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As part of the 9th generation of the IGRF defined by IAGA, we proposed a candidate model for DGRF 1995
and two candidate models for DGRF 2000. These candidate models, the derivation of which is described in the
present note, are based on the “Comprehensive Model, Version 4 (CM4)”, and on the “@rsted Main and Secular
Variation Model (OSVM)”; two parent models that have been published elsewhere (Olsen, 2002; Sabaka et al.,
2004; Lowes and Olsen, 2004). However, the main field part of OSVM is contaminated by “leakage” of the

ionospheric field and its induced counterpart, which affects mainly the zonal coefficients g(f, g9, ..

., by 1-2 nT.

We describe the reason for this contamination, and present a method to correct for it. Since not only OSVM, but
probably all main field models that are derived primarily from data around local midnight suffer from this effect,
the presented scheme can also be applied to approximately correct these models.
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1. Introduction

The 9th generation of the IGRF (Mandea, 2005) is based
on 6 candidate models for DGRF 1995, and on 5 candidate
models for DGRF 2000. These candidate models have
been submitted to IAGA working group V-MOD (formerly
V-8) in March 2003, and during the IAGA conference in
Sapporo in July 2003 it was decided to take for DGRF 1995
and DGRF 2000 a straight mean of the coefficients of all
submitted candidate models.

This note describes the derivation of three out of the 11
submitted candidate models: a candidate model for DGRF
1995 and two candidate models for DGRF 2000. They are
based on two parent models: the “Comprehensive Model,
Version 4 (CM4)” of Sabaka et al. (2004), and the “@rsted
Main and Secular Field Model (OSVM)” described in Olsen
(2002) and Lowes and Olsen (2004). Special emphasis
has been laid on minimizing model contamination by iono-
spheric and induced contributions. Although ionospheric
field contributions at middle and low latitudes are heav-
ily reduced during night-time hours (which is the reason
for the usual selection of night-time data in geomagnetic
field modeling), secondary currents induced in the Earth
produce field contributions even during night when the pri-
mary, ionospheric, currents vanish. In addition, ionospheric
currents at polar latitudes are almost always present, which
makes their minimization by means of data selection dif-
ficult. Most, if not all, main field models that have been
derived primarily using data around local midnight suffer
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from this effect.

In following we will briefly discuss the parent models
from which our candidate models are extracted, discuss
the effect of “leakage” of ionospheric and induced fields
in main field models, and propose a correction scheme.

2. Candidate Models for DGRF 1995 and 2000
Based on the Comprehensive Model (CM)

These candidate models are based on the main field part
of the Comprehensive Model CM4 (Sabaka et al., 2004),
which is an extended version of the model described in
Sabaka et al. (2002). It is based on data from the satellites
POGO (magnetic scalar data), Magsat (scalar+vector data),
Orsted (scalar + vector data) and CHAMP (scalar data) as
well as on observatory hourly mean values spanning the
years 1960 to 2000. The model attempts to describe the
major quiet-time contributions to the Earth’s magnetic field
(core and crustal fields, fields due to currents in the iono-
sphere and magnetosphere, and due to secondary, Earth-
induced, currents) by co-estimation of all these sources.
About 2.2 million data points have been used to estimate
about 25,000 model parameters.

We will only give a short description of the model; the
reader is referred to Sabaka er al. (2004) for more in-
formation. Software for computing magnetic field val-
ues and extraction of model coefficients can be found at
http://core2.gsfc.nasa.gov/CM/.

The core and lithospheric fields are together expressed as
the negative gradient of a potential function represented by
a degree and order 65 internal spherical harmonic expan-
sion, with secular variation represented by cubic B-splines
through degree and order 13, using a knot spacing of 2.5 yrs.
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A set of static vector biases is solved for at each obser-
vatory, including its breaks. These biases represent small-
scale lithospheric anomalies whose spatial frequencies are
above the spherical harmonic truncation level.

