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Quantification of porosity and surface roughness in laboratory measurements
of the bidirectional reflectance of asteroid surface analogues
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We studied the effects of the surface roughness and porosity of a sample layer on its light-scattering properties
in laboratory experiments using fly ash, iron, graphite, and olivine powders. Three types of surface structure were
prepared: compacted, knocked, and fluffy surfaces. The surface roughness is represented by the mean slope angle
of small facets on the surface. We found a positive correlation between the surface roughness and the porosity of
the layer. The bidirectional reflectance of the surface at the wavelength of a He-Ne laser (633 nm) was measured
to illustrate the influence of surface structure on scattering properties, with the incidence angle fixed at 0°, while
varying the phase angle from 2 to 80°. The reflectance of a relatively rough surface was lower than that of a
relatively smooth one for all of the materials measured. The reflectance measured at 30° in phase angle decreased
by between ~25 and ~60%. This effect may explain the discrepancy between the absolute reflectance in previous
laboratory results and the observed results for C class asteroids (Kamei and Nakamura, 2002; Nakamura et al.,

2002).
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1. Introduction

Laboratory photometric phase curves of meteorite pow-
ders place constraints on meteorite-asteroid connections
and the surface structure of asteroids. In previous studies
of the bidirectional reflectance of meteorite powders, the
sample surfaces were smoothed using a spatula (Kamei and
Nakamura, 2002; Tomita et al., 2003). These studies found
that (1) the surfaces of meteorite powders had shallower
phase curves than those of most asteroids and (2) the sur-
faces made of carbonaceous-chondrite powders were up to
200% as bright as asteroid 253 Mathilde (Kamei and Naka-
mura, 2002; Nakamura et al., 2002).

The discrepancies in the slope and absolute value of the
phase curve between laboratory surfaces and asteroids may
arise from differences in the particle size, surface rough-
ness, and packing as well as material composition. Aster-
oid surfaces are excavated by impact bombardment. Any
ejecta with a velocity less than the escape velocity fall back
onto the surface and form a powdery structure. Labora-
tory impact experiments show that the minimum ejection
velocity from weak surfaces is 1 m/s or less (Housen, 1991;
Michikami, 2001). Therefore, asteroid surfaces with es-
cape velocities beyond tens of cm/s can have a regolith layer
made from such fallen ejecta. Moreover, data from space-
craft observations interpreted using Hapke’s (1993) model
indicate that the surface of asteroid 433 Eros has a poros-
ity exceeding 70% (Domingue et al., 2002). Therefore, the
surface is probably rougher and more porous than labora-
tory surfaces smoothed using a spatula.
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The effect of surface roughness and porosity on the
phase curve has been studied in a number of laboratory
experiments. Adams and Filice (1967), French and Vev-
erka (1983), Capaccioni et al. (1990), and Shkuratov et al.
(2002) compared the reflectance curves of surfaces with dif-
ferent degrees of roughness. Buratti and Veverka (1985)
demonstrated that the macroscopic roughness lowers the re-
flectance. These studies mention the importance of the sur-
face condition of the powdery layer on the reflectance; how-
ever, quantitative examinations of surface structure are still
lacking. Quantitative research into the relationship between
the layer structure and its optical properties should generate
more information about asteroid surfaces. Therefore, this
study quantified the surface structure of simulated asteroid
surfaces. We report on the relationship between porosity
and surface roughness, and the effect on the bidirectional
reflectance.

2. [Experiments
2.1 Instrumentation

We used a goniometric apparatus at Kobe University
(Kamei and Nakamura, 2002) that has two arms; these can
rotate in the upper-half plane normal to the sample surface
and are equipped with a He-Ne laser source (wavelength
633 nm) and a photo-multiplier, respectively. We measured
the intensity of the laser light scattered by the sample sur-
face, for different emergent angles (e) with the incident an-
gle (i) fixed at 0°. The phase angle coverage was from 2
to 80°. The absolute reflectance r (i, e, g) was determined
using the standard reflectance of a Ba,SOy surface, the re-
flectance value of which is given ati = 0, ¢ = 45, g = 45°,
where g is the phase angle.
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Fig. 1. The diameter distributions of the sample powders.

compacted knocked fluffy

Fig. 2. The method of surface preparation.
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2.2 Surface preparation

We used fly ash, iron, carbon, and olivine powders in
this experiment. The diameter distributions of the powders
were determined using a laser diffractometer (HELOS with
RODOS and GRADIS) and are shown in Fig. 1.

