected with the incidence angle γ by the Snell’s law

sin γ

βh1

= sin δ

βh2

= k

ω
. (17)

Due to the corrugated interface, the nth order spectrum for
the scattered reflected waves (these waves are called irregu-
larly reflected waves) is given by (the arguments of p and ri
have been dropped)

V ir−re f l = 1√
M10 p r1

[
Bne

qnz e
ιω

(
t− x sin γn

βh1

)

+ B ′
n e

q ′
n z e

ιω

(
t− x sin γ ′

n
βh1

)]
,

(18)

where Bn and B ′
n are constants and

qn =
√

N10
M10

(
−ω2 cos2 γn

β2
h1

+ ε2 + M10
N10

b2
1

)
, (19)

q ′
n =

√
N10
M10

(
−ω2 cos2 γ ′

n

β2
h1

+ ε2 + M10
N10

b2
1

)
, (20)

γn and γ ′
n are the angles of the irregularly reflected waves

with the z-axis.
Similarly, the nth order spectrum for the scattered re-

fracted waves (these waves are called irregularly refracted
waves) is given by

V ir−re f r = 1√
M20 p r2

[
Dne

−unz e
ιω

(
t− x sin δn

βh2

)

+ D′
n e

−u′
n z e

ιω

(
t− x sin δ′n

βh2

)]
,

(21)
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where Dn and D′
n are constants and

un =
√√√√ N20

M20

(
−ω2 cos2 δn

β2
h2

+ ε2 + M20

N20
b2

2

)
, (22)

u′
n =

√√√√ N20

M20

(
−ω2 cos2 δ′

n

β2
h2

+ ε2 + M20

N20
b2

2

)
, (23)

δn and δ′
n are the angles of the irregularly refracted waves

with the z-axis. The angles γn, γ
′
n, δn and δ′

n are given by the
following Spectrum theorem (Asano, 1960)

sin γn − sin γ = nk∗βh1

ω
, sin γ ′

n − sin γ = −nk∗βh1

ω
,

sin δn − sin δ = nk∗βh2

ω
, sin δ′

n − sin δ = −nk∗βh2

ω
.

(24)

Thus the total displacement V1 in the medium H1 is the sum
of regularly reflected waves, irregularly reflected waves and
incident wave:

V1 = 1√
M10 pr1

[
e−qz + Beqz +

∞∑
n=1

Bne
qnze−ιnk∗x

+
∞∑
n=1

B ′
n e

q ′
n zeιnk∗x

]
e
ιω

(
t− x sin γ

βh1

)
.

(25)

Similarly, the total displacement V2 in the medium H2 is the
sum of regularly refracted waves and irregularly refracted
waves:

V2 = 1√
M20 pr2

[
D e−uz +

∞∑
n=1

Dne
−unz e−ιnk∗x

+
∞∑
n=1

D′
ne

−u′
n zeιnk∗x

]
e
ιω

(
t− x sin δ

βh2

)
,

(26)

The constants B, D, Bn, Dn, B ′
n and D′

n can be determined
by satisfying the boundary conditions at the interface. In
writing Eqs. (25) and (26), we have used Spectrum theorem.

3. Boundary Conditions
The boundary conditions to be satisfied at the corrugated

interface z = ζ are the continuity of displacement and trac-
tion, that is

(I) V1 = V2,

(II) M1
∂V1

∂ν
= M2

∂V2

∂ν
,

where ν denotes the normal to the interface. Following
Sokolnikoff (1956) and using relation (5), the boundary con-
dition (II) can be written as

M10 pr1(z)

[
∂V1

∂z
− ∂V1

∂x
ζ ′

]
1√

1 + ζ ′2

= M20 pr2(z)

[
∂V2

∂z
− ∂V2

∂x
ζ ′

]
1√

1 + ζ ′2 ,

(27)

where ζ ′ is the derivative of ζ with respect to x . Insertion of
Eqs. (25) and (26) in (I) and (II), and the use of the following
substitutions

q = ιQ, u = ιU,

qn = ιQn, un = ιUn, q ′
n = ιQ′

n, u′
n = ιU ′

n,

(28)

where

Q =
√√√√ N10

M10

(
ω2

β2
h1

− ε2 − k2 − M10

N10
b2

1

)
,

U =
√√√√ N20

M20

(
ω2

β2
h2

− ε2 − k2 − M20

N20
b2

2

)
,

Qn =
√√√√ N10

M10

(
ω2 cos2 γn

β2
h1

− ε2 − M10

N10
b2

1

)
,

Q ′
n =

√√√√ N10

M10

(
ω2 cos2 γ ′

n

β2
h1

− ε2 − M10

N10
b2

1

)
,

Un =
√√√√ N20

M20

(
ω2 cos2 δn

β2
h2

− ε2 − M20

N20
b2

2

)
,

U ′
n =

√√√√ N20

M20

(
ω2 cos2 δ′

n

β2
h2

− ε2 − M20

N20
b2

2

)
,

lead to:

√
r2

[
e−ιQζ + B eιQζ +

∞∑
n=1

Bn e
ιQnζ e−ιnk∗x

+
∞∑
n=1

B ′
n e

ιQ′
nζ eιnk∗x

]