Ionospheric field contributions are expressed as the neg-
ative gradient of a potential function which is expanded in
harmonic functions in a quasi-dipole coordinate system that
is aligned with the ambient magnetic field. Temporally,
these functions are mainly sun-synchronous but are mod-
ulated with annual and semi-annual seasonal variability. In-
duced contributions are accounted for by using an a priori
model of electrical conductivity of the mantle. Solar activ-
ity influence is introduced through an amplification factor,
assumed to be equal for all ionospheric (and corresponding
induced) coefficients, scaled by the Fjo; solar radio flux
values.

Magnetospheric field contributions are cast as the nega-
tive gradient of a potential represented by an external spher-
ical harmonic expansion in dipole coordinates, which has
regular daily and seasonal periodicities. Magnetospheric
ring current variability is modeled as a linear function of the
Dy, index for external dipole terms only. Induced contribu-
tions of the magnetosphere are treated in a similar manner
as the ionosphere and are thus coupled with an internal ex-
pansion via the same a priori conductivity model.

Finally, currents coupling the ionosphere and magneto-
sphere are considered by a toroidal field contribution in
quasi-dipole coordinates.

Our candidate for DGRF 1995 (called DGRF1995-CM)
is a nmax = 10 truncation of the main-field part of CM4 at
epoch 1995.0, rounded to the nearest n'T. Our first candidate
for DGRF 2000 (called DGRF2000-CM) is a npax = 13
truncation of CM4 at epoch 2000.0, rounded to the nearest
0.1 nT.

3. Candidate Model for DGRF 2000 Based on the
Orsted Main and Secular Field Model (OSVM)
3.1 Description of the OSVM
Our second candidate for DGRF2000 is based on the
main field part of the OSVM model (Olsen, 2002). This
model is a spherical harmonic expansion of the static main
field (up to degree/order 29) for epoch 2000 and of the sec-
ular variation (up to degree/order 13). It used @rsted night-
time data (local time between 19:00 and 07:00) spanning
more than two years (March 1999 to September 2001) and
was derived applying new modeling approaches for a cor-
rect statistical treatment of data errors and for considering
external field contributions. About 14,000 scalar data points
at polar latitudes (>50° dipole latitude) were used, together
with about 30,000 scalar data points and about 24,600 vec-
tor triplets at non-polar latitudes. Large-scale magneto-
spheric contributions were estimated up to degree/order 2;
the zonal terms vary with annual and semi-annual periodic-
ity, and terms with degree n = 1 were modulated with the
strength of the magnetospheric ring-current as measured si-
multaneously by globally distributed geomagnetic observa-
tories. In addition, the observatory data were used to con-
strain secular variation (they resolve, however, only 2% of
the model).
The model was estimated using Iferatively Reweighted
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Least Squares with Huber weights to account for the non-
Gaussian data error distribution. Achieved rms misfit at
non-polar latitudes is 2.9 nT for the scalar intensity and
for one of the vector components perpendicular to the mag-
netic field; the third vector component (rms misfit of 6.4 nT
due to attitude noise) was downweighted when estimating
the model. More information on the model and its errors
can be found in Olsen (2002) and Lowes and Olsen (2004).
We believe that the data weighting used in deriving OSVM
has some advantages over that used in deriving CM4, and
wished to use OSVM as the basis of another IGRF candi-
date model.

3.2 Ionospheric leakage: Contributions from iono-

spheric and induced currents

Ionospheric field contributions and their Earth-induced
counterparts were considered during the derivation of CM4.
This, however, was not the case for OSVM (and most other)
geomagnetic field models, and therefore the possibility of
“leakage” of the ionospheric field and its induced counter-
part into the OSVM internal coefficients has to be consid-
ered. We will now investigate the magnitude of this leakage
by looking at the difference between the main field parts of
OSVM and CM4, and by utilizing the ionospheric field as
predicted by CM4 as well as independent models of geo-
magnetic daily variations. After discussion of the nature of
this leakage, we present a scheme of correcting models (like
OSVM) that were derived without considering this contri-
bution.

