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Simulation of whistler mode propagation for low latitude stations
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Representing lightning discharge current source by a Dirac delta function, Maxwell’s equations are solved to
derive the expression for wave-electric field as a function of frequency and distance including the effect of inter-
particle collisions. The exact time-dependence of the propagating non-monochromatic signal for the realistic
magnetospheric model is computed for low latitude stations (in India). The computation is extended for the wave
propagating through different regions of the magnetosphere and results are compared with the measured data. Points
of agreements and differences are illuminated.
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1. Introduction
The return stroke of lightning discharge is known to gen-

erate electromagnetic signal in wide frequency band in all
direction. Part of the signal energy is reflected back from
the ionosphere and propagate in the space between the earth
and the ionosphere. These waves propagate to long dis-
tances without appreciable dispersion and attenuation. These
signals received on the earth’s surface are known as sfer-
ics. Part of the signal penetrates the ionosphere and prop-
agates along the geomagnetic field lines in whistler mode
with almost very little attenuation. At mid and high lati-
tudes ducts formed by the electron density fluctuations sup-
port ducted mode propagation of whistler mode signal with
almost negligible attenuation (Helliwell, 1965; Hayakawa et
al., 1986). The supporting duct requires electron density
fluctuation ∼5–10% at mid and high latitudes. At very low
latitudes, for the ducted propagation required electron den-
sity fluctuation is few hundred percent (Singh and Tantry,
1973; Hasegawa et al., 1978). There is no physical mech-
anism, which can support such a high magnitude of fluctu-
ation. Further, geomagnetic field lines at low latitudes are
quite curved. Under these diverse conditions, ducted mode
propagation of VLF waves at low latitudes is ruled out and
non-ducted or pro-longitudinal mode of propagation is con-
sidered (Singh, 1993). Two dimensional ray-tracing compu-
tation studies suggested non-ducted propagation at these low
latitudes (Liang et al., 1985; Thomson, 1987; Ohta et al.,
1992). These computational results showed that a preferred
non-ducted propagation channel exists in the geomagnetic
latitude range 10◦–15◦. Ohta et al. (1997) considered three-
dimensional ray-tracing computations for the realistic mag-
netospheric model and showed that waves with wave-normal
angles ∼3◦ entering into the ionosphere/magnetosphere and
propagating in the non-ducted mode could reach the con-
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jugate points. They have shown that signal entering into
the southern hemisphere could be received as echo-train
whistlers. One and three hop whistlers with the disper-
sion 1:3 in the northern hemisphere at very low latitudes by
means of both the ionospheric and ground reflection mecha-
nisms could be received and such whistlers form echo-train
whistlers. Keeping in view this limitation, our aim is to de-
termine the space-time dependence of whistler mode signal
as exact as possible for low latitude stations so that proper
propagation mechanism can be illuminated.

Ferencz (1994) obtained one-dimensional whistler-mode
solution of Maxwell’s equations and used it in the interpre-
tation of the characteristic features of the observed whistlers.
The transient response to impulse or step like disturbances
under the magnetohydrodynamic conditions were simulated
to explain the characteristic features of geomagnetic field
pulsations (Itonaga et al., 1997a, b). The waveforms due to
these disturbances were directly simulated by a numerical in-
version of the Laplace transform with orthonormal Laguerre
functions. In order to explain optical emissions during thun-
derstorm, space and time evolution of the lightning generated
electromagnetic pulse was studied using a two-dimensional
numerical simulation (Rowland et al., 1995; Inan et al.,
1996; Veronis et al., 1999). Cho and Rycroft (2001) devel-
oped a three dimensional code to calculate the optical emis-
sions created by the electromagnetic pulse from a horizon-
tal cloud-to-cloud discharge. These numerical simulations
are based on the finite difference time domain treatment of
Maxwell’s equations. Recently, Nagano et al. (2003), us-
ing full wave analysis, have studied the ionospheric propa-
gation of the lightning generated electromagnetic pulse with
a model including a horizontally stratified ionosphere, free
space and ground. Fourier spectral analysis and the plane
wave expansion technique have been used.