= √
mr1

[
D e−ιUζ +

∞∑
n=1

Dn e
−ιUnζ e−ιnk∗x

+
∞∑
n=1

D′
n e

−ιU ′
nζ eιnk∗x

]
,

(29)

and

√
mr1

[{
−Q + ιr ′

1

2r1
+ (

ω sin γ

βh1

− ιp′

2p
)ζ ′

}
e−ιQζ

+ B

{
Q + ιr ′

1

2r1
+

(
ω sin γ

βh1

− ιp′

2p

)
ζ ′

}
eιQζ

+
∞∑
n=1

Bne
−ιnk∗x

{
Qn + ιr ′

1

r1

+
(

ω sin γ

βh1

+ nk∗ − ιp′

2p

)
ζ ′

}
eιQnζ

+
∞∑
n=1

B ′
ne

ιnk∗x
{
Q′

n + ιr ′
1

r1

+
(

ω sin γ

βh1

− nk∗ − ιp′

2p

)
ζ ′

}
eιnk∗x

]

= √
r2

[
D

{
−U + ιr ′

2

2r2
+

(
ω sin δ

βh2

− ιp′

2p

)
ζ ′

}
e−ιUζ

+
∞∑
n=1

Dne
−ιnk∗x

{
−Un + ιr ′

2

2r2

+
(

ω sin δ

βh2

+ nk∗ − ιp′

2p

)
ζ ′

}
e−ιUnζ

+
∞∑
n=1

D′
n e

ιnk∗x
{
−U ′

n + ιr ′
2

r2

+
(

ω sin δ

βh2

− nk∗ − ιp′

2p

)
ζ ′

}
e−ιU ′

nζ

]
,

(30)



S. K. TOMAR AND J. KAUR: R/T OF SH-WAVES AT CORRUGATED INTERFACE 535

where m = M10/M20; r ′
i and p′ denote the derivatives of ri

and p with respect to z and x , respectively. From Eq. (13),
with B = 0 (i.e. the incident wave), Eqs. (15), (26) and
(17), the Snell’s law; it is apparent that D, Dn and D′

n are
connected with the transmission coefficients T, Tn and T ′

n
through the relation (cf. Singh et al., 1978)

{T, Tn, T
′
n}

= {De−uζ , Dne
−unζ , D′

ne
−u′

nζ }eqζ

√
M10r1(ζ )

M20r2(ζ )
.

(31)

4. Solution of the First Order Approximation
For working out approximate solutions, we assume that

the corrugation of the surface z = ζ is so small that higher
powers of ζ may be neglected, so we have

e−ιQζ = 1 − ιQζ. (32)

We shall take

{ri (z), p(x)} = {
edi z, ed3x

}
, i = 1, 2. (33)

where d1, d2 and d3 are constants. Substituting these into
Eqs. (25) and (26), the first order approximation for B and
D can be obtained by collecting the terms independent of x
and ζ , as follows

(1 + B) = √
mD, (34)

(
−Q + ιd1

2

)
+ B

(
ιd1

2
+ Q

)
= D√

m

(
−U + ιd2

2

)
.

(35)

These formulae give the values of B and D at the plane inter-
face. B is known as reflection coefficient at the plane inter-
face while D is connected to the transmission coefficient T
at the plane interface, by the relation (31). Solving Eqs. (34)
and (35), we obtain

B = 2(−U + mQ) + ι (d2 − md1)

2(U + mQ) − ι (d2 − md1)
, (36)

D = 4
√
m Q

2(U + mQ) − ι (d2 − md1)
. (37)

In order to find the transmission coefficients T, we plug the
values of ri and D from (33) and (37) into (31), we obtain

T = 4mQ e−(u−q)ζ e
√

(d1−d2)ζ

2(U + mQ) − ι (d2 − md1)
.

Approximating the exponential terms e−(u−q)ζ and
e
√

(d1−d2)ζ , similar to (32) and collecting the constant
term (i.e. independent of x and ζ ), the transmission
coefficient T at the plane interface is obtained as

T = 4mQ

2(U + mQ) − ι (d2 − md1)
. (38)

Keeping in view the geometry of the problem, we see that
expressions of B and D in (36) and (37) are same as obtained
by Singh et al. (1978) for the relevant problem.

Next, for the solution of first order approximation for Bn

and Dn, we collect the coefficients of e−ιnk∗x and obtaining

Bn − √
mDn =

[√
m

(
d1

2
− ιU

)
D

− d2

2
(1 + B) + ιQ(1 − B)

]
ζ−n ,

(39)

(
ιQn − d1

2

)
Bn + 1√

m

(
d2

2
+ ιUn

)
Dn

=
[{

Q2 + d2
1

4
+ ιnk∗

(
d3

2
+ ιω sin γ

βh1

)
} × (1 + B)

− 1√
m

{
U 2 + d2

2

4
+ ιnk∗

(
d3

2
+ ιω sin δ

βh2

)}
D

]
ζ−n .

(40)

Similarly, equating the coefficients of eιnk∗x , we obtain the
first order approximation for B ′

n and D′
n as follows

B ′
n − √

mD′
n =

[√
m

(
d1

2
− ιU

)
D

+ ιQ(1 − B) − d2

2
(1 + B)

]
ζn,

(41)

B ′
n

(
ιQ′

n − d1

2

)
+ 1√

m

(
d2

2
+ ιU ′

n

)
D′

n

=
[{

Q2 + d2
1

4
− ιnk∗

(
d3

2
+ ιω sin γ

βh1

)
× (1 + B)

− 1√
m

{
U 2 + d2

2

4
− ιnk∗

(
d3

2
+ ιω sin δ

βh2

)}
D

]
ζn .

