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In recent years an increasing interest in the studies on outlier can be observed, however, for the time being there
exists no general definition of outlier. In the present paper we introduced a generic descriptive definition of outlier.
We observed that the outlier problems had so far been treated in statistical way without paying proper attention
to probabilistic-theoretic backgrounds. In view of this gap, we made an attempt to establish a probabilistic
background theory. Within this framework, the large deviations are considered as probabilistic-theoretic model of
outlier, and the interrelationship of the laws of large numbers, the central limit theorems and the large deviations
are clarified. These considerations are specialized for the case of statistical sample, which is important from
the point of view of the assessment of data quality. Some methodological and historical aspects of geodesy,
geophysics and astronomy are mentioned, too. We revealed that the data analysis carried out by Kepler in the
process of discovery of his famous elliptic law of planetary motion has relevance to the outlier problem. This
methodologically interesting fact is a new result in the history of geosciences. We established that the accuracy of
Chebyshev inequality increases as the deviation of the random variable involved from its expectation, increases.
The possibility of application of Chebyshev inequality to the outlier problem is pointed out.
Key words: Assessment of data quality, Berry-Esseen theorem, Chebyshev inequality, large deviations, outliers.

1. Motivation and Introduction
In recent years an increasing interest in the studies on

outlier can be observed, however, for the time being there
exists no general definition of outlier. To emphasize that
the above statement is not our subjective opinion, but—
indeed—an objective reality, we proceed to the following
passages. Barnett (1984, p. 360), the author of the book
“Outliers in Statistical Data” writes: “The outlier problem
seems to be arousing more interest today than it has ever
done, in spite its long history. The pages of the international
statistical journals ever more contributions to this fascinat-
ing and useful field of study, as it evidenced by the substan-
tial list of references at the end of the book”. In a research
paper by Gather (2000) we read: “The problem of outliers
in random data sets is a very interesting, important and com-
mon one. Nevertheless there is no formal and generally ac-
cepted definition of what is meant by an outlier. Terms like
outlier, spurious observation, contaminant, gross error and
others are used with different and overlapping meanings”.
These statements clearly indicate that the consideration of
the nature and background of outlier is a problem of signif-
icance both in theoretical and practical terms.

The aim of the present paper is as follows: (i) to give
a general definition of outlier which at the same time
gives rise to a categorization of outliers; (ii) to introduce
a methodologically new way of unifying presentation of the
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laws of large numbers and central limit theorem in conjunc-
tion with outliers (iii) to emphasize the role of Chebyshev
inequality for detection of outliers. These considerations
in an aggregated way constitute a probabilistic background
theory for studies on outliers.

The paper is organized as follows. Section 2 presents
the three instances from the very origin of outliers which
help a correct understanding of outliers. In the history of
science the way of how Kepler discovered his famous el-
liptic law is known (Aiton, 1969; Wilson, 1968). However,
Kepler’s data analysis has so far not considered from the
standpoint of outlier problem. We revealed the outlier de-
tection aspect of Kepler’s way of handling the measurement
data. The other instances also contain useful elements. Sec-
tion 3 addresses the the question of definition of outlier and
introduces a new generic descriptive definition of outlier.
In Section 4 we give the basic mathematical techniques of
the asymptotic growth rate of functions which are necessary
for the presentations in the subsequent sections. In Sec-
tion 5 we consider the laws of large numbers (LLN) in a
specialized for statistical sample form. The content of this
section serves several purposes: The LLN is considered as
a first step towards the central limit theorem (CLT), at the
same time the LLN is presented as being the probabilistic-
theoretic background of the sample mean. Bearing in mind
the needs of data analysis, we here introduced a novel way
of consideration of the LLN. Section 6 considers the tran-
sition from the LLN to CLT specialized for the case of sta-
tistical sample. This attitude results in the consideration of
the CLT as being of further refinement of the LLN. Here
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we presented Berry-Esseen theorem and related research re-
sults obtained by Zolotarev (1967) and van Beer (1972).

In Section 7 we introduced the theory of large deviations
in simplified setting. The theory of large deviations is a
new branch of probability theory. Here the large deviations
are considered as probabilistic-theoretic model of outlier.
This is a new theoretical approach. In Section 8 a numeri-
cal study of Chebyshev inequality in comparison with the
normal distribution is given. Based on this, the role of
Chebyshev inequality for the outlier problems is clarified.
Section 9 summarizes the main conclusions of the paper.

2. Three Instances Related to the Origin of
Outlier: New Findings and Lessons

The concept of outlier stemmed from the mathemati-
cally processing geodetic and astronomical measurements
data. To determine the mean ellipticity of the Earth
from measurements data, Maire and Boscovich (1755), and
Boscovich (1757) removed two data on the basis that they
were too much deviated from the remaining data. In mod-
ern terminology, this means that Maire and Boscovich used
outlier rejection technique. Legendre (1810) also used and
proposed outlier rejection technique. It is worthwhile to
note that the name of A. M. Legendre (1752–1833) is well-
known as being one of the discoverers of the famous least
squares method. However, it is not widely known that he
conducted significant research in the area of the determi-
nation of the figure of the Earth and related geophysical
and geodetic problems. The volume II of the book by Tod-
hunter (1873) contains three chapters that consider Legen-
dre’s memoirs on the topic.