In this paper we present the application of full-wave (Fer-
encz, 1994) whistler mode signal derived from Maxwell’s
equations propagating through a one-dimensional inhomoge-
neous medium. The magnetosphere is supposed to be weakly
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Fig. 1. Schematic model used in the computation of whistler mode wave propagating through and inhomogeneous magnetoplasma.

ionized inhomogeneous medium in which wave energy dis-
persion is caused by interaction between electrons and wave
fields and dissipation is caused by collisions between elec-
trons and neutrals. Solving Maxwell’s equations using the
Laplace transform, we derive wave field expression. Con-
sidering the space dependent electron density and ambient
magnetic field, simulation technique has been developed to
evaluate the wave field as a function of space and time. The
results are used to explain some characteristic features of
whistlers at low latitudes.

2. Theoretical Formulation and Computational
Results

The source of electromagnetic signal is considered to be
lightning discharge between cloud to ground, cloud to cloud,
or intra-cloud. Cloud is generally located between 5–15
kms height above the ground surface, which is independent
of plasma particles. Figure 1 shows the calculation model
in which region 1 is considered to be the region between
the surface of the earth and lower part of the ionosphere.
Region 1 contains the excitation. Region 2 contains the
plasma. Magnetic field is embedded everywhere. Let us
consider magnetic field and plasma density to vary in the
x direction making gyro-frequency and plasma frequency
space dependent. In this representation, medium ‘1’ has no
significant interaction with the signal, however the excitation
appears inside of half-space ‘1’, as shown in Fig. 1, in the
time interval 0 < t < t0 and in the 0 ≤ x ≤ x∗ space
interval, where x∗ ≤ x0, and x0 is the boundary surface
separating the free space and magnetized medium. Let the
direction of excitation, i.e. the direction of source current
density be parallel to the z-axis, i.e., J̄1(x, t) = J0(x, t)êz .
The medium ‘2’ is supposed to be an infinite half space i.e.,
the magnetosphere. The change in the direction of B̄F0 is
however neglected.

In this computation we have considered whistler mode
propagation along the magnetic field direction, as ducted
mode propagation at low latitude is not possible. The light-
ning discharge radiates electromagnetic signal in all direc-
tion. Only a small portion of radiated energy can penetrate
the ionosphere along the geomagnetic field line depending
upon the orientation of lightning discharge, its location, the
strength of return stroke current etc. Because of this rea-

son, only small number of whistler is observed at low lati-
tudes, when intense discharges are properly oriented. Fur-
ther, whistler producing lightning discharges should have
dynamic spectra with maximum amplitude in the frequency
range 5–10 kHz. In view of ray-tracing results (Ohta et al.,
1997) we may consider non-ducted propagation along the
field line. Time and space development of electromagnetic
signal in any medium is governed by the Maxwell’s equa-
tions. The interaction of signal with the medium is governed
by the equation of motion and continuity equation. All these
equations form a closed set of equations to describe the evo-
lution of signal and its impact on medium through which
it propagates. These equations are solved to obtain the ex-
pression for the signal as a function of space and time (see
Appendix). The whistler-mode signal in a weakly inhomo-
geneous lossy ionosphere/magnetosphere is obtained as

E2zω(x, t) = − Z0

4π

∫ ωmax

ωmin

Ix0(ω)

√
K1(x, ω

K1(x0, ω)

× k0(ω)

K0(ω) + K1(x0, ω)

×e j[ωt−∫ x
x0

K1(ξ,ω)dξ ]dω (1)

H2yω(x, t) = 1

4π

∫ ωmax

ωmin

Ix0(ω)

√
K1(x, ω)

K1(x0, ω)

× K1(x0, ω)

k0(ω) + K1(x0, ω)

×e j[ωt−∫ x
x0

K1(ξ,ω)dξ ]dω (2)

where, k0 = ω/c, Ix0(ω) is the amplitude of excitation
signal and K1(x, ω) = k1(x, ω)η1(x, ω), while k1(x, ω) =
1
c

√
ωωb(x)ω2

p(x)+ω2(ω2
p(x)+ω2

b(x)−ω2)

(ω2
b(x)−ω2)

η1(x, ω) =
√

1 + v2
C

2
[M1(ω) − N1(ω)]

×
{

1 − j
1

2
vC [φ1(ω) + φ2(ω)]

}
,

M1(ω) =
[2ωQ(ω) + ω2

p(x)ωb(x)]2 − 2Q(ω)[ω2 F(ω) + ω2
p(x)ωb(x)ω]

[ω2 F(ω) + ω2
p(x)ωb(x)ω]2
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(a) (b)

Fig. 2. (a) Dynamic spectra of whistler mode signal simulated for Varanasi, Nainital and Gulmarg. (b) Variation of dispersion as a function of frequency
corresponding to above stations.

where Q(ω) = ω2
p(x) − ω2, F(ω) = ω2

p(x) + ω2
b(x) − ω2

N1(ω) = 2(ω2
b(x) + ω2)

(ω2
b(x) − ω2)2

,

φ1(ω) = 2ωQ(ω) + ωb(x)ω2
p(x)

ω2 F(ω) + ωb(x)ω2
p(x)ω − v2

C Q(ω)

and

φ2(ω) = 2ω

(ω2
p(x) − ω2) + v2

C

.