(42)

The Eqs. (39)–(42) give the values of Bn, Dn, B ′
n and D′

n as
follows

Bn = �Bn

�n
, Dn = �Dn

�n
,

B ′
n = �B ′

n

�′
n

, D′
n = �D′

n

�′
n

,

(43)

where

�Bn = ιζ−n

[
(1 + B)

{
m

(
nk∗ω sin γ

βh1

− d2
1

4
− Q2

)
+ d2

2

4

}
+ (1 − B)QUn + D

√
m

·
(

−UUn − d1d2

4
− nk∗ω sin γ

βh1

+ d2
2

4
+U 2

)

+ ι

{
(1 + B)

(
Und2

2
− md3nk∗

2

)

− (1 − B)
Qd2

2

+ D
√
m

(
Ud2

2
− Und1

2
+ nk∗d3

2

)}]
,
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�Dn = ιζ−n

[
(1 + B)

√
m

(
nk∗ω sin γ

βh1

− d2
1

4

− Q2 + d1d2

4

)
− √

m(1 − B)QQn

+ D

(
U 2 + d2

2

4

− nk∗ω sin γ

βh1

− md2
1

4
+ mUQn

)

+ ι

{
(1 + B)

√
m

(
−Qnd2

2
− d3nk∗

2

)

− √
m(1 − B)

Qd1

2

+ D

(
nk∗d3

2
+ mUd1

2
+ mQnd1

2

)}]
,

�B ′
n
= ιζn

[
(1 + B)

{
−m

(
nk∗ω sin γ

βh1

+ d2
1

4
+ Q2

)
+ d2

2

4

}
+ (1 − B)QU ′

n

− √
mD(UU ′

n + d1d2

4

− nk∗ω sin γ

βh1

− d2
2

4
−U 2

)

+ ι

{
(1 + B)

(
U ′

nd2

2
+ md3nk∗

2

)

− (1 − B)
Qd2

2

− √
mD

(
U ′

nd1

2
− Ud2

2
+ nk∗d3

2

)}]
,

�D′
n
= ιζn

[
−(1 + B)

√
m

(
nk∗ω sin γ

βh1

+ d2
1

4
+ Q2 − d1d2

4

)
− √

m(1 − B)QQ′
n

+ D

(
U 2 + d2

2

4
+ nk∗ω sin γ

βh1

− md2
1

4
+ mUQ′

n

)

+ ι

{
(1 + B)

√
m

(
d3nk∗

2
− Q′

nd2

2

)

− √
m(1 − B)

Qd1

2

− D

(
nk∗d3
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2
− mQ′

nd1

2

)}]
,

�n = (Un + mQn) + ι

2
(d1m − d2) ,

�′
n = (U ′

n + mQ′
n) + ι

2
(d1m − d2).

The values of B and D appearing in the above expressions
are given by (36) and (37). Here Bn and B ′

n are reflection co-
efficients for the first order approximation of the corrugation,
while the transmission coefficients for the first order approx-
imation of the corrugation, the Tn and T ′

n can be obtained
from relation (31), on the similar way as T was obtained ear-
lier, as

Tn = √
m Dn, T ′

n = √
m D′

n. (44)

4.1 Special case
If we consider ζn = ζ−n = 0, (n = 1); ζ1 = ζ−1 = c/2

then the boundary surface is given by z = c cos k∗x , where
c is the amplitude of the corrugation. From Eq. (43), we
obtain the following formulae of B1, D1, B ′

1 and D′
1 for the

first order approximation of the corrugation as

B1 = �B1

�1
, D1 = �D1

�1
,

B ′
1 = �B ′

1

�′
1

, D′
1 = �D′

1

�′
1

,

(45)

where the values of �B1 , �D1 , �B ′
1
, �D′

1
, �1 and �′

1 are
given in Appendix A. The values of the transmission coeffi-
cients T1 and T ′

1, in the present case, are given by

T1 = √
m D1, T ′

1 = √
m D′

1.

4.2 Particular cases
(a) When lateral and vertical heterogeneity of the media is

removed then the medium H1 and H2 becomes transversely
isotropic. Thus in this case, plugging p(x) = r1(x) =
r2(x) = 1 into Eq. (8), we obtain ε = b1 = b2 = 0
and hence the values of Q,U, Qn,Un, Q′

n and U ′
n given in

Eq. (28) through the Eqs. (14), (16), (19), (20), (22) and (23)
reduce to

Q = ω

βh1

√
N10

M10
cos γ,

U = ω

βh1

√√√√ N20

M20

(
β2
h1

β2
h2

− sin2 γ

)
= R,

Qn = ω

βh1

√
N10

M10
cos γn,

Un = ω

βh1

√√√√ N20

M20

(
β2
h1

β2
h2

− sin2 γn

)
= Rn,

Q′
n = ω

βh1

√
N10

M10
cos γ ′

n,

U ′
n = ω

βh1

√√√√ N20

M20

(
β2
h1

β2
h2

− sin2 γ ′
n

)
= R′

n,
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Fig. 2. Variation of the Reflection coefficient at the plane interface
(B) with the angle of incidence γ : when d2c = 0 = d3c and
d1c = 0.0, 1.0, 2.0, 3.0.

Fig. 3. Variation of the Transmission coefficient at the plane inter-
face (T) with the angle of incidence γ : when d2c = 0 = d3c and
d1c = 0.0, 1.0, 2.0, 3.0.

