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Caldera geometry determined by the depth of the magma chamber
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The depth of the magma chamber is shown to be an important factor governing the initial type, scale, and
collapse of a caldera. The collapse of the magma chamber is approximated by the contraction of a sphere in
an elastic medium, and the distribution of plastic and/or rupturing area on the surface is calculated using the
Coulomb failure criterion under the assumption of an elastic-perfectly plastic material. It is found that the
necessary contraction for the formation of a caldera is described by fifth-power polynomial expression of the
depth of the magma chamber, and that the radius and geometry of the caldera are dependent on the depth of the
magma chamber.
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1. Introduction
Numerous laboratory experiments and numerical simu-

lations have been conducted in an attempt to explain the
mechanism of caldera formation (e.g., Komuro, 1987; Marti
et al., 1994; Gudmundsson et al., 1997; Gudmundsson,
1998; Acocella et al., 2000; Roche et al., 2000; Kusumoto
and Takemura, 2003). However, none have reached a quan-
titative discussion of the factors dominating caldera forma-
tion. Recent laboratory experiments and field research have
shown that the piston- and funnel-type calderas have the
same collapse mechanism and/or physical processes, and
the size and depth of magma chamber have been suggested
to be important factors governing the type of caldera even-
tually formed (e.g., Roche et al., 2000; Lipman, 1997).

In this study, in order to clarify whether the depth of
the magma chamber controls the caldera geometry or not,
the relationships between caldera geometry and the depth
of the chamber are discussed quantitatively. Although it
is known that the rupture would result in dyke injection,
the discussion was focused on the collapse of the magma
chamber because it is difficult to consider the effects due
to the dyke injection in the simulations. And, in order to
facilitate mathematical and physical treatment, a spherical
model is employed here instead of the ellipsoidal model
(sill-like chamber) widely regarded as the common shape
of a magma chamber.

The collapse of the magma chamber is approximated by
the contraction of a sphere in an elastic medium, and the
distribution of plastic and/or rupturing area on the surface
is calculated using the Coulomb failure criterion under the
assumption of an elastic-perfectly plastic material (Fig. 1).
The elastic-plastic boundary is assumed to lie on the struc-
tural boundary of the caldera. The effects due to differences

Copy right c© The Society of Geomagnetism and Earth, Planetary and Space Sci-
ences (SGEPSS); The Seismological Society of Japan; The Volcanological Society
of Japan; The Geodetic Society of Japan; The Japanese Society for Planetary Sci-
ences; TERRAPUB.

in models (point source model (e.g., Mogi, 1958; Hagiwara,
1978) and finite sphere model (e.g., Tsuchida and Naka-
hara, 1972; McTigue, 1987)) and analytic dimensions are
also evaluated in the simulations. Point source and finite
sphere models are compared through two-dimensional anal-
yses.

2. Models and Simulations
Approximating the magma chamber as a small sphere

(point source) in an elastic medium, the surface strain fields
due to radial deformation of the small sphere are obtained
from the analytical solutions of three-dimensional deforma-
tion (Hagiwara, 1978) as follows.
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where λ and μ are Lame’s constants, R2 = x2 + y2 + d2,
and �p is the internal pressure change of the sphere, which
is related to the volume change (�V ) by

�p = μ�V

πa3
.

By introducing the contraction (�a) of the magma cham-
ber, the internal pressure change �p can also be expressed
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Fig. 1. Model of spherical magma chamber with radius a and depth to
centre d , where r = (x2 + y2)1/2 is the horizontal distance from the top
of the magma chamber to the plastic area. The crust is assumed to react
as an elastic-perfectly plastic material.
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Three-dimensional deformations due to contraction of
the small sphere given by Hagiwara (1978) are described
as follows.
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where u and w are displacement in the r and z directions.
The parameter R1 and R2 are defined as follows.

R1 =
√

r2 + (d − z)2, R2 =
√

r2 + (d + z)2

In the case of z = 0 and λ = μ, the Hagiwara’s model is
equivalent to the Mogi’s model (Mogi, 1958).

The surface strain fields due to radial deformation of a
finite sphere are obtained from the analytical solutions of
two-dimensional deformation (McTigue, 1987) as follows.
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where ρ = (x2 + y2)1/2/d , and A, B and C are given by

A = �p (1 − ν)

μ
, B = ε3 − ε6 (1 + ν)

2 (7 − 5ν)
, C = 15 (2 − ν) ε6

4 (7 − 5ν)

Here, ε = a/d, and ν is Poisson’s ratio.
The strain field produced by contraction of the sphere

can be transformed into a stress field by Hooke’s law, and
the stress field can then be evaluated using a dimensionless
factor F based on the Coulomb failure criterion (e.g., Jaeger
and Cook, 1969; Segall and Pollard, 1980), as follows.

F ≡ 1
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)]
where σ1 and σ3 are the maximum and minimum principal
stresses, and c0 and φ are the compressive strength and an-
gle of internal friction. As the crust is assumed to react as an
elastic-perfectly plastic material, the area of F ≥ 1 corre-
sponds to the plastic and/or rupture area. The relationships
between radius and depth and between depth and radial de-
formation of the chamber were estimated for the stage of
formation of the first plastic area on the surface. In addi-
tion, the relationship between caldera geometry (type) and
the depth of the magma chamber was discussed by compar-
ing the radius of the contracted chamber with the radius of
the initial caldera on the surface.