From the above equations all the further field components
can be determined. The commonly known whistler spectrum
pattern can be obtained from this space time function at a
given space by the Fast Fourier transform method used in
signal processing.

Time-frequency involves mapping a signal (i.e., a one-
dimensional function of time) into an image (i.e., a two
dimensional function of time and frequency) that displays
the temporal localization of the signal’s spectral compo-
nents. Moreover, the Short Time Fourier Transform (STFT)
represents a sort of compromise between the time—and
frequency—based views of a signal. It provides some in-
formation about both when and at what frequencies a signal
event occur, although this information can be only obtained
with limited precision, and that precision is determined by
the size of the window which is governed by uncertainty
principle.

Procedure of STFT involves the chopping of signal into
short pieces and then fast Fourier transform is taken piece-
wise,

ST FT =
∫ +∞

−∞
x(τ )W ∗(τ − t)e− jωτ dτ

where x(τ ) is discrete time samples of signal and W ∗(t) is

the complex conjugate of window function, these window
functions are applied to avoid discontinuities at the end of a
set of data. The smaller these discontinuities are, the faster
the side slopes drop. We have used Hamming window which
is the most common in speech analysis.

Equations (1) and (2) are used to compute the variations
of wave-amplitude as a function of space and time. In the
numerical computation excitation source is considered to be
Dirac delta distribution. The transfer function characterises
the propagational features of the wave through the medium.
The amplitude-time function of the whistler mode signal is
directly obtained from the closed-form solution of the above
equations. The dynamic spectrum of the signal can be calcu-
lated from the time-function by one of the well-known signal
processing procedure and common FFT algorithms. In the
numerical computation, we have considered dipole nature of
geomagnetic field variation and plasma density distribution
along the path of propagation is taken as diffusive equilib-
rium model DE-1 proposed by Park (1972). In particular, we
have considered the plasma consisting of electrons, oxygen
ions, hydrogen ions and helium ions. The distribution of ions
is taken as N(O+) = 90%, N(He+) = 2% and N(H+) = 8%.
In diffusive equilibrium model for N (x), x is the arc-length
along the magnetic line of force measured from the reference
height x0.

Figure 2(a) shows the dynamic spectra of whistlers com-
puted from full-wave model for (i) Varanasi (L = 1.07),
(ii) Nainital (L = 1.17) and (iii) Gulmarg (L = 1.28) re-
spectively. The dispersion of the wave depends upon path
length, magnetic field and electron density distribution along
the path of propagation. Hence it varies from station to sta-
tion. The zero frequency dispersion of the computed spec-
trum and shown in Fig. 2(b) is 5.79, 13.78 and 24.58 sec

1
2
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Fig. 3. FFT spectrum of computed whistlers for Varanasi with different interparticle collision frequency.

Fig. 4. Detailed amplitude time-functions of computed-whistlers (νC = 0 Hz and νC = 10 Hz).

corresponding to Varanasi, Nainital and Gulmarg respec-
tively. We found that these whistlers follow Eckersley law
(Eckersley, 1935). The dispersion of observed whistlers at
Varanasi is ∼12 sec

1
2 (Singh et al., 1998). Dispersion of

recorded whistlers at Nainital and Gulmarg is 19 and 24 sec
1
2

respectively (Somayajulu et al., 1972). If correction is made
for the ionosphere path of propagation (Park, 1972; Singh
et al., 1993) then the observed dispersion value reduces to
5, 11 and 17 sec

1
2 for Varanasi, Nainital and Gulmarg re-

spectively. This shows that the simulated whistlers resemble
very closely with those observed at the low latitude Indian
stations. In these computations we have considered whistler
wave propagation exactly parallel to the magnetic field line.
If we change the model of charge particle distribution then
zero frequency dispersion also changes.