With the help of these values, the coefficients given by
Eqs. (36) and (37) for the plane interface, become

B =
M10
M20

√
N10
M10

cos γ −
√

N20
M20

(
β2
h1

β2
h2

− sin2 γ

)

M10
M20

√
N10
M10

cos γ +
√

N20
M20

(
β2
h1

β2
h2

− sin2 γ

) , (46)

and

D =
2
√

N10
M10

√
M10
M20

cos γ

M10
M20

√
N10
M10

cos γ +
√

N20
M20

(
β2
h1

β2
h2

− sin2 γ

) , (47)

Fig. 4. Variation of the Reflection coefficient for the first order ap-
proximation of corrugation (B1) with the angle of incidence γ : when
d2c = 0 = d3c and d1c = 0.0, 1.0, 2.0, 3.0.

Fig. 5. Variation of the Transmission coefficient for the first order ap-
proximation of corrugation (T1) with the angle of incidence γ : when
d2c = 0 = d3c and d1c = 0.0, 1.0, 2.0, 3.0.

and B1, D1, B ′
1 and D′

1 are given in Appendix B. One can
verify that using the relations, explained earlier

{T, T1, T ′
1} = √

m {D, D1, D′
1},

the reflection and transmission coefficients obtained in this
case, coincide with those of Tomar and Saini (1997).

(b) When transverse isotropy of the media is removed, we
shall be left with heterogeneity property in both the media.
In this case, putting N10 = M10 and N20 = M20, in Eq. (28)
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Fig. 6. Variation of the Reflection coefficient for the first order ap-
proximation of corrugation (B ′

1) with the angle of incidence γ : when
d2c = 0 = d3c and d1c = 0.0, 1.0, 2.0, 3.0.

Fig. 7. Variation of the Transmission coefficient for the first order ap-
proximation of corrugation (T ′

1) with the angle of incidence γ : when
d2c = 0 = d3c and d1c = 0.0, 1.0, 2.0, 3.0.

with the Eqs. (14), (16), (19), (20), (22) and (23), we have

Q = −ι

(
ε2 + b2

1 − ω2 cos2 γ

β2
h1

)1/2

,

U = −ι

(
ε2 + b2

2 − ω2 cos2 δ

β2
h2

)1/2

,

Qn = −ι

(
ε2 + b2

1 − ω2 cos2 γn

β2
h1

)1/2

,

Un = −ι

(
ε2 + b2

2 − ω2

β2
h2

cos2 δn

)1/2

,

Q′
n = −ι

(
ε2 + b2

1 − ω2 cos2 γ ′
n

β2
h1

)1/2

,

U ′
n = −ι

(
ε2 + b2

2 − ω2 cos2 δ′
n

β2
h2

)1/2

.

Fig. 8. Variations of the Reflection coefficient at the plane interface (B)
with γ : when d3c = 0.0, d1c = 1.0 and d2c = 0.0, 3.0, 5.0, 6.0.

Fig. 9. Variations of the Transmission coefficient at the plane interface (T)
with γ : when d3c = 0.0, d1c = 1.0 and d2c = 0.0, 3.0, 5.0, 6.0.

Using these modified values, the reflection and transmission
coefficients for first order approximation can be obtained
with the help of Eq. (43) and making changes accordingly
in the Appendix-I. Also, it can be verified that in the present
case, the boundary conditions (39)–(42) matches with those
of Gupta (1987) for the corresponding problem.

(c) When only lateral heterogeneity of both media is
removed, we are left with vertically heterogeneous and
transversely isotropic media. In this case, p(x) = 1 so
that ε = 0. Putting these values in the Eq. (28) with
Eqs. (14), (16), (19), (20), (22), (23), we get

Q = −ι

√√√√ N10

M10

(
M10

N10
b2

1 − ω2

β2
h1

cos2 γ

)
,

U = ι

√√√√ N20

M20

(
M20

N20
b2

2 − ω2

β2
h2

cos2 δ

)
,
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Fig. 10. Variations of the Reflection coefficient for the first order approxi-
mation of the corrugation (B1) with γ : when d3c = 0.0, d1c = 1.0 and
d2c = 0.0, 3.0, 5.0, 6.0.

Fig. 11. Variations of the Transmission coefficient for the first order ap-
proximation of the corrugation (T1) with γ : when d3c = 0.0, d1c = 1.0
and d2c = 0.0, 3.0, 5.0, 6.0.

Qn = −ι

√√√√ N10

M10

(
M10

N10
b2

1 − ω2

β2
h1

cos2 γn

)
,

Un = ι

√√√√ N20

M20

(
M20

N20
b2

2 − ω2

β2
h2

cos2 δn

)
,

Q′
n = −ι

√√√√ N10

M10

(
M10

N10
b2

1 − ω2

β2
h1

cos2 γ ′
n

)
,

U ′
n = ι

√√√√ N20

M20

(
M20

N20
b2

2 − ω2

β2
h2

cos2 δ′
n

)
.

With these modified values, the reflection and transmis-
sion coefficients for first order approximation are given by
Eq. (43) with (44).

(d) When vertical heterogeneity is removed, we shall have
laterally heterogeneous and transversely isotropic media. In

Fig. 12. Variations of the Reflection coefficient for the first order approxi-
mation of the corrugation (B ′

1) with γ : when d3c = 0.0, d1c = 1.0 and
d2c = 0.0, 3.0, 5.0, 6.0.