We prepared three types of powdery surface (Fig. 2).
The powders were sieved over the sample tray to produce
fluffy surfaces (“fluffy”), which were not touched directly.
We measured the falling velocity of the powders using a
high-speed video camera operating at a rate of 125 frames
per second. The falling velocity was 20~40 cm/s, which
is equivalent to the escape velocity of small bodies (for
a diameter of ~500 m and a density of ~2 g/cm?, the
escape velocity is 26.4 cm/s). Such a surface was com-
pacted tightly using a flat plate to produce a smooth sur-
face (“compacted”). A surface with intermediate porosity
and roughness was made from a fluffy surface by knocking
the tray vertically against a horizontal plane (“knocked”).
Figure 3 shows examples of surface topography of “com-
pacted”, “knocked”, and “fluffy” surfaces.

The surface roughness was determined from elevation
data measured using a laser confocal displacement meter,
as we described previously (Tomita et al., 2002). The sur-
face was mounted on a stage and moved in the x- and y-
directions and the elevation (i.e., the z-coordinate) of the
surface was determined for grid points spaced at fixed in-
tervals of 1 and 10 um. The plane equation was determined
from the least squares fit to four grid points and the inclina-
tion of the normal vector of the facet from the vertical di-
rection (z-direction) defined slope 8 of the facet. The mean
slope angle (6) of the 1- and 10-um lattices, for 10,000 lat-
tices, was defined as the surface roughness.

The porosity of the powdery layers was calculated as

P=1-"1
pV
where m is the total mass of the powders in the sample tray,
p is the grain density of the powdery material, and V is the
volume of the sample tray. In the porosity calculation, we
used 1.95, 7.87, 2.25, and 3.39 g/cm3 as the grain density
for fly ash, iron, graphite, and olivine particles, respectively.
The surface roughness and porosity are summarized in Ta-
ble 1. In this table, AP and A# denote the standard devia-
tion of P and 6, respectively. Table 2 lists the porosities of
various structures packed with identical spheres. The values
of the porosity of the most “compacted” surfaces shown in
Table 1, except for graphite, are within the range for these
structures.

3. Results
3.1 Relationship between porosity and roughness
Figure 4 shows the relationship between the porosity, P,
and the roughness, (6), of the powdery surface. In this fig-
ure, there is a systematic relationship between the two pa-
rameters for all of the materials. The roughness calculated
using the 1-um pitch data is greater than that calculated
from the 10-um pitch data. In addition, the dispersion value
of the roughness calculated at 1 um (A@) is greater than
that calculated at 10 um. These results probably arise from
the fact that the roughness measured using a shorter pitch is
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Fig. 3. Surface topography of the (a) “compactedl”, (b) “knocked1”, and
(c) “fluffy1” fly ash surfaces determined by a measurement at 1 pum
spacing in horizontal directions. Color indicates relative elevation in
pm.
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Table 1. Bulk porosity and surface roughness of the powdery surfaces. The standard deviation of the slope angle is shown in the A columns.

Porosity Roughness [degree]
Sample P AP 1-pm pitch 10-pm pitch
0 A 0 A
Fly ash compactedl 0.40 0.04 41 21 8.8 7.8
knocked1 0.48 0.04 48 20 23 15
compacted2 0.49 0.04 39 21 12 11
compacted3 0.54 0.04 42 19 12.1 9.2
knocked2 0.56 0.17 61 17 31 15
knocked3 0.62 0.04 66 18 42 18
knocked4 0.66 0.17 58 18 37 19
knocked5 0.72 0.04 64 16 45 18
knocked6 0.79 0.17 60 21 42 18
knocked7 0.81 0.17 64 16 52 20
fluffyl 0.87 0.04 71 15 57 17
fluffy?2 0.89 0.04 69 19 56 18
Iron compacted] 0.48 0.01 15 13 3.6 29
compacted2 0.53 0.01 18 14 4.2 4.1
fluffyl 0.88 0.01 61 18 48 17
Graphite compactedl 0.69 0.04 39 21 13 11
knocked1 0.69 0.04 52 21 22 15
knocked2 0.79 0.15 62 20 35 18
fluffyl 0.89 0.04 71 16 49 20
Olivine compactedl 0.41 0.02 37 21 11 9
(~45 pum) compacted2 0.68 0.03 57 18 32 15
knocked1 0.78 0.03 58 17 34 16
Olivine compacted] 0.32 0.03 42 22 19 13
(45 ~ 106 pm) knocked1 0.46 0.02 54 19 28 15
fluffyl 0.55 0.10 60 19 30 17

Table 2. Porosities of various structures packed formally.