The dynamic spectra shown in Fig. 3 shows the simulated

results for lossless as well as lossy medium for Varanasi. In-
stead of height dependent collisions we have considered dif-
ferent constant collision frequencies. Figure 3 is dynamic
spectra corresponding to Varanasi for νc = 20, 50 and 80 Hz.
Thus, the lower frequency part of the spectrum disappears
showing that the effect of collision is not equally strong for
whole frequency range considered. From Fig. 3 we note that
when collision frequency becomes appreciable then at low
latitudes whistler wave would appear as sferics with attenua-
tion of lower frequencies. Thus whistlers propagating during
disturbed conditions at low latitudes when collisions become
dominant may appear as sferics. Such signal require full
wave analysis. Enlarged, detailed pattern of whistler-mode
signal as a function of time for lossless and lossy model (for
a typical collision frequency vc = 10 Hz) is shown in Fig. 4.
It is important to note that the zero level is not shifted in lossy
signal, only the amplitude is decreased. An increase in colli-
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Observed

Simulated

Fig. 5. Simulation of nose whistler (3 July 1963, 1150:41 UT, Eights Station, Antarctica (Guthart, 1965)). Observed and simulated are marked by arrow.

sion frequency causes strong decrease in amplitude. Compu-
tation has been made for different collision frequencies but
the same is not shown in the figure. Amplitude decreases
with time, because the volume of the space for observation
of the signal increases with time while the poynting vector
of the signal remains constant (Ferencz, 1994). Therefore,
amplitude of the signal has to decrease with time even in a
lossless medium, but if losses are also included in the cal-
culation then amplitude of signal gets decreased as the wave
propagates in space because of the attenuation of the wave.
Thus, the wave amplitude in lossy medium decreases faster
than that in the lossless medium.

As an example, we have considered whistlers recorded at
mid latitude station Eights station, Antartica (Geom. Lat. =
64◦S, L = 5.2037) on July 3, 1963 which is shown in
Fig. 5 (Guthart, 1965). The propagation path is considered
as L = 4.59. Considering the parameters Te = 5.7 × 104K,
ne = 1.85 × 103/cm3 and hre f = 1 × 103 km where hre f

is the height that is assumed to be the altitude of the pene-
tration of signal into the magnetosphere and Te and ne are
the respective temperature and number density at reference
height, we have simulated whistler for Dirac-delta excitation.
FFT spectra of this modeled whistler is also shown in Fig. 5.
Comparing simulated and the observed whistlers, we find
that the computational technique reported in this paper could
precisely reproduce nose whistler also. Therefore, this tech-
nique can be used to reproduce the nose frequency of VLF
signals at low latitudes, which could not be detected exper-
imentally. In the absence of nose frequency path of prop-
agation is determined with certain approximation by using
extension method (Sazhin et al., 1992; Singh et al., 1998).

In this report we have presented modeling of observed
whistlers at low latitudes by solving Maxwell’s equations.

The method developed is useful in analyzing whistlers at low
latitudes and in exploiting the dynamic spectra to derive the
medium parameters with better accuracy and reliability.

Acknowledgments. One of the authors (K. S.) is thankful to Coun-
cil of Scientific and Industrial Research, New Delhi for providing
financial support.

Appendix.
The interaction of signal with the plasma medium is gov-

erned by the equation of motion and Maxwell’s equations,
which form a close set of equations. The charged particle’s
velocity ν̄ is governed by the momentum equation

m
d v̄

dt
+ mvcν̄ = q(Ē + v̄ × B̄F0) (A.1)

where B = BF0 + B1(r, t), BF0 is steady state magnetic field
taken to be in the x direction, E(r, t) and B1(r, t) are electric
and magnetic fields of the wave. In general, B1 � BF0 and
hence it is neglected. Writing Eq. (1) in component form and
following the procedure of Kamke (1956, 1965) we obtain
solution in the following form

νx = e−vct

[
C +

∫
t

q

m
Ex (τ )evcτ dτ

]
(A.2a)

νy = e−vct (C1 cos ωbt + C2 sin ωbt)

+ 1

ωb

∫
t
ϕy(τ )e−vc(t−τ) sin ωb(t − τ)dτ (A.2b)

νz = e−vct (C1 cos ωbt + C2 sin ωbt)

+ 1

ωb

∫
t
ϕz(τ )e−vc(t−τ) sin ωb(t − τ)dτ (A.2c)

where

ϕy(τ ) = q

m
[E ′

y(τ ) + vc Ey(τ ) − ωb Ez(τ )]
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ϕz(τ ) = q

m
[E ′

z(τ ) + vc Ez(τ ) + ωb Ey(τ )].