Among early papers on outlier, the paper titled “The
most probable choice between several discrepant observa-
tions and the formation therefrom of the most likely induc-
tion” by Daniel Bernoulli (1961) seems to be one of the
most interesting one. He wrote: “I see no way of drawing
a dividing line between those that are utterly to be rejected
and those that are to be wholly retained; it may even hap-
pen that the rejected observation is the one that would have
supplied the best correction to the others. Nevertheless,
I do not condemn in every case the principle of rejecting
one or other observations, indeed approve it, whenever in
the course of observation an accident occurs which in itself
raises an immediate scruple in the mind of observer, before
he has considered the event and compared it with other ob-
servations”. In our opinion the most important element in
Daniel Bernoulli’s remarks is that he emphasizes—in trans-
lation of modern terms—the uncertainty deep-rooted in the
very concept of the outlier and sees the main difficulty in
this uncertainty. If we think merely in terms of probability
theory, then it may be said that today the situation concern-
ing the concept of the outlier is not much changed. How-
ever, there had existed no highly-developed theory of prob-
ability, at that time. Nowadays, we have the modern theory
of probability which we should support for understanding
the nature of the outlier. In the present paper we made some
initial attempts towards this attitude.

In the relevance to outlier problem we would like to men-
tion here Kepler’s way of handling the data in his famous
elliptic law of motions of planets. From the paper by Aiton

(1969) and Wilson (1968) we can see that Kepler first at-
tempted with the circular law for long time and analyzing
the fitting of the circular law to the data of motion of Mars,
and he found the deviation of the magnitude of 8′. He con-
sidered this magnitude as being too large, and finally he
decided to change his circular law to the elliptic one. We
see that in modern terminology Kepler detected an outlier,
and based on this detection, he modified his model. In this
historical fact, we get the following important new findings.
It is Kepler who first considered such an outlier that is not
“gross error”. Secondly, it is Kepler who first carried out
the model-fitting analysis based on residuals.

3. How to Define the Outlier?
We all know what means the term statistical sample or in

short the sample in mathematical statistics. This is math-
ematically very simple and clearly understandable defini-
tion. However, there are at least two reasons to recall here
the definition. First, all the theory, methods, precise defi-
nitions and statements of modern statistics are based on the
definition of the sample directly or indirectly (Wilks, 1962).
So, behind of every precise definition should directly or in-
directly be the correct understanding of the sample. Sec-
ondly, nevertheless, the mathematical definition is so sim-
ple, in real life cases, it is not so simple, even sometimes
difficult to consider whether the data in question is sample
or not. It is not an occasional case that the difficulties as-
sociated with the sample from the data of geology are in
detailed way considered by Wilks (1963) who is one of the
outstanding figures in modern mathematical statistics.

In probabilistic setting, the statistical sample simply is
a set of n independent random variables with a common
probability distribution. Here n is the sample size. In real
life data, we usually have n pieces of numbers which are
measurements results and we should consider each of these
numbers are the representative of the random variables that
are in the probabilistic definition of the sample.

General Basic Definition: An outlier is or are such a
element or elements which displays or display a consider-
able discrepancy from distributional behavior of remain-
ders that constitute a statistical sample or the presence of
this or these elements disturbs or disturb the being the sta-
tistical sample of the remainders.

This basic general definition gives only generic descrip-
tive character of outliers, however, it lacks in being “con-
crete”, because it is difficult to distinguish between the out-
lier and the remainders. The lack can be corrected by the
following categorizing or refining subsidiary definitions.

Refining Definitions.

(a) The undesirable outliers: This is a kind of outliers
that occur in making measurements, computer pro-
cessing the measurement data (input, output, transmis-
sion of data and mathematically and computer pro-
cessing data) that disturb the correct mathematical
processing the remainder data.

(b) Outliers arising from model fitting analysis and/or un-
expected (exploratory) outlier.
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(c) Outliers that belong neither (a) nor (b), but by their
appearance manifest the intrinsic nature of fluctuation
of the randomness.

We consider some explanatory comments on the above
definitions. The outliers that belong to the (a) category
is known in geodetic and geophysical literature under the
name of gross-errors and/or blunders. The very origin of the
concept of outlier is related to these outliers, consequently,
this type of outliers constitute the “ancestors” of outliers in
general. It is evident that this kind of outliers should be
removed from the statistical sample, provided the outlier is
detected, although the clear-cut identification of this kind
of outliers is not an easy task. This is the reason why the
rejection of outliers has historically been the main direction
in the treatment of outliers.

Nowadays, we all know the achievements modern mea-
surement technology result in an extremely high precision
in the measurement process, i.e., the dangers of the “gross
errors” seem to be passing “their time”. However, there
is “the reverse of the medal”, too. The equipment failure,
errors hidden in software, keypunch errors—for example—
wrong decimal points and similar errors may be termed as
“modern” gross errors. In this connection, from Kubik,
Weng and Frederiksen (1985) we here cite the following
passage: “. . . there is an increasing danger: more and more
data are automatically processed on a computer without be-
ing scrutinized by a competent person . . . ”. A similar warn-
ings can be found in Detrekoi (1986). These observations
clearly indicate that we are still unable to get rid of the gross
errors.

The important distinctive character of the category (b) is
that this kind of outliers are not directly related to measure-
ment data, but they have relevance to the exploratory analy-
sis of data and/or examinations of appropriateness of mod-
els or model-fitting analysis. In recent years, in the model-
fitting analysis of residuals of regression models the term
outlier are becoming apparent. As far as we know, it is
Srikantan (1961) who first observed that the model-fitting
analysis in regression can be considered as an outlier detec-
tion problem. Following Srikantan, Stefansky (1971, 1972),
O’Gorman and Myers (1987) and many others considered
the model-fitting analysis in regression in context of out-
liers.