Fig. 13. Variations of the Transmission coefficient for the first order ap-
proximation of the corrugation (T ′

1) with γ : when d3c = 0.0, d1c = 1.0
and d2c = 0.0, 3.0, 5.0, 6.0.

that case, r1(z) = r2(z) = 1 so that b1 = b2 = 0 and hence
the values of Q, U, Qn, Un, Q′

n and U ′
n given in Eq. (28)

reduce to

Q = ι

√√√√ N10

M10

(
ε2 − ω2

β2
h1

cos2 γ

)
,

U = ι

√√√√ N10

M10

(
ε2 − ω2

β2
h2

cos2 δ

)
,

Qn = ι

√√√√ N10

M10

(
ε2 − ω2

β2
h1

cos2 γn

)
,

Un = ι

√√√√ N10

M10

(
ε2 − ω2

β2
h2

cos2 δn

)
,
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Fig. 14. Variations of the Reflection coefficient at the plane in-
terface (B) with γ : when (d1c, d2c, d3c) = (1.0, 0.0, 0.0);
(1.0, 2.0, 0.0); (1.0, 2.0, 1.0); (1.0, 2.0, 3.0).

Fig. 15. Variations of the Transmission coefficient at the plane in-
terface (T) with γ : when (d1c, d2c, d3c) = (1.0, 0.0, 0.0);
(1.0, 2.0, 0.0); (1.0, 2.0, 1.0); (1.0, 2.0, 3.0).

Q′
n = ι

√√√√ N10

M10

(
ε2 − ω2

β2
h1

cos2 γ ′
n

)
,

U ′
n = ι

√√√√ N10

M10

(
ε2 − ω2

β2
h2

cos2 δ′
n

)
.

With these modified values, the reflection and transmission
coefficients for first order approximation are given by the
Eqs. (43) with (44).

(e)When both the heterogeneity and the transverse iso-
tropy of the medium are removed, the medium H1 and H2

becomes homogeneous and isotropic elastic half spaces. In
this case, by plugging p(x) = r1(x) = r2(x) = 1, N10 =
M10 and N20 = M20 into Eq. (8), we get ε = 0 and b1 =
b2 = 0. And the values of Q, U, Qn, Un, Q′

n and U ′
n ,

Fig. 16. Variations of Reflection coefficient for the first order approximation
of the corrugation (B1) with γ : when (d1c, d2c, d3c) = (1.0, 0.0, 0.0);
(1.0, 2.0, 0.0); (1.0, 2.0, 1.0); (1.0, 2.0, 3.0).

Fig. 17. Variations of the Transmission coefficient for the
first order approximation of the corrugation (T1) with γ : when
(d1c, d2c, d3c) = (1.0, 0.0, 0.0); (1.0, 2.0, 0.0); (1.0, 2.0, 1.0);
(1.0, 2.0, 3.0).

given in the Eq. (28), reduce to

Q = ω

βh1

cos γ, U = ω

βh1

(
β2
h1

β2
h2

− sin2 γ

)1/2

,

Qn = ω

βh1

cos γn, Un = ω

βh1

(
β2
h1

β2
h2

− sin2 γn

)1/2

,

Q′
n = ω

βh1

cos γ ′
n, U ′

n = ω

βh1

(
β2
h1

β2
h2

− sin2 γ ′
n

)1/2

.

The values of the coefficients given by Eqs. (36) and (37) for
the plane interface become

B = −U + mQ

U + mQ
, D = 2

√
mQ

U + mQ
.
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Fig. 18. Variations of the Reflection coefficient for the first
order approximation of the corrugation (B ′

1) with γ : when
(d1c, d2c, d3c) = (1.0, 0.0, 0.0); (1.0, 2.0, 0.0); (1.0, 2.0, 1.0);
(1.0, 2.0, 3.0).

Fig. 19. Variations of the Transmission coefficient for the
first order approximation of the corrugation (T ′

1) with γ : when
(d1c, d2c, d3c) = (1.0, 0.0, 0.0); (1.0, 2.0, 0.0); (1.0, 2.0, 1.0);
(1.0, 2.0, 3.0).

The expressions of B1, D1, B ′
1 and D′

1 in this case become

B1 = �

[
m(1 + B)

(
k∗ω sin γ

βh1

− Q2

)
+ (1 − B)QU1

+ D
√
m

(
−UU1 +U 2 − k∗ω sin γ )

βh1

)]
,

D1 = �

[√
m(1 + B)

(
k∗ω sin γ

βh1

− Q2

)

− D

(
k∗ω sin γ

βh1

−U 2 − mUQ1

)

Fig. 20. Variations of Reflection and Transmission coefficients for the first
order approximation of the corrugation (B1) and (T1) with k∗c: when
d1c = 1.0, d2c = 3.0, d3c = 5.0.

+ √
mQQ1(1 − B)

]
,

B ′
1 = �

[
− m(1 + B)

(
k∗ω sin γ

βh1

+ Q2

)
+ (1 − B)QU ′

1

− D
√
m

(
UU ′

1 −U 2 − k∗ω sin γ )

βh1

)]
,

D′
1 = �

[
− √

m(1 + B)

(
k∗ω sin γ

βh1

+ Q2

)

+ D

(
k∗ω sin γ

βh1

+U 2 + mUQ′
1

)

− √
mQQ′

1(1 − B)

]
,

where

� = ιc

2(U1 + mQ1)
.