The left part of Fig. 1 shows the magnetic radial com-
ponent, B,, at ground of the difference between the main
field parts of OSVM and CM4 at epoch 2000, up to n = 8.
The difference is mainly axially symmetric, and its shape
(minima at North pole and southern mid-latitudes; maxima
at South pole and northern mid-latitudes) suggests that the
coefficient gg is a main contributor. This is confirmed by
the peak at n = 3 in the Mauersberger-Lowes spectrum of
the difference, R,(OSVM-CM4), shown in the left part of
Fig. 2.

The main reason for this difference in the main field part
between CM4 and OSVM is the different approaches of
considering ionospheric and induced contributions. They
were co-estimated in CM4, but assumed to be absent in
OSVM. Although ionospheric currents are much smaller
during the night, their induced counterparts still produce a
significant magnetic field contribution, and it must be con-
cluded that the OSVM main field coefficients are contam-
inated by that effect. This “ionospheric leakage” has been
investigated by Lowes and Olsen (2004). They could rea-
sonably estimate the amount of leakage up to n = 8; in
terms of mean-square vector field the leakage amounts to
39 nT?.

Ionospheric contributions depend strongly on iono-
spheric conductivity, which (at non-polar latitudes) is
caused by solar radiation. Due to the absence of solar radi-
ation during the night, ionospheric conductivity is reduced
by 1-2 orders of magnitude. As a consequence, ionospheric
currents, and their magnetic field, are likewise reduced dur-
ing night-time. To minimize contributions from ionospheric
currents, the OSVM had therefore been derived from night-
side data, as is common practice in geomagnetic field mod-
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Fig. 1. Maps of B, at ground (Hammer projection), for n < 8. Left: Difference OSVM minus CM4. Right: Correction for ionospheric leakage.
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Fig. 2. Left: Mauersberger-Lowes spectrum, R,(OSVM-CM4), of the difference OSVM-CM4, before and after correcting OSVM for ionospheric
leakage. The spectrum of the correction is shown by the dashed line. Right: accumulated difference, \/ >l Ri(OSVM — CM4).

eling.

However, magnetic field contributions from Earth-
induced currents do not vanish during night; they contribute
even if night-time ionospheric currents are exactly zero.
This was noticed for the first time by Ashour and Price
(1965). In addition, ionospheric currents at polar latitudes
usually are always present, (i.e. they do not vanish dur-
ing night since polar ionospheric conductivity is produced
by particle precipitation in addition to solar radiation) and
therefore their contributions can not be eliminated by se-
lecting night data.

We illustrate the first effect (contribution from induced
currents at non-polar latitudes) by using the simple exam-
ple of Fig. 3. Its upper part shows schematically, for a given
location, the ionospheric current (for example Jy) for 5 con-
secutive days. (The magnetic field variation at a fixed loca-
tion shows a similar form of the time series.) In the simple
model considered here, ionospheric currents are assumed to

be exactly zero during night-time hours (indicated by the
shaded areas) and are maximum at local midnight. Fourier
decomposition yields

J(T) =ag+aycosT +apcos2T +azcos3T +--- (1)

where T is local time in radians, with 7 = 0 at local
midnight. Only cosine terms contribute; sine-terms are zero
due to the assumed symmetry around local midnight. Note
that ay, the daily average, is not zero.

The time-changing parts of the external currents induce
secondary, induced, currents, whereas a static external field
does not produce any induced field, whatever the conductiv-
ity structure. If for simplicity we assume that the Earth con-
sists of an infinitely conducting inner sphere overlaid by an
insulator, the time series of the induced field at a given loca-
tion has the same shape as the external field, but is smaller
and shifted in origin such that the daily mean of the induced
field becomes zero. (Strictly, we should do this calculation
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daily variation of ionospheric currents, with zero level during night
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Fig. 3. Sketch of the time-change of ionospheric and induced daily variations.

for the time harmonics associated with each spatial, spher-
ical, harmonic.) For such a simple conductivity model, the
transfer function ¢, the ratio between the induced and the
external currents, is independent of the frequency of the ex-
ternal signal (except that it is zero for zero-frequency, i.e.,
for a static field, for any model). Hence the currents induced
by the external currents of Eq. (1) follow as