The outliers of the category (c) can be thought of as
a marked manifestation of random fluctuation of intrinsic
variability of such random phenomena that belong neither
to the category (a) nor (b). This category can be easily un-
derstood by the following examples. The life span of an ele-
mentary particle can be considered a certain concrete num-
ber. However, this attitude is satisfactory only for some sim-
ple considerations. The situation changes, when a closer ex-
amination is given to the question. In more precise setting,
the life span is a random variable. The high precision tech-
nology measurements used in modern physics from time
to time detect large fluctuations. Another example from
physics. Let us consider a certain kind of gas contained
in a closed vessel. We all know that the walls of the ves-
sel are affected by the pressure of the gas which is usually
considered to be a certain number. On the other hand, the

pressure of the gas is the mean effect determined by the
number and velocity of molecules hitting the walls of the
vessel per time unit. If we denote the effect of a single
molecule identified by index i by ξi and suppose that the
vessel contains n molecules, then the pressure of the gas is
ξ1+ξ2+···+ξn

n , where ξ1, ξ2, . . . , ξn are independent and identi-
cally distributed random variables. The gas pressure is usu-
ally “almost” constant. In fact, the precise measurements of
modern physics indicate small fluctuations which are usu-
ally neglected. But sometimes, there may occur cases where
the fluctuations reach relatively big enough amount. In both
examples, it is usual practice that physicists speak about
fluctuations or large fluctuations, and they are unfamiliar
with the mathematical term “outlier”, indeed, for them the
term large fluctuations are the same as outliers. Here we
see that these outliers are neither “gross errors” nor “errors
arising from mathematical modelling”.

The following example is an everyday life analogue of
the first example. It is obvious that human life span is also
an random variable like that of elementary particle. In a
concrete community it is a usual practice to speak about the
life expectancy or average life. However, there may occur a
rare case of very high longevity. This is again such outlier
that belongs neither to the category (a) nor (b), because—
obviously—the such longevity is—again—neither “gross
error” nor “error arising from mathematical modelling”. A
little more detailed consideration of this simple example
provides us with some useful insights into the significance
of probabilistic background for correctly understanding the
essence of outliers. From media we are sometimes in-
formed that somewhere somebody celebrated—say—105th
birthday and so on. Here we are soon be faced the question
that which numbers can actually present the life span of a
person, if we prefer a concrete number for the life span.
Is there exist such a number that below which the life is
achievable, but beyond which the life is impossible? Both
intuition and logic support the non-existence of such precise
limit, because otherwise we would have a clear-cut maximal
age for a person. However, based on common sense, we all
will hesitate to admit that somebody will reach an age of—
say—300 years. Consequently, there is a contradiction or
paradox. This kind of difficulty is easily solved by giving
a probabilistic background to the problem in question. In-
deed, the theory and practice of modern actuarial science
admit no bounds to human life span. Instead carefully com-
piled mortality tables which are nothing other than numeri-
cal realization of a probability distribution are used.

These three examples have a common feature that the
quantities in question are ab initio kinds of “natural random
variables”, and the “fluctuations of considerable size”, i.e.,
outliers are apparent to be an intrinsic feature of the ran-
domness. Through these illustrative examples we clearly
see that these outliers are neither “the gross error” nor “the
error arising from model fitting”.

4. The Asymptotic Growth Rate of Functions and
Related Asymptotic Notations

The comparing of the rates at which functions of real
or integer variable grow as their argument becomes large,
plays a considerable role in various areas of theory and ap-
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plications like as advanced calculus, asymptotic analysis,
limit theorems of probability and theoretical computer sci-
ence. The mathematical technique for such comparison first
appeared in number theory which is an important branch of
pure mathematics. Paul Bachmann German number theorist
treated different problems of number theory in his five vol-
ume work appeared in the period of 1892–1905. In the sec-
ond volume titled Analytische Zahlentheorie and appeared
in 1894 he writes: “. . .

τ(n) = n log n + O(n),

wenn wir durch das Zeichen O(n) ein Grösse ausdrücken,
deren Ordnung in Bezug auf die n Ordnung von n nicht
überschreitet. [. . . where the notation O(n) stands for ex-
pressing such a quantity the order of which with respect
to n does not exceed the order of n]”. This fact clearly
indicates that it is Bachmann (1894) who first introduced
a well-chosen mathematical notation for handling asymp-
totic growth rate of functions of integer number, namely,
the O-notation (the big-oh notation). This initial step was
much developed by Edmund Landau (1877–1938) German
mathematician who mainly contributed to number theory
and calculus. A seven-page special section titled Analytis-
che Zahlentheorie: Einleitung of the second volume of the
book: Vorlesungen über Zahlentheorie von Edmund Lan-
dau, Leipzig, 1927, considers the precise mathematical def-
inition of the O-notation and introduces o-notation (the
little-oh notation) for functions of real variable, i.e., Lan-
dau further develops the O-notation of Bachmann and in-
troduces the new concept of order of growth rate denoted
by o-notation. In addition, he presents the mathematical
techniques for the comparison of asymptotic growth rate
in an easy-to-understand and consistent way based rigorous
definitions and notations. He also reformulated and refined
many important asymptotic results of calculus and number
theory which were known at that time in terms of asymp-
totic notations developed by him. Landau established two
basic rules for algebraic manipulations that enable consid-
erable simplifications in asymptotic calculations:

o(g(x)) = o(g(x)) + o(g(x))

O(cg(x)) = O(g(x))

Using these algebraic rules, he refined the asymptotic for-
mula for distribution of prime numbers. Under the influ-
ence of Landau’s excellent presentation of the comparison
of asymptotic growth rate functions, these techniques grad-
ually became a commonly used standard method in ad-
vanced calculus, asymptotic analysis and recently in the
studies of the efficiency of algorithms in computer science.
Knuth (1976) further developed by introducing �-and �-
notations. These developments are arisen from the need of
theoretical computer science.