These formulae give the reflection and refraction coefficients
for the first order approximation of the corrugated interface
between two uniform elastic half spaces. It can be verified
that by removing the heterogeneity and anisotropy as ex-
plained above, the boundary conditions (29) and (30) match
with those of Asano (1960).

5. Numerical Results and Discussion
In order to study the effect of inhomogeneity and aniso-

tropy numerically on reflection and transmission coeffi-
cients, when a plane SH-wave become incident obliquely
at a corrugated interface between two half spaces H1 and
H2, we have computed the modulus values of these coef-
ficients for the model considered in section - Special case.
For this purpose, we used the values of relevant parameters
given as: For medium H1: N10 = 38.5 ×1011dyne/cm2, M10

= 57.0 ×1011dyne/cm2, ρ1 = 2.2g/cm3; For medium H2:
N20 = 56.8 ×1011dyne/cm2, M20 = 75.0 ×1011dyne/cm2,
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Fig. 21. Variations of the Reflection and Transmission coefficients for the
first order approximation of the corrugation (B ′

1) and (T ′
1) with k∗c: when

d1c = 1.0, d2c = 3.0, d3c = 5.0 and γ = 450.

ρ2 = 5.2g/cm3; and ωc/βh1 = 5.0, c being the ampli-
tude of corrugation and k∗c = 0.00125, wherever not men-
tioned. The non-dimensional quantities d1c and d2c repre-
sent the vertical heterogeneity factors in H1 and H2 respec-
tively, while d3c is lateral heterogeneity factor in both media.

(i)Effect of the vertical heterogeneity: Figures 2 and
3 show the variations of reflection and transmission coeffi-
cients with respect to angle of incidence at a plane interface
between H1 and H2. Here we have taken variations in ver-
tical heterogeneity in H1 only, and H2 a homogeneous one,
that is, d2c = d3c = 0 and d1c = 0.0, 1.0, 2.0, 3.0. The
case d1c = d2c = d3c = 0 represent that both the media are
homogeneous. We observe from Figs. 2 and 3 that there is
a significant effect of the vertical heterogeneity d1c, on the
reflection and transmission coefficients. It is found that the
reflection coefficient B increases with d1c, while the trans-
mission coefficient T decreases with d1c.

Figures 4–7 depict the variations of reflection and trans-
mission coefficients with respect to angle of incidence for the
first- order approximation of the corrugated interface. The
effect of d1c on these coefficients is clearly noticed. It is
found that the values of reflection coefficients decreases with
d1c while in the transmission coefficient, initially there is a
little increase with d1c up to certain angle of incidence, be-
yond which it decreases with d1c significantly. However, the
critical angles are different for different non-zero values of
d1c.

Figures 8–13 show the effect of vertical heterogeneity in
H1 and H2 (no lateral heterogeneity) on B, T, B1, T1, B ′

1
and T ′

1 respectively. The value of the vertical heterogene-
ity in medium H1 is taken d1c = 1.0, a constant while the
vertically heterogeneity d2c, in medium H2 varies through
values 0.0, 3.0, 5.0 and 6.0. From Figs. 8 and 9, we note
that the values of B and T increase with d2c. The effect
of d2c is maximum at γ = 0◦ and minimum at γ = 82◦,
beyond which no reflection or transmission coefficient ap-
pear. In Fig. 10, the variation of reflection coefficient B1 is

Fig. 22. Variations of the Reflection and Transmission coefficients for
first order approximation of the corrugation (B1), (T1), (B ′

1) and (T ′
1)

with frequency (ωc/βh1 ): when d1c = 1.0, d2c = 3.0, d3c = 5.0 and
γ = 450.

different for different value of γ and d2c, while in Fig. 11,
we note that the transmission coefficient T1 decreases with
d2c. From Fig. 12, we note that when d2c = 0.0, the coef-
ficient B ′

1 decreases slowly with γ , but as d2c takes values
3.0, 5.0 and 6.0 its value decreases up to certain angle and
then start increases rapidly. In Fig. 13, we note that when
d2c = 0.0, 3.0, 5.0 and 6.0, the coefficient T ′

1 increases
slowly up to certain value of γ and then decreases rapidly
with γ .

Figures 14 and 15 show the combined effect of lateral and
vertical heterogeneities on the reflection and transmission
coefficients versus angle of incidence, at the plane interface
between H1 and H2. We can notice from these figures that
for different values of d1c, d2c and d3c, the reflection coeffi-
cient B takes minimumum value at γ = 0◦ which increases
further with γ , while transmission coefficient T exhibit re-
verse behaviour.

Figures 16–19 show the effect of d1c, d2c and d3c on
B1, T1, B ′

1 and T ′
1. We notice from these figures that the

values of the coefficients B1 and B ′
1 takes maximum value

at γ = 0◦ and then decreases with increase of γ , while the
values of the coefficients T1 and T ′

1 behaves alike. The values
of later coefficients first increase slightly from the values
attained at γ = 0◦, then achieve maximum at certain angle
of incidence and then decrease sharply. Also, the effect of
d3c is found more dominantant beyond γ = 50◦ angle of
incidence.
(ii)Effect of corrugation: Firstly, it is to be noted that the

coefficients B and T do not depend on the corrugation pa-
rameter k∗c, as they are the reflection and transmission coef-
ficients respectively for the plane interface. To study the ef-
fect of k∗c on B1, T1, B ′