The homogeneous terms of above equations do not propa-
gate, as they have no contribution to the excitation and they
are not real signals, therefore these parts will be eliminated
in the computation of current, which is written as

Jx = q Nνx = ε0ω
2
pe−vct

[∫
t

Ex (r̄ , τ )evcτ dτ

]
(A.3a)

Jy = ε0ω
2
p

{
1

ωb

∫
t

∂ Ey

∂τ
e−vc(t−τ) sin ωb(t − τ)dτ

+ 1

ωb
vc

∫
t

Eye−vc(t−τ) sin ωb(t − τ)dτ

−
∫

t
Eze

−vc(t−τ) sin ωb(t − τ)dτ

}
(A.3b)

Jz = ε0ω
2
p

{
1

ωb

∫
t

∂ Ez

∂τ
e−vc(t−τ) sin ωb(t − τ)dτ

+ 1

ωb
vc

∫
t

Eze
−vc(t−τ) sin ωb(t − τ)dτ

+
∫

t
Eye−vc(t−τ) sin ωb(t − τ)dτ

}
. (A.3c)

Substituting above equations into Maxwell’s equations

∇̄ × H̄ = J̄ + ε0
∂ Ē

∂t
; and ∇̄ × Ē = −μ0

∂ H̄

∂t

We obtain the following differential equations

∂ Hz

∂y
− ∂ Hy

∂z

= ε0

{
ω2

pe−vct
∫

t
Ex (r̄ , τ )evcτ dτ + ∂ Ex

∂t

}
∂ Hx

∂z
− ∂ Hz

∂x

= ε0

{
ω2

p

ωb

∫
t

∂ Ey

∂τ
e−vc(t−τ) sin ωb(t − τ)dτ

+ω2
p

ωb
vc

∫
t

Eye−vc(t−τ) sin ωb(t − τ)dτ

−ω2
p

∫
t

Eze
−vc(t−τ) sin ωb(t − τ)dτ + ∂ Ey

∂t

}
∂ Hy

∂x
− ∂ Hx

∂y

= ε0

{
ω2

p

ωb

∫
t

∂ Ez

∂τ
e−vc(t−τ) sin ωb(t − τ)dτ

+ω2
p

ωb
vc

∫
t

Eye−vc(t−τ) sin ωb(t − τ)dτ

+ω2
p

∫
t

Eye−vc(t−τ) sin ωb(t − τ)dτ + ∂ Ez

∂t

}

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A.4a)

∂ Ez

∂y
− ∂ Ey

∂z
= −μ0

∂ Hx

∂t
∂ Ex

∂z
− ∂ Ez

∂x
= −μ0

∂ Hy

∂t
∂ Ey

∂x
− ∂ Ex

∂y
= −μ0

∂ Hz

∂t
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A.4b)

Taking time derivative of Eqs. (4a) and using Eqs. (4b),
we obtain

1

c2

(
ω2

p Ex + ∂2 Ex

∂t2

)
= 0. (A.5a)

Equation (5a) describes plasma oscillation and hence for
a plane wave signal propagating in x-direction, we consider
Ex ≡ 0, and ∂

∂y = ∂
∂z ≡ 0.

The remaining electric field components are obtained as

∂2 Ey

∂x2
= 1

c2

{
ω2

p(x)

∫ t

0

∂ Ey

∂τ
e−vc(t−τ) cos ωb(x)(t − τ)dτ

+vcω
2
p(x)

∫ t

0
Ey(τ )e−vc(t−τ) cos ωb(x)(t − τ)dτ

−ωb(x)ω2
p(x)

∫ t

0
Ez(τ )e−vc(t−τ) cos ωb(x)(t − τ)dτ

+∂2 Ey

∂t2

}
(A.5b)

∂2 Ez

∂x2
= 1

c2

{
ω2

p(x)

∫ t

0

∂ Ez

∂τ
e−vc(t−τ) cos ωb(x)(t − τ)dτ

+vcω
2
p(x)

∫ t

0
Ez(τ )e−vc(t−τ) cos ωb(x)(t − τ)dτ

+ωb(x)ω2
p(x)

∫ t

0
Ey(τ )e−vc(t−τ) cos ωb(x)(t − τ)dτ

+∂2 Ez

∂t2

}
. (A.5c)

Using Laplace transforms in space and time can solve the
above equations. In the present case plasma parameters de-
pend on space and hence Laplace transformation in time will
be only considered. As for longitudinal case is considered,
the W. K. B. solution will be used to solve for the field com-
ponents (Ferencz, 1977), keeping in mind that now the signal
is non-monochromatic.