In what follows, we consider the essential elements of the
mathematical techniques of asymptotic comparisons and
asymptotic notations simplified, but rigorous mathematical
setting.

Definition 4.1. A function f (·) is said to be of smaller
order than g(·) as x −→ ∞, if

lim
x→∞

f (x)

g(x)
= 0. (4.1)

In this case, we write f (x) = o(g(x)) as x −→ ∞, and we
read as “ f of x equals little-oh of g of x , or in short, “ f is
little-oh of g”.

The meaning of the definition is to convey the idea that
the function f (·) is more quickly than g(·) tending to zero,
i.e., quickly decreases, as x grows. Here the attentive reader
can observe that we are concerned with the rate of decrease
rather than growth, as being “contradicting” to the section
title. This is because that in the asymptotic analysis it is
usual practice to speak about “algebraic growth”, when the
quantity actually decreases. On the other hand, the most of
the applications of the asymptotic analysis are in the growth
case. Essentially, we are considering the rate of change of
functions.

Remark 4.1. In the special case when g(·) =
constant = 1, the formal application of (4.1) gives us that
limx→∞ f (x)

g(x)
= limx→∞ f (x)

1 = limx→∞ f (x) = 0. This
leads to the commonly used practice that f (x) = o(1), as
x −→ ∞. Although this means that simply function f (x)

itself tends to 0, as x −→ ∞, it turns out that the use of this
simple symbol is very convenient in many circumstances.

Definition 4.2. Functions f (·) and g(·) are said to be
growing at the same rate as x −→ ∞, if

lim
x→∞

f (x)

g(x)
= C, (4.2)

where C is finite positive real number. We denote this by
writing f (x) = O(g(x)), and read as “ f of x is big-oh of
g of x”, or in short, simply “ f is big-oh of g”.

In recent years, it is becoming a usual practice that in the
above definition instead of (4.2.) the condition∣∣∣∣ f (x)

g(x)

∣∣∣∣ ≤ C (4.3)

is often used. The (4.2.) implies the (4.3.), but the impli-
cation is not reversible, and this means that the definition
given by the condition (4.3.) is more general than Defini-
tion (4.2.)

Remark 4.3. The notation O(1) means that the func-
tion f (·) is bounded, as x −→ ∞.

One special case of Definition (4.2.) is worth looking
at: We say that functions f (·) and g(·) are asymptotically
equivalent as x −→ ∞, if in Definition 4.2 C = 1, and we
indicate this by the notation f (x) ∼ g(x), as x −→ ∞. It
is evident that f (x) ∼ g(x), as x −→ ∞, is the same as
f (x) = g(x)(1 + o(1)), as x −→ ∞.

The basic properties of the asymptotic notations are ex-
pressed as the algebraic manipulation rules that are very of-
ten useful in calculating complicated functions involved in
asymptotic analysis. The most important ones among these
properties are as follows:

1) o(g(x)) ± o(g(x)) = o(g(x));

2) O(g(x)) ± O(g(x)) = O(g(x));

3) o(cg(x)) = o(g(x)), where c �= 0;

4) O(cg(x)) = O(g(x)), where c > 0;

5) o(g(x)) · (q(x)) = o(g(x) · (q(x));
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6) O(g(x)) · (q(x)) = O(g(x) · (q(x));

7) o(cg(x)) = O(g(x));

8) O(O(g(x))) = O(g(x));

9) o(O(g(x))) = o(g(x));

10) O(o(g(x))) = o(g(x)).

Remark 4.4. In the applications of the asymptotic no-
tations to advanced calculus, not only the case of the argu-
ment x approaching to ∞, but the case when x −→ x0,
where x0 any real number, is also considered. In the present
paper, we do not need the latter case. The readers interested
in this aspect are referred to any comprehensive textbooks
and monographs on modern advanced calculus, for exam-
ple, to Finney and Thomas (1990).

5. The Laws of Large Numbers as Probabilistic-
Theoretic Background for Sample Mean

We often encounter the arithmetic mean in various areas
ranging from daily life to scientific analyzing data. The use
of the arithmetic mean in mathematically processing the re-
sults of measurements goes back to the 3th century B.C. In
observational astronomy, later in geodesy and geophysics
the arithmetic mean had for long period been used as a basic
mathematical tool for the improvement of precision of mea-
surement results. As Plackett (1958) remarks, the Babylo-
nian astronomers developed a systematic mathematical the-
ory based on simple arithmetic schemes for the calculation
of motions of the sun, moon and planets.

At the end of 16th century, Tycho Brahe, Danish as-
tronomer observed that by using the arithmetic mean of ob-
servational data the accuracy of measurement can be im-
proved, and he systematically used to eliminate measure-
ment errors (Dreyer, 1890). After Tycho Brahe’s experi-
ence, it gradually became commonplace to use the arith-
metic mean as an estimate of the true value to be deter-
mined.

From these facts we can conclude that (i) the arithmetic
mean already gained important applications in astronomy,
geodesy and geophysics long before the emergence of mod-
ern probability theory; (ii) it is empirically established that
the arithmetic mean possesses some kind of stability around
a fixed number which can be considered as the true value of
the object under measurement.

These empirical findings, however, lacked in a sound
mathematical foundation given in terms of probability. The
foundation is the law of large numbers (LLN). As Pear-
son (1925) remarks, the LLN was discovered by James
Bernoulli in 1713. After Bernoulli, Poisson (1837) made
an important contribution to the developments of the LLN.
He introduced the term of the law of large numbers for in-
dicating the universal character of the stabilization of rela-
tive frequencies and arithmetic mean when the number of
observations related to the same phenomenon and the same
circumstances becomes very large, independently of the na-
ture of individual phenomenon. We would like to empha-
size that among these diverse phenomena Poisson consid-
ered such geophysical observation like the mean sea level.
Unfortunately, the modern theory of the LLN is extremely

abstract, and the historical roots of its practical applications
have been disappeared.