The simulations were conducted assuming basaltic crust
with the following elastic constants: Poisson ratio of 0.25
(λ = μ), Young modulus of 40 GPa, and compression
strength (c0) of 160 MPa (e.g., Gudmundsson, 1988; Ya-
maji, 2000). The angle of internal friction was assumed to
be 30◦ considering the observed angle for rock near the sur-
face (e.g., Yamaji, 2000).

3. Results and Discussion
Figure 2(a) shows the relationships between the depth

and contraction of the magma chamber at the stage of for-
mation of the first plastic area on the surface, and Figure
2(b) shows the relationship between the depth and horizon-
tal distance from the top of the magma chamber to the plas-
tic area. The depth (d), contraction (�a) and horizontal dis-
tance (r ) shown in Fig. 2 are normalized by the radius (a) of
the magma chamber before contraction. From these figures,
it can be determined that the difference between the point
source model and the finite sphere model does not seriously
influence the results, whereas differences in the analytical
dimensions have a marked effect. This result indicates that
the relationships between �a/a and d/a and between r /a
and d/a can be reasonably estimated using the point source
model.

The regression curves explaining the �a/a–d/a and r /a–
d/a relations for the point source model were obtained by a
least-squares fit of the data. The �a/a–d/a relation is given
by (
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)
=
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where κ0 = −2.13×10−1, κ1 = 4.02×10−1, κ2 = −2.70×
10−1, κ3 = 8.30 × 10−2, κ4 = −1.16 × 10−2 and κ5 =
6.18 × 10−4. Due to the selection of the lowest degree that
explains the data, the physical meaning of each coefficient
is unknown at present. However, it can be expected that
Eq. (1) is free of serious error considering that the necessary
collapse (�a/a) for caldera formation is described by a
polynomial of d/a.
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(a) (b)

Fig. 2. (a) The �a/a–d/a relation between depth and contraction of the magma chamber. The necessary contraction for the formation of a caldera is
described by a polynomial of d/a. (b) The r /a–d/a relation between depth and horizontal distance from the top of the magma chamber to the plastic
area. The radius of the initial caldera depends on the depth of the magma chamber. Differences in analytic dimensions have a substantial effect on
the results, whereas the size of the sphere does not.

The r /a–d/a relation is given by
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where α = 0.82. The proportionality coefficient indi-
cates that the angle (δ; Fig. 1) between the centre of the
magma chamber and the initial caldera boundary is always
ca. 39.4◦. It is well known that the width of the magma
chamber controls the location of the ring faults (e.g., Gud-
mundsson et al., 1997; Roche et al., 2000). The relation
shown in here indicates that not only the width but also the
depth of the chamber is important factor which controls the
radius of the initial caldera.

The relationship between the depth of the magma cham-
ber and the angle θ (Fig. 3), defined as the angle between
the initial caldera boundary at the surface and a perpendic-
ular line drawn from the edge of the contracted chamber to
the surface, was found to depend on d/a, with a negative
value at d/a ≤ 1.7 and a positive value at d/a > 1.7.

A negative angle (θ ≤ 0) indicates that the radius of
the initial caldera is smaller than the radius of the magma
chamber after contraction, resulting in the formation of
a piston caldera. Three end-member collapse geometries
have been proposed for piston calderas (e.g., Roche et al.,
2000); inward-dipping faults, vertical- or outward-dipping
ring faults, and a trapdoor geometry. In most cases, the dip
angles of the ring faults are very steep, typically 70–80◦ as
reported in field studies (e.g., Yoshida, 1984; Rymer et al.,
1998). In the case of θ ≤ 0, it is thus expected that a piston
caldera with outward-dipping or vertical ring faults will be
formed.

A result of θ > 0, on the other hand, indicates that the
radius of the initial caldera is larger than the radius of the
chamber after contraction, resulting in the formation of a

Fig. 3. Relationship between the depth of the magma chamber and the
angle θ . The sign and magnitude of θ indicate the caldera type: θ ≤ 0
indicates the formation of a piston caldera with outward-dipping or
vertical ring faults, and θ > 0 indicates the formation of a piston or
funnel caldera with inward-dipping ring faults.

funnel caldera or piston caldera with inward-dipping ring
faults.

It is difficult to compare quantitatively our results with
the findings pointed out by Roche et al. (2000) and Lipman
(1997), because the depth and size of the magma chamber
for deciding caldera type are not shown in their discussions.
However, despite potential differences in the medium and
model assumed here, the present results support their find-
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ings. Namely, the funnel and piston calderas have the same
collapse mechanism and/or physical processes, and the ge-
ometry (type) of the caldera will be controlled by the depth
of the magma chamber.

The heterogeneity of elastic constants and the effects of
the regional stress field were not considered in the present
model. As pointed out by many researchers (e.g., Naka-
mura, 1977; Gudmundsson, 2002, 2003; Kusumoto and
Takemura, 2003), these are important factors in caldera for-
mation and can be expected to influence the final geometry
of the caldera. Further research through field studies, labo-
ratory experiments and numerical simulations are therefore
necessary to clarify the effect of these factors on caldera
formation.

4. Conclusion
Quantitative relationships between caldera geometry and

the depth of the magma chamber were obtained by evalua-
tion of the stress field using the contraction of a point source
in an elastic medium to model the collapse of the magma
chamber. It was found that the necessary contraction for the
formation of a caldera is described by a fifth-power poly-
nomial expression of the depth of the magma chamber, and
that the angle between the centre of the magma chamber
and the initial caldera boundary is always ca. 39.4◦. The
depth of the magma chamber was also found to determine
the radius and geometry of the caldera, and thus to gov-
ern whether a piston- or funnel-type caldera is eventually
formed.
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