1 and T ′
1, we have computed them for

very small values of k∗c. The reason is, because this method
is not applicable for large values of corrugation. Here we
have found that these coefficients are strongly effected by the
corrugation k∗c. Figure 20 shows the variation of B1 and T1
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Fig. 23. Variations of the Reflection and Transmission
coefficients at the plane interface (B) and (T) with γ :
when N10 = 38.5 = M10, N20 = 56.8 = M20 and
d1c = 1.0, (d2c, d3c) = (0, 0); (2.0, 5.0).

versus corrugation (k∗c) for d1c = 1.0, d2c = 3.0, d3c =
5.0, ωc/βh1 = 5.0 and γ = 45◦. We notice that the val-
ues of B1 and T1 increase monotonically with the increase
of k∗c. Figure 21 shows the variation of B ′

1 and T ′
1 versus

k∗c with same values of parameters as taken for Fig. 20. We
notice from this figure that the values of B ′

1 and T ′
1 decrease

with k∗c. Also, we observe from these figures that the values
of B1 and T1 are more than those of B ′

1 and T ′
1 as k∗c takes

values through 0.0 to 0.8.
(iii) Effect of frequency: To study the effect of frequency

of incident wave on reflection and transmission coefficients
for both plane and corrugated interfaces, we fix the value of
parameters as d1c = 1.0, d2c = 3.0, d3c = 5.0 and γ =
45◦. Figure 22 shows that, these coefficients are influenced
by the frequency (ωc/βh1) of the incident SH-wave. The
values of relection and transmission coefficients B and T
decrease and increase respectively with ωc/βh1 in the range
1.0 < ωc/βh1 < 1.6 and thereafter they become constant
for large values of ωc/βh1 . The coefficients for first order
approximation of corrugation B1, B ′

1, T1 and T ′
1 increase

with (ωc/βh1).
(iv) Effect of heterogeneity and anisotropy: Figures 23

and 24 show the variation of B, T and B1, T1, B ′
1, T ′

1 with γ

respectively, when both media are free from anisotropy and
lateral heterogeneity, while vertical heterogeneity is present
in H1 only. From Fig. 23, we note that when anisotropy of
both media are removed and the vertical heterogeneity in
H1 is fixed, the values of the reflection coefficient B takes
minimum value at γ = 0◦ and increases with γ , while the
values of the transmission coefficient T possesses reverse
behaviour. But, when the vertical heterogeneity is d2c = 2.0
and lateral heterogeneity is d3c = 5.0, the values of the
coefficient B are greater and the values of T are less in
comarision to the case of when d2c = d3c = 0.0. This shows
that the lateral and vertical heterogeneities have significant
effect on the reflection and transmission coefficients at plane

Fig. 24. Variations of the Reflection and Transmission coefficients for the
first order approximation of the corrugation (B1), (T1), (B ′

1) and (T ′
1)

with γ : when N10 = 38.5 = M10, N20 = 56.8 = M20 and d1c = 1.0,
(d2c, d3c) = (0, 0) : (2.0, 5.0).

Fig. 25. Variations of the Reflection and Transmission coefficients for the
first order approximation of the corrugation (B1), (T1), (B ′

1) and (T ′
1)

with γ : when N10 = 38.5 = M10, N20 = 56.8 = M20 and d1c = 1.0,
(d2c, d3c) = (0, 0); (2.0, 5.0).

interface.
Figure 24 shows the variation of reflection and transmis-

sion coefficients for first order approximation of corruga-
tion with γ , when anisotropy and lateral heterogeniety is re-
moved and the vertical heterogeneity in H1 and H2 are taken
as d1c = 1.0 and d2c = 0.0 respectively. We notice that
the values of coefficient T1 are less than the values of coef-
ficient B1. The same is true when the values d2c = 2.0 and
d3c = 5.0 are introduced. A similar behaviour of coefficients
B ′

1 and T ′
1 is observed from Fig. 25.

Figures 26–31, show the variation of B, T, B1, T1, B ′
1 and

T ′
1 with γ for different values of the anisotropy factor in both

media. These values are taken as N10/M10 = 1.0, 0.5, 0.7
in H1 and N20/M20 = 1.0, 0.8, 0.9 in H2, while the hetero-
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Fig. 26. Variations of the Reflection coefficient at the plane interface (B)
with γ : for (N10/M10, N20/M20) = (1.0, 1.0); (0.5, 0.8); (0.7, 0.9).

Fig. 27. Variations of the Transmission coefficient at the plane interface (T)
with γ : for (N10/M10, N20/M20) = (1.0, 1.0); (0.5, 0.8); (0.7, 0.9).

geneities are taken as d1c = 1.0, d2c = 2.0, d3c = 5.0. The
case N10/M10 = N20/M20 = 1.0 correspond to isotropy of
both the media. We notice from these figures that each co-
efficient, whether on the plane interface or on the corrugated
interface, is significantly effected by the anisotropy of the
media. The reflection and transmission coefficients for plane
interface possess reverse behaviour while other coefficients
behave alike.

6. Conclusions
Using the Rayleigh’s method, the formulae for reflection

and transmission coefficients due to incident SH-wave at
a corrugated interface between two laterally and vertically
heterogeneous transversely isotropic elastic solid half spaces
have been obtained in closed form. We conclude that

(1) Reflection and transmission coefficients for the first
order approximation of the corrugation given by (43) with

Fig. 28. Variations of the Reflection coefficient for the first
order approximation of the corrugation (B1) with γ : when
(N10/M10, N20/M20) = (1.0, 1.0); (0.5, 0.8); (0.7, 0.9).