In a simplified setting, the main topic of the LLN is the
study of convergence of the average

ξ1 + ξ2 + · · · + ξn

n
(5.1)

of random variables ξ1, ξ2, . . . , ξn .
Depending on the type of convergence, in modern prob-

ability theory there are two kinds of law of large num-
bers: weak law of large numbers (WLLN) and strong law
of large numbers (SLLN). The statement of the WLLN is
that the arithmetic mean of independently and identically
distributed random variables, for large n, approximately is
equal to the expectation with probability large enough. The
SLLN asserts the same, but with probability one. There-
fore, the statement of the strong law of large numbers is
more stronger than the weak law.

Theorem 5.1. (Weak law of large numbers (Khinchine
(1929))). The sequence of random variables

ξ1, ξ2, . . . , ξn, . . . (5.2)

is assumed to be independently and identically distributed.
If their expectations exist, i.e., E(ξk) = a < ∞, k =
1, 2, . . ., then for any small ε > 0, we have

P
(∣∣∣∣ξ1 + ξ2 + · · · + ξn

n
− a

∣∣∣∣ ≤ ε

)
−→ 1, (5.3)

as n −→ ∞.
Remark 5.1. In the theory of probability the consider-

ation of independently and identically distributed random
variables is very often and this expression is abbreviated as
iid. Therefore, the above theorem is in the “language” of
probability theory. However, in the language of mathemati-
cal statistics the finite set of iid random variables is nothing
other than sample. Taking into account this delicate nuance,
the above theorem is easily translated into the language of
statistics as follows:

Theorem 5.2. (Weak law of large numbers (Khinchine
(1929))). Let

ξ1, ξ2, . . . , ξn (5.4)

be a sample. If their expectations exist, i.e., E(ξk) = a <

∞, k = 1, 2, . . . , n, then for any small ε > 0, we have

P
(∣∣∣∣ξ1 + ξ2 + · · · + ξn

n
− a

∣∣∣∣ ≤ ε

)
−→ 1, (5.5)

as sample size n −→ ∞.
Kolmogorov (1930) proved that the version of the SLLN

is also valid under the conditions of the Khinchine’s WLLN,
i.e., the SLLN holds under the conditions of Theorem 5.2.

Theorem 5.3. (Strong law of large numbers (Kol-
mogorov (1930))). Let

ξ1, ξ2, . . . , ξn (5.6)

be a sample. If their expectations exist, i.e., E(ξk) = a <

∞, k = 1, 2, . . . , n, then , we have

P
(

lim
n→∞

ξ1 + ξ2 + · · · + ξn

n
= a

)
= 1. (5.7)
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The meaning of Khinchine’s LLN is that the probability
that the arithmetic mean (5.1) will differ from its mathemat-
ical expectation by less than any previously chosen ε > 0
tends to one, as the sample size increases. The meaning of
Kolmogorov’s SLLN is that this statement takes place with
probability one.

This means that both laws of large numbers assert that by
increasing the number of measurement the precision can be
improved at an arbitrary degree, or expressing in terms of an
“idealized” case of infinite number of measurements, “the
true” value can be achieved. However, we all know that the
“infinite number of measurements” can never be achieved.
In real-life practical circumstances the number of indepen-
dent measurements is to be limited because of the cost of
running measuring equipments, time, manpower and so on.
On the other hand, due to modern developments in mea-
surement technology, the possibility of the large number of
repeated measurements is ever increasing process. There-
fore, the role of the laws of large numbers will increase.

6. The Central Limit Theorem as Quantitative
Probabilistic Refinement of the Laws of Large
Numbers

James Bernoulli, the inventor of the LLN, was not con-
cerned with the numerical determination or estimation of
probability content, instead his aim was to establish the fun-
damental law which shows the stabilization process of cer-
tain random phenomena like as the frequency of probability
and the arithmetic mean of random quantities. In 1733, De
Moivre discovered the central limit theorem (CLT) for the
special case of binomial random variables and applied it to
calculating probabilities related to insurance problems. Af-
ter De Moivre, Laplace (1810, 1812) formulated and proved
a rather general version of the CLT and applied it to the
problem of determining the probability that the mean in-
clination of orbits of any number of comets is within pre-
scribed error limits. With the help of his CLT, Laplace cal-
culated the error limits for at that time known 97 comets.

In the light of the above facts of historical developments
we are in position to easily grasp the connection between
the LLN numbers and CLT and its meaning. To see this
situation clearly, we below consider the following special
case of the the central limit theorem.

Let
ξ1, ξ2, . . . , ξn (6.1)

be a sample with probability distribution function F(·) hav-
ing the mathematical expectation a and variance σ . We in-
troduce the following notations.

Fn(x) = P

(
ξ1+ξ2+···+ξn

n − a

σn−1/2
< x

)
(6.2)

= P
(

ξ1 + ξ2 + · · · + ξn − na

σn1/2
< x

)
(6.3)

Theorem 6.1 (The Central Limit Theorem for Sam-
ple). Let ξ1, ξ2, . . . , ξn be the (6.1) sample. Then, we
have

Fn(x) −→ �(x), (6.4)

as sample size n −→ ∞. Here �(·) denotes the probabil-
ity distribution function of the standard normal distribution.