In this coordinate system shown in Fig. 1 the plane-
polarized excitation will have zero initial values along y-
axis at the boundary surface. By choosing suitable t = 0
moment—the space depending initial values along z-axis
will also be zero.

Ei (x = 0, t) = ei0t (x) ↔ ei0t (s),
Ei (x, t = 0) = eix0(t) ↔ eix0(p),
∂ Ei (x, t)

∂x

∣∣∣
x=0

= e′
i0t (t) ↔ e′

i0t (s), and

∂ Ei (x, t)

∂t

∣∣∣
t=0

= ėi x0(x) ↔ ėi x0(p),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(A.6)

where i = y, z.
Using the above boundary conditions and Laplace Trans-

form rules, the transformed form of Eqs. (5b) and (5c) be-
comes

c2 p2 Ey(p, s) =
[
ω2

p(x)
(s + vc)

2

(s + vc)2 + ω2
b(x)

+ s2

]
×Ey(p, s)

−ω2
p(x)ωb(x)

(s + vc)

(s + vc)2 + ω2
b(x)

Ez(p, s) (A.7a)

and

c2 p2 Ez(p, s) =
[
ω2

p(x)
(s + vc)

2

(s + vc)2 + ω2
b(x)

+ s2

]

×Ez(p, s) + ω2
p(x)ωb(x)

(s + vc)

(s + vc)2 + ω2
b(x)

Ey(p, s)

+c2[pezx0(s) + ėzx0(s)]. (A.7b)
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From Eqs. (7a) and (7b) and writing, ezx0(s) = A(s) and
ėzx0(s) = B(s), u = s + vc, we obtain

Ey(p, s)

= c2
−(ωb(x)ω2

p(x)u)R(u)[p A(s) + B(s)]

[c2 p2 R(u) − ω2
p(x)u2 − s2 R(u)]2 + [uωb(x)ω2

p(x)]2

(A.8a)

where R(u) = u2 + ω2
b(x) and

Ez(p, s) = Ey(p, s)

×c2 p2(u2 + ω2
b(x)) − ω2

p(x)u2 − s2(u2 + ω2
b(x))

−(uωb(x)ω2
p(x))

. (A.8b)

The above Eqs. can be rewritten in the following form,

Ey(p, s) = c2a0(s)a′
0(s)a2(s)

b3(s)

×
p + a1(s)

a2(s)

p4 − b2(s)
b3(s)

p2 + b1(s)
b3(s)

(A.9a)

and,

Ez(p, s) = c2a′
0(s)a4(s)a2(s)

b3(s)

×
[

p + a1(s)
a2(s)

] [
p2 − a3(s)

a4(s)

]
p4 − b2(s)

b3(s)
p2 + b1(s)

b3(s)

(A.9b)

where, a0(s) = −ωb(x)ω2
p(x)u, a′

0(s) = (u2 + ω2
b(x)),

a1(s) = B(s), a2(s) = A(s),

a3(s) = ω2
p(x)u2 + s2(u2 + ω2

b(x)),

a4(s) = (u2 + ω2
b(x))c2,

b1(s) = (uωb(x)ω2
p(x))2 + ω4

p(x)u4

+ s4(u2 + ω2
b(x))2 + 2ω2

p(x)u2s2(u2 + ω2
b(x)),

b2(s) = 2c2(u2 + ω2
b(x))[ω2

p(x)u2 + s2(u2 + ω2
b(x))],

b3(s) = c4(u2 + ω2
b(x))2.

Equations (9a) and (9b) show that each component of
electric fields has four poles, which are given by

p1,2,3,4(x, s)

= ±1

c

√
ω2

p(x)u2 + s2[u2 + ω2
b(x)] ± jω2

p(x)ωb(x)u

u2 + ω2
b(x)

(A.10)

Substituting s = jω, where ω is wave frequency, we obtain,

p1,2,3,4 = ± 1

c√√√√−ω2 F(ω)∓ω2
p(x)ωb(x)ω + Q(ω)(v2

C + 2 jωvC ) ± jω2
p(x)ωb(x)vC

G(ω) + 2 jωvC + v2
C

.

(A.11)

where F(ω) = ω2
p(x) + ω2

b(x) − ω2; Q(ω) = ω2
p(x) − ω2,

and G(ω) = ω2
b − ω2.