Fig. 29. Variations of the Transmission coefficient for the
first order approximation of the corrugation (T1) with γ : when
(N10/M10, N20/M20) = (1.0, 1.0); (0.5, 0.8); (0.7, 0.9).

(44) depend on ζ−n and ζn i.e. on ζ , the corrugation of
the interface. In the special case considered, if we remove
the corrugation of the interface by putting c = 0 into the
formulae given in Appendix-II, then B1 = T1 = B ′

1 =
T ′

1 = 0 and we have only the non-vanishing expressions of
B and T , given by (46) and (47), which are the reflection and
transmission coefficients at the plane interface between two
anisotropic homogeneous half-spaces.

(2) From the formulae (36)–(37) and (43) and our nu-
merical results, we also conclude that the reflection and
transmission coefficients strongly depend upon heterogene-
ity, anisotropy, frequency and angle γ of the incident SH-
wave.

(i) Reflection and transmission coefficients for the first or-
der approximation of the corrugation are found to be effected
by the vertical heterogeneity factor d1c. This effect is found
least near normal incidence, when d2c and d3c are absent and
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Fig. 30. Variations of the Reflection coefficient for the first
order approximation of the corrugation (B ′

1) with γ : when
(N10/M10, N20/M20) = (1.0, 1.0); (0.5, 0.8); (0.7, 0.9).

Fig. 31. Variations of the Transmission coefficient for the
first order approximation of the corrugation (T ′

1) with γ : when
(N10/M10, N20/M20) = (1.0, 1.0); (0.5, 0.8); (0.7, 0.9).

k∗c is very small.
(ii) In the case when d1c is fixed and d2c is varied through

the values 0.0, 3.0, 5.0 and 6.0 then the reflection and trans-
mission coefficients are found to be influenced more by d2c
at γ = 0◦.

(iii) As the corrugation increases, the values of B1 and
T1 increase slowly while the values of B ′

1 and T ′
1 decrease

slowly. The values of coefficients B and T remain unef-
fected.

(iv) When both the media are anisotropic and heteroge-
neous, these amplitude ratios are found to be influenced by
frequency of the incident wave. For larger values of fre-
quency, the values of the coefficients B and T remain almost
constant.

(v) When lateral heterogeneity is removed and d1c =
1.0, d2c = 0.0, then the values of B increase with γ , while
the values of T decrease with γ . On the other hand the re-
maining amplitude ratios decreases rapidly with γ . The in-
troduction of lateral heterogeneity do not allow these coeffi-
cients to occur at and beyond γ = 60◦.

(vi) The problems of Asano (1960), Gupta (1987) and
Tomar and Saini (1997) have been obtained as a particular
cases. Some new results have also been presented.

Appendix A.

�B1 = ιc

2

[
(1 + B)

{
m

(
k∗ω sin γ

βh1

− d2
1

4
− Q2

)
+ d2

2

4

}

+ (1 − B)QU1 + D
√
m

(
−UU1 − d1d2

4

− k∗ω sin γ

βh1

+ d2
2

4
+U 2

)

+ ι

{
(1 + B)

(
U1d2

2
− md3k∗

2

)
− (1 − B)

Qd2

2

+ D
√
m(

Ud2

2
− U1d1

2
+ k∗d3

2
)

}]
,

�D1 = ιc

2

[
(1 + B)

√
m

(
k∗ω sin γ

βh1

− d2
1

4
− Q2 + d1d2

4

)

− √
m(1 − B)QQ1

+ D

(
U 2 + d2

2

4
− k∗ω sin γ

βh1

− md2
1

4
+ mUQ1

)

+ ι

{
(1 + B)

√
m

(
−Q1d2

2
− d3k∗

2

)

− √
m(1 − B)

Qd1

2

+ D

(
k∗d3

2
+ mUd1

2
+ mQ1d1

2

)}]
,

�B′
1
= ιc

2

[
(1 + B)

{
−m

(
k∗ω sin γ

βh1

+ d2
1

4
+ Q2

)
+ d2

2

4

}

+ (1 − B)QU ′
1 − √

mD

·
(
UU ′

1 + d1d2

4
− k∗ω sin γ

βh1

− d2
2

4
−U 2

)

+ ι

{
(1 + B)

(
U ′

1d2

2
+ md3k∗

2

)

− (1 − B)
Qd2

2

− √
mD

(
U ′

1d1

2
− Ud2

2
+ k∗d3

2

) }]
,

�D′
1
= ιc

2

[
−(1 + B)

√
m

(
k∗ω sin γ

βh1

+ d2
1

4
+ Q2 − d1d2

4

)

− √
m(1 − B)QQ ′

1

+ D

(
U 2 + d2

2

4
+ k∗ω sin γ

βh1

− md2
1

4
+ mUQ ′

1

)

+ ι

{
(1 + B)

√
m

(
d3k∗

2
− Q ′

1d2

2

)

− √
m(1 − B)

Qd1

2

− D

(
k∗d3

2
− mUd1

2
− mQ ′

1d1

2

)}]
,

�1 = (U1 + mQ1) + ι

2
(d1m − d2),

�′
1 = (U ′

1 + mQ ′
1) + ι

2
(d1m − d2).



546 S. K. TOMAR AND J. KAUR: R/T OF SH-WAVES AT CORRUGATED INTERFACE

Appendix B.
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