We see that (6.4) is much stronger statement than (5.7),
because the (6.4) supplies us with a quantitative estimate for
the probability of the deviation of the sample mean from its
mathematical expectation, while the LLN proves only the
convergence to the mathematical expectation. But the LLN
are valid,—even—when the random variables have no finite
variance, if we consider the LLNs in the form of Khinchine
and Kolmogorov. In this sense, the LLN are more general
than the CLT. Therefore, we should use both the LLN and
the CLT for the data analysis. However, the LLN should be
used not in the conventional form, but in the form that is
presented in the previous section, because the conventional
form of the LLN requires the existence of the variance in
order merely to supply us with a mathematically elegant
proof of the LLN based on Chebyshev inequality.

Comparing conditions of theorems in the previous sec-
tion with that of the above CLT, we see that the require-
ments for the probability distribution of the parent popu-
lation, i.e., for the probability distribution that models mea-
surement data is changed towards a little more stronger con-
dition, because the existence of the higher order moments
imply that of the lower order moments and the reverse of
this statement does not hold in general. The condition in
the case of the LLN was only the existence of first order
moment, i.e., mathematical expectation, while in the case
of the CLT the existence of second order moment, i.e., vari-
ance. If we continue this way of thinking, then the third or-
der moment should be the next step requirement. The most
significant and interesting result in this area of mathematical
research is the following theorem discovered independently
from each other by Berry (1941) and Esseen (1942).

Theorem 6.2. (Berry-Esseen Theorem). We supply
the above CLT with the condition that E(

∣∣ξ 3
1

∣∣) exists. Then
the inequality

|Fn(x) − �(x)| ≤ C√
n(1 + (|x |)3)

E(|ξ1 − a|3)
σ 3

(6.5)

holds for all x , where C is a universal constant.
Remark 6.1. We recall that ξ1, ξ2, . . . , ξn can be con-

sidered as being different “replicas” of only one random
variable, or—in other words—different independent real-
izations of the random variable that serves as a model for
the measurement process, because these random variables
constitute the statistical sample. This is simultaneously the
condition of both Theorems 6.1 and 6.2. In this sense, we
write E(

∣∣ξ 3
1

∣∣) instead of

E(
∣∣ξ 3

1

∣∣) = E(
∣∣ξ 3

2

∣∣) = . . . = E(
∣∣ξ 3

n

∣∣).
The same remark applies to Inequality 6.5, i.e., the inequal-
ity is valid for any of the random variables ξ1, ξ2, . . . , ξn .

The right-hand side of Inequality 6.5 is the absolute dif-
ference between the probability given by 6.2 or 6.3 and the
probability distribution function of the standard normal ran-
dom variable. This difference, i.e., the distance of an ap-
proximation of the the first probability by the second one is

from above estimated by the quantity C√
n(1+(|x |)3)

E(|ξ1−a|3)
σ 3

which depends on an universal constant C , n, x and the
quotient of 3rd and 2nd order moments. From (6.5) we
see that the quality of the approximation is of the order of
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o( 1√
n
) and o( 1

(1+(|x |)3)
), i.e,. the approximation can be im-

proved either by increasing repetition of measurements or
the absolute value of x , or the both of them. The most re-
markable finding in this analysis of Theorem 6.2 is that if
the 3rd order moment exists, then for sufficiently large x ,
independently from the probability distribution type of the
sample, the probability Fn(x) can be asymptotically evalu-
ated by the standard normal distribution. We will return to
this important fact in Section 8 in connection with Cheby-
shev inequality.

The question of estimating the universal constant has
been the subject of intensive research. In their original pa-
pers both Berry and Esseen obtained upper bound. Esseen
(1956) gave the following lower bound.

3 + √
10

6
√

2π
≤ C (6.6)

Zolotarev (1967) proved that C < 0.9051. The best
upper bound was obtained by van Beer (1972) reducing
Zolotarev’s result to 0.7975. Consequently, Theorem 6.2
can be extended by the following inequality:

3 + √
10

6
√

2π
≤ C < 0.7975. (6.7)

More information on the CLT can be found in Monhor
and Takemoto (2004).

7. The Large Deviations as Probabilistic-
Theoretic Models for Outliers

During the past two-three decades, one important theory
has emerged within the modern probability theory. This is
the theory of large deviations. In recent years, the theory
of large deviations has rapidly been developed in different
directions finding various applications to such diverse areas
like statistics, operations research, information theory, sta-
tistical physics and engineering. The theory of large devi-
ations deals with the probabilistic descriptions and asymp-
totic analysis of random events where a sum of random vari-
ables deviates from its mean by more than “normally ex-
pected” amount and generalizations of these results to such
abstract mathematical spaces like Banach space and topo-
logical vector space. Bearing in mind the intention of ap-
plying some results and ideas of the large deviation theory
to the clarification of the concept of outlier, we reformulate
this description—in simplified setting—in more concrete
terms as follows: the theory of large deviations deals with
asymptotic evaluating the probabilities that ξ1+ξ2+. . .+ξn

exceeds a large threshold value.
If we think that this threshold value as the boundary that

determines outlier, then we will be in position to estimate
probabilities for occurrences of outliers, and thereby we
also put a probabilistic background for outliers. The most
important point here is that the threshold value is not a con-
crete number, but it can flexibly and functionally be con-
trolled by the large deviation probability relationship. This
flexibility is in a complete harmony with the nature of the
outliers. This is a completely new approach to understand-
ing the nature of outliers in terms of probability theory,
and—as far as we know—the results of the large deviation

theory have not yet been used in outlier problems, geodesy,
geophysics and astronomy.