Rearranging and separating the real and imaginary, the
approximate expression of the poles for the cases of low loss
(i.e., small vC ) reduces to

p1,2 = ∓ jk1(ω)η1(ω)

p3,4 = ∓ jα3(ω)λ3(ω)

}
(A.12)

where, k1(ω) = 1
c

√
ωωb(x)ω2

p(x)+ω2(ω2
p(x)+ω2

b(x)−ω2)

(ω2
b(x)−ω2)

,

η1(ω) =
√

1 + v2
C

2
[M1(ω) − N1(ω)]

×
{

1 − j
1

2
vC [φ1(ω) + φ2(ω)]

}
,

M1(ω) =
[2ωQ(ω) + ω2

p(x)ωb(x)]2 − 2Q(ω)[ω2 F(ω) + ω2
p(x)ωb(x)ω]

[ω2 F(ω) + ω2
p(x)ωb(x)ω]2

N1(ω) = 2(ω2
b(x) + ω2)

(ω2
b(x) − ω2)2

,

φ1(ω) = 2ωQ(ω) + ωb(x)ω2
p(x)

ω2 F(ω) + ωb(x)ω2
p(x)ω − v2

C (ω2
p(x) − ω)

φ2(ω) = 2ω

(ω2
p(x) − ω2) + v2

C

.

α3(ω) = 1

c

√
ωωb(x)ω2

p(x) − ω2(ω2
p(x) + ω2

b(x) − ω2)

(ω2
b(x) − ω2)

,

λ3(ω) =
√

1 + v2
C

2
[M ′(ω) − N ′(ω)]

×
{

1 + j
1

2
vC [φ′

1(ω) − φ′
2(ω)]

}
,

M ′
1(ω) = 2Q(ω)U (ω) + [2ωQ(ω) − ω2

p(x)ωb(x)]2

[U (ω)]2

where U (ω) = ωωb(x)ω2
p(x) + ω4 − ω2(ω2

p(x) + ω2
b(x))

N ′
1(ω) = 2(ω2

b(x) + ω2)

(ω2
b(x) − ω2)2

,

φ′
1(ω) = 2ωQ(ω) − V (x)

(ωV (x) + ω4) − ω2(ω2
p(x) + ω2

b(x)) + v2
C Q(ω)

,

where V (x) = ωb(x)ω2
p(x), and

φ′
2(ω) = 2ω

(ω2
p(x) − ω2) + v2

C

= φ2(ω).

Hence the generalized solution is introduced, and, the ho-
mogeneous solution will be extended to the inhomogeneous
case. So the poles are obtained for homogeneous case and
are used further.

In the ELF and VLF range 0 < ω < ωb and ωb � ωp for
whistler mode propagation, poles p2 and p4 corresponds to
backward propagating (reflected) signals and the remaining
two modes relating p1 and p3 poles will be able to propagate
in the forward direction.

Knowing the poles, the inverse Laplace-transformation of
Ey(p, s) and Ez(p, s) is obtained, which yield spectra of the
electric field components as a function of x .

Ey(x, ω) = c1a0(x, s)a0
′(x, s)a2(s)

b3(x, s)

×
⎧⎨
⎩

[
p1 + a1(s)

a2(s)

]
[p2

1 − p2
3][p1 − p1]

e
∫ x

0 p1dx

−
[
−p1 + a1(s)

a2(s)

]
[p2

1 − p2
3][p1 − p2]

e− ∫ x
0 p1dx

⎫⎬
⎭

= Ey1(x, s) + Ey2(x, s) (A.13a)



986 K. SINGH et al.: SIMULATION OF WHISTLER MODE WAVE

and

Ez(x, ω) = c2a0
′(x, s)a4(x, s)a2(s)

b3(x, s)

×
⎧⎨
⎩
[

p1 + a1(s)
a2(s)

] [
p2

1 − a3(x,s)
a4(x,s)

]
[p2

1 − p2
3][p1 − p2]

e
∫ x

0 p1dx

−
[
−p1 + a1(s)

a2(s)

] [
p2

1 − a3(x,s)
a4(x,s)

]
[p2

1 − p2
3][p1 − p2]

e− ∫ x
0 p1dx

⎫⎬
⎭

= Ez1(x, s) + Ez2(x, s) (A.13b)

where pi ’s are function of x and s.
As shown in Fig. 1, medium z starts from x = x0 and

hence integration will be carried out from x0 to x . Com-
puting the polarization we find that p1 and p3 representing
the right and left circularly polarized waves respectively. For
whistler mode we consider only p1 and corresponding field
components are