Structure Coordination number Porosity
Simple cubic packing 6 0.476
Orthorhombic packing 8 0.395
Wedge-shaped tetrahedron 10 0.302
Rhombohedral packing 12 0.259

influenced more by the shape of the individual powder par-
ticles in addition to the roughness owing to the structure of
the ensemble of particles. The fitting lines are
(0) = (60.0 £ 11.6)P + (17.8 £ 7.8)° for the 1 wm pitch,
and
(0) = (100.6£11.7)P — (30.8 £7.9)° for the 10 wm pitch.
The correlation coefficients are 0.85 and 0.94 for the 1- and
10-pum pitch results, respectively. Since the correlation was
better for the 10-um pitch, we adopted the roughness cal-
culated using a 10-pum pitch in our subsequent discussions.
3.2 Bidirectional reflectance

Figures 5(a)—(c) show the bidirectional reflectance of the
different surface structures. As the surface roughness and
bulk porosity increase, the reflectance at a moderate phase

angle (around g = 30°), where the effect of the opposi-
tion surge is weak or negligible, decreases, as Capaccioni
et al. (1990) showed qualitatively. The degree of darken-
ing differed among the materials and phase angles. The
fly ash surfaces showed a nearly equivalent decrease in re-
flectance at any phase angle (Fig. 5(a)), whereas the iron
surfaces showed conspicuous differences at phase angles
exceeding g ~ 30° (Fig. 5(b)). Unlike the other materials,
the graphite compacted surface showed a larger difference
from the knocked and fluffy surfaces at low phase angles
below g ~ 40° (Fig. 5(c)). In Fig. 5(c), the reflectance of
the knocked sample surface (knockedl) is almost twice that
of the fluffy surface. This may explain the discrepancy be-
tween the reflectance of carbonaceous meteorite powders
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Fig. 4. The relationship between the porosity and roughness of a powdery
surface. The roughness was calculated at (a) 1- and (b) 10-um pitches.
The solid lines are the linear fits to the fly ash data.

and that of 253 Mathilde (Kamei and Nakamura, 2002;
Nakamura et al., 2002).

In Fig. 6, there is a negative correlation between the sur-
face roughness, in terms of the mean slope angle, and the
reflectance at g = 30°. The data on meteorite surfaces are
from Tomita et al. (2003). Again, the degree of darken-
ing owing to the surface roughness or porosity exceeded
25% for fly ash, iron, and fine meteorite particles (5-20
um) and 50% for graphite. The meteorite surfaces consist-
ing of medium (45-75 pum) and large (180-500 pm) parti-
cles showed less difference in both reflectance and surface
roughness (Tomita et al., 2003). This is probably because
particles of such sizes cannot form a porous structure at the
terrestrial gravity condition and the pores between particles
have a greater effect on the bidirectional reflectance of rel-
atively small particles.
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Fig. 5. Bidirectional reflectance of powdery surfaces of (a) fly ash, (b)
iron, and (c) graphite. The roughness values shown in the parentheses
are those of 10-um pitches and are in unit of degree.
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4. Summary

To quantify the effects of the surface structure of a pow-
dery layer on its light scattering properties, bidirectional
reflectance was measured in the laboratory using powdery
surfaces with various degrees of roughness and porosity.

We found a systematic relationship between the bulk
porosity and the surface roughness, and the reflectance of
the powdery surfaces was greatly influenced by the sur-
face structure. Consequently, the surface of a sample must
be treated carefully when light-scattering measurements of
powdery samples are performed to compare with asteroid
surfaces.

Further investigation of the effects of surface structure
on bidirectional reflectance with different incident angles is
required in order to study the shallower phase curve of me-
teorite surfaces obtained in the laboratory and to provide
new information on the absolute reflectance of the surface
of meteorite powders. Such work will be useful in analyz-
ing the reflectance condition of the regolith on small bodies
in terms of the bidirectional reflectance determined using
optical instruments onboard asteroid missions, in the same

manner as Domingue et al. (2002) investigated the porosity
of the regolith surface of 433 Eros. This work is one of the
first steps in the experimental verification of such studies.
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