The main emphasis of LLN presented in Section 5 was
on the probabilistic law that describes the stability in sam-
ple mean. However, in real-life situations there may some-
times arise considerable fluctuations or deviations from the
mean. By incorporating some useful results from the large
deviations theory into the LLN, these real-life situations can
be taken into consideration. Bahadur and Rao (1960) pub-
lished a theoretical paper titled “On deviations of sample
mean”. In the paper by Bahadur and Rao (1960) the asymp-
totic behavior of the probability

Pn = P
(

ξ1 + ξ2 + · · · + ξn

n
≥ d

)
, (7.1)

where d to a certain extent is arbitrary real number, was
studied. One of the main results of this paper can be formu-
lated in the following simplified form.

Theorem 7.1. (Bahadur and Rao (1960)). There ex-
ists a sequence of positive real numbers that

Pn = ρn

√
2πn

bn((1 + o(1)), ln bn = O(1), (7.2)

where n −→ ∞.
The above theorem is non-constructive, because the con-

stants ρ and bn are not given in an explicit form. But the
existence of large deviations and their dependence of the
number of measurements is given in the functional form.

The asymptotic analysis of probabilities for large devi-
ations can be considered as modern developments of the
CLT. We here present the results due to Cramer (1938) and
Linnik (1961).

Theorem 7.2 Under the condition that E(exp(λξ)) ex-
ists for some λ > 0 and for positive x = o (

√
n), we have

the following asymptotic relationship:

1 − Fn(x)

1 − �(x)
= exp

{
x3

√
n

}
λ

( x

n

) [
1 + O

(
x + 1√

n
ϕ(x)

)]
(7.3)

Fn(−x)

�(−x)
= exp

{−x3

√
n

}
λ

(−x

n

) [
1 + O

(
x + 1√

n
ϕ(x)

)]
(7.4)

Here λ(·) is a power series which converges in a certain
neighborhood of zero whose coefficients depend only on
the moments of sample. The ϕ(x) denotes the probability
density function of the standard normal distribution.

Remark 7.1. Multiplying by 1−�(x) the both sides of
Eq. (7.3), we get the analytical expression for the probabil-
ity that a positive outlier occurs. Similarly, Eq. (7.4) gives
the probability for the case of negative outliers. Theorem
(7.2.) is one of the fundamental results in the large devia-
tions theory. The coefficients of the power series λ(·) in the
theorem is not given explicitly. However, computationally
tractable results can be obtained from the theory of large
deviations. Recent results of the large deviations theory can
be found in Cramer (1938), Linnik (1961), Nagaev (1979)
and their references.
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8. Chebyshev Inequality, Outlier Detection and
Data Quality: Probabilistic Background

In the theory of probability the Chebyshev inequality is
the most frequently used tool for proving different conver-
gence processes, and it plays fundamental role in proofs of
various forms of laws of large numbers. This means that the
Chebyshev inequality has pure theoretical “applications” in
the theory of probability.

Chebyshev inequality. If a random variable ξ has fi-
nite variance, then, for any λ > 1, we have

P (|ξ − E(ξ)| > λσ(ξ)) ≤ 1

λ2
, (8.1)

where var(ξ) = σ 2(ξ).
Remark 8.1. If 0 < λ ≤ 1, then we have 1

λ2 ≥ 1, i.e.,
the right-hand side of (8.1) becomes to be equal or greater
than 1. This means that the case 0 < λ ≤ 1 leads to a trivial
inequality. Consequently, the condition that λ > 1 is not a
restriction, but avoids the trivial case.

Remark 8.2. In the theory of probability the following
form of Chebyshev inequality is very often used.

P (|ξ − E(ξ)| > ε) ≤ var(ξ)

ε2
, (8.2)

where ε is an arbitrary small positive number. This form is
suitable for formulating different conditions of convergence
in terms of variance. From the right-hand side of Inequality
(8.2), it is evident that the accuracy of the inequality will
be spoilt, if the positive real number ε decreases. In addi-
tion, the ε should be chosen as small as possible, in order
to prove a convergence of a sequence of random variables.
In this situation Inequality (8.2) is not used for a single ran-
dom variable ξ , but for a sequence of random variables—
say—for ξn , n = 1, 2, . . . . However, in the proving the
convergence of a sequence of random variables, the accu-
racy of the probability for a single random variable is not
essential, but the sequence of variances. This means that
the convergence to zero of the sequence of numerators in
the right-hand side of Inequality (8.2) should be managed.
This goal can be achieved in numerous ways. This is an
important research area in the probability theory.

Remark 8.3. In what follows we will see the Cheby-
shev inequality from a different or a nonconventional angle.
By writing the Chebyshev inequality in the form (8.1), we
have the probability that the deviation of a random variable
ξ from its mathematical expectation exceeds λσ(ξ). The
consideration of the λσ(ξ) supplies us with two kinds of
generalizations of the well-known 3-σ rule. The first one

Probabilities, their bounds and errors

λ P (|ξ − E(ξ)| ≤ λσ(ξ)) = 2�(λ) − 1 P (|ξ − E(ξ)| ≤ λσ(ξ)) ≥ 1 − 1
λ2 absolute error of the bounds

1 0.683 0 0.683

1.5 0.866 0.556 0.310

2 0.954 0.750 0.204

2.5 0.988 0.840 0.148

3 0.997 0.889 0.108

3.5 0.998 0.918 0.080

is that instead of the multiplier 3 we have the multiplier λ.
The second one is that instead of the normal distribution any
such probability distribution that has variance can be con-
sidered. Both of them lead to flexibility. On the other hand,
the increase of λσ(ξ) in Inequality (8.1) will improve the
accuracy of the inequality. This can not be seen from In-
equality (8.1). However, Inequality (8.2) suggests this ob-
servation to us, but it is still not clear. A little later, this
aspect will be studied numerically. By increasing the mul-
tiplier λ, we get larger deviations, i.e., the left-hand side of
(8.1) becomes the probability which is suitable for the con-
sideration of outlier problem. This is the great advantage of
the Chebyshev inequality written in the form (8.1).