Ey(x, s) = j
1

4p1(x, s)
{[a2 p1 + a1]e

∫ x
x0

p1(ξ,s)dξ

− [−a2 p1 + a1]e− ∫ 2
x0

p1(ξ,s)dξ }
Ez(x, s) = 1

4p1(x, s)
{[a2 p1 + a1]e

∫ x
x0

p1(ξ,s)dξ

− [−a2 p1 + a1]e− ∫ x
x0

p1(ξ,s)dξ }

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A.14)

Substituting s = jω and p1 = − jk1(ω)η1(ω) = − j K1(ω),
the field components, for propagation in forward direction,
can be written as,

Ezw(x, ω) = 1

4K1(ω)
[a2(ω)K1(x, ω) + ja1(ω)]

· e− j
∫ x

x0
K1(ξ,ω)dξ

= E+
z0e− j

∫ x
x0

K1(ξ,ω)dξ (A.15a)

and from Maxwell’s equation,

Hyw(x, ω) = − K1(x, ω)

μ0ω
E+

z0e− j
∫ x

x0
K1(ξ,ω)dξ

= − E+
z0

Z0
n1(x)e− j

∫ x
x0

K1(ξ,ω)dξ (A.15b)

where, n1(x) =
√

ω2[ω2
p(x)+ω2

b(x)−ω2]+ωωb(x)ω2
p(x)

ω2[ω2
b(x)−ω2]

η1(x, ω), and

suffix w represents the whistler-mode. The condition to
be satisfied for the spectral Poynting vector in a low loss
medium (vc � ω) is obtained as (Ferencz, 1994)

S ∼ (Ezw)(Hyw)∗ = (E+
z0)

2 n1(x)

Z0
≡ const ≡ (A+

0 )2.

(A.16)
Using Eq. (16), the field components are obtained as,

Ezw(x, t) = 1

2π

∫ +∞

−∞
A+

0 (ω)

×
(

ω2[ω2
b(x) − ω2]

ω2[ω2
p(x) + ω2

b(x) − ω2] + ωωb(x)ω2
p(x)

)1/4

×(η1(x, ω))
1
2 e j[ωt−∫ x

x0
K1(ξ,ω)dξ ]dω (A.17a)

Hyw(x, t) = − 1

2π Z0

∫ +∞

−∞
A+

0 (ω)

×
(

ω2[ω2
b(x) − ω2]

ω2[ω2
p(x) + ω2

b(x) − ω2] + ωωb(x)ω2
p(x)

)1/4

×(η1(x, ω))1/2e j[ωt−∫ x
x0

K1(ξ,ω)dξ ]dω (A.17b)

where the unknown initial conditions characterizing the in-
fluence of the excitation are contained in A+

0 (ω).
Using the Method of Inhomogeneous Basic Modes

(MIBM) (Ferencz, 1978) the coupling between the signals
of medium “1” and “2” is represented by the initial condi-
tions which is obtained as

A+
0 (ω) = − Z0

2 Ix0(ω)

4

√
β(x0,ω)

γ (x0,ω)
1√

η1(x0,ω)
+ 4

√
γ (x0,ω)

β(x0,ω)

√
η1(x0, ω)

(A.18)

where

β(x, ω) = ω2[ω2
b(x) − ω2],

γ (x, ω) = ω2[ω2
p(x) + ω2

b(x) − ω2] + ωωb(x)ω2
p(x),

Ix0(ω) = I0 is the amplitude of excitation which is constant
in the case of Dirac-delta excitation.

Substituting Eq. (18) into Eq. (17), the whistler-mode sig-
nal in weakly inhomogeneous lossy plasma is as follows

E2zω(x, t) = − Z0

4π

∫ ωmax

ωmin

Ix0(ω)

×
√

K1(x0, ω)

K1(x, ω)

k0(ω)

k0(ω) + K1(x0, ω)

×e j[ωt−∫ x
x0

K1(ξ,ω)dξ ]dω (A.19a)

E2yω(x, t) = 1

4π

∫ ωmax

ωmin

Ix0(ω)

×
√

K1(x, ω)

K1(x0, ω)

K1(x0, ω)

k0(ω) + K1(x0, ω)

×e j[ωt−∫ x
x0

K1(ξ,ω)dξ ]dω (A.19b)

where, k0 = ω/c.
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