Remark 8.4. Chebyshev inequality can be formulated
for the case of sample. Let ξ1, ξ2, . . . , ξn be a sample. Sim-
ple algebraic manipulations give us the following inequal-
ity.

P
(√

n

∣∣∣∣ξ1 + ξ2 + · · · + ξn

n
− E(ξ1)

∣∣∣∣ > λσ(ξ1)

)
≤ 1

λ2

(8.3)
Remark 8.5. Here we would like to mention that

Chebyshev inequality is still subject to mathematical re-
search (Bickel and Krieger, 1992).

We see that the Chebyshev inequality gives an estima-
tion or a bound for the probability of deviation of a ran-
dom variable from its mathematical expectation in terms of
its variance. The viewing Chebyshev inequality as a prob-
ability bound is essential for the translation from its con-
ventional theoretical applications to the practical setting,
and from this standpoint we consider further insights into
Chebyshev inequality. Now, we consider the numerical as-
pect of Chebyshev inequality in comparison with the stan-
dard normal distribution. The random variable ξ in the fol-
lowing table is the standard normal random variable.

The table displays that the accuracy of Chebyshev in-
equality increases with the multiplier λ. This means that
we can use the Chebyshev inequality for an estimation for
large enough deviations. This observation has the follow-
ing two important consequences. (i) Chebyshev inequality
gives a numerically applicable estimate for the probability
of deviation of a random variable from its mathematical ex-
pectation when the deviation is large enough, i.e., it exceeds
more than two or three times its variance; (ii) in connection
with the above observation, we recall that in geodesy and
geophysics, it is commonplace to use the outlier detection
rule which rejects the data of a deviation exceeding more
than three times the variance in conjunction with normal
distribution (for example, in Imanishi, Higashi and Fukuda
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(2002) for the calibration of superconducting gravimeter a
deviation exceeding four times the variance was used to re-
ject outliers).

In the geodetic literature the statistical testing procedure
introduced by Baarda (1968) is often used as an outlier
detection method. In rigorous mathematical setting, the
attitude of Baarda is based on a priori assumed normal
distribution. Consequently, the method of Baarda works
essentially for the case of the normal distribution.

Chebyshev inequality is valid for all the probability dis-
tributions having finite second moment. Consequently, the
Chebyshev inequality holds for all the probability distribu-
tions having finite third order moment. In this case, Berry-
Esseen theorem states that the probability of the deviation
of sample mean from its mean can approximately be evalu-
ated by the normal distribution provided the threshold value
and/or sample size is large enough. Combining this fact
with our finding expressed by the above table, we can con-
clude that Chebyshev inequality can be used in estimating
large deviations probabilities. This finding and the proba-
bilistic aspects presented in previous sections establish an
integrated probabilistic background theory for outliers, es-
pecially outliers of the category of (a). Finally, we would
like to mention that the outliers of the category (a) are es-
sentially connected with the assessment of data quality and
the very origin of the 3-σ rule stems from the statistical
control of quality in mass-production.

9. Concluding Remarks
The most useful and important points of the results of the

present paper can be summarized as follows.
Nevertheless the concept of outlier has a long history,

there has been no definition of it. This is a quite conflicting
situation, it gives contingency for subjective judgements
and misunderstandings. We do not know the reason of this
undesirable situation, and the aim of the present paper is not
looking at this reason. The new generic and categorizing
definition given in Section 3 contributes to the correction of
this unfavorable situation. The categorization integrates the
diverse and heterogenous appearance of outliers and helps
the comprehensive grasp of the concept of outlier, since any
kind of outliers falls to one of the three categories.

We observed that the outlier problems had so far been
treated only in statistical and/or “semi-empirical” way with-
out paying proper attention to probabilistic-theoretic back-
ground. Taking into account this observation, we consider
outliers in the light of achievements of the modern theory
of probability. This novel attitude is realized through the
methodologically new way of the unified presentation of
the LLN, CLT and theory of large deviations. Avoiding the
“theorem-proof” type technicalities very often used by the-
oretical mathematicians, the main emphasis is placed on the
understanding of these important areas of the modern prob-
ability theory and connecting them with the outlier problem.

In terms of the theory of large deviations the new
probabilistic-theoretic model of outliers is given. As far as
we know, it is the first time that the theory of large devia-
tions is considered in the literature of geodesy, geophysics
and astronomy.

We established that Chebyshev inequality gives a numer-

ically applicable estimate for the probability that the dis-
crepancy between the random variable and its mathemati-
cal expectation is large enough. On the other hand, we also
observed that Berry-Esseen theorem indicates that—for all
the probability distributions having the 3rd order moment—
the probability of the sample mean can be approximated by
normal distribution. These findings are useful and new facts
from the standpoint of the consideration of outliers in terms
of probability.

The consideration of the way how Kepler arrived to his
famous law in the light of outlier problem is a new result
from the point of view of history of science, since until now
the analysis by Kepler has never been studied within the
framework of outlier.

Besides these main results, many other useful subsidiary
observations and remarks have been presented. For exam-
ple, Section 4 is not only useful for understanding the sub-
sequent sections, but it is of an independent interest, too. It
may be the first time that here we presented the most im-
portant tools of the modern asymptotic analysis in geodetic
literature.
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Laplace, P. S., Mémoire sur les approximations des formules qui sont fonc-
tions de très grands nombres et sur leur applications aux probabilités,
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