J(TYy=¢q - (a;cosT + arcos2T + azcos 3T + - --)

2
Note the absence of ag in this expression (since g is zero
for a static field), which means that the daily mean of the
induced currents is zero. Even if the primary, inducing, cur-
rents vanish at night, their induced part does not, as shown
in the lower part of Fig. 3. As a consequence, induced cur-
rents during night are generally non-zero. Their midnight
value can be calculated from the expansion coefficients of
the external contributions (in this example the coefficients
ay) and the response of the conducting mantle (in this ex-
ample the constant g):

JMT =0)=q-) a #0. 3)
k=1

For more realistic mantle conductivity models, for a given
spatial harmonic the response ¢ depends on frequency (and
is no longer real—i.e. there is a phase shift) and thus is dif-
ferent for different & in the above summation. This means
that the shape of the times series of the induced field will be
different from that of the inducing field. However, for each
harmonic the daily means of the induced currents are al-
ways zero, which generally implies non-vanishing induced
currents during night-time.

The above example demonstrates that a direct determi-
nation of the induced magnetic field contributions during
night is possible from the expansion coefficients of geomag-
netic daily variations (Sq variations). To illustrate the mag-
nitude of the effect we have used the models of geomagnetic
daily variations of Malin (1973) and Winch (1981). Both
authors derived spherical harmonic expansions of Sq based
on hourly mean values from more than 100 worldwide dis-
tributed observatories; Malin (1973) for solar maximum

conditions (1957-59, mean solar flux Fjo; = 200 - 10~22
W/(m?Hz)), and Winch (1981) for solar minimum condi-
tions (1964-65, Fig7 = 65 - 10722 W/(m?Hz)). The main
part of geomagnetic daily variations is a local time phe-
nomena, i.e., the current system moves around the Earth
following the movement of the sub-solar point. From the
local-time spherical harmonic expansion coefficients of the
induced field as determined by Malin (1973) and Winch
(1981) we derived the coefficients gs, n = 1-4 of induced
contributions at midnight. These coefficients are listed in
Table 1 and indicate the contamination by induced fields
of main field models that are obtained from local midnight
data.

Using models of the Sg variation that have been derived
solely from observatory data (as is the case for the models
of Malin (1973) and Winch (1981)) it is not possible to infer
the absolute level (cf. the coefficient a( of Eq. (1)) of iono-
spheric variations; only the induced contribution (which al-
ways has zero mean, i.e. does not depend on ag) can be de-
termined absolutely. Estimation of the absolute ionospheric
level, ag, requires a joint analysis of observatory and satel-
lite data, as is done in CM4. Rather than using models of the
Sq variation that are based on observatory data only (with
no information on ag), we use the ionospheric (and corre-
sponding induced) field of CM4 for correcting OSVM for
ionospheric leakage.

The left panel of Fig. 4 shows a snapshot of the magnetic
radial component at ground due to ionospheric (top) and
induced (bottom) currents, as given by CM4, for March, 21
2000, 12:00 UT and a solar flux value of Fig7 = 150-10=%2
W/(m?Hz). The magnetic field of the Sq current system and
its induced counterpart is clearly seen, with up to 40 nT in
B, at mid-latitudes at local noon for the ionospheric and
10—15 nT for the induced field.

The right panel shows the corresponding magnetic field
at each point for local midnight, 7 = 0; note that this is
not a snapshot in time, since local midnight does not oc-
cur simultaneously all over the globe. As expected from
the much reduced ionospheric conductivity at middle and
low latitudes, the ionospheric magnetic field (upper panel)
is close to zero at those latitudes, but reaches values of up to
15 nT at polar latitudes (since the polar ionospheric conduc-
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Table 1. Contribution of ionospheric and induced fields to the main field coefficients gS, n = 1-4. The values for 1957-59 and 1964-65 are derived
from the spherical harmonic expansion of geomagnetic daily variations done by Malin (1973) and Winch (1981), respectively. Contributions as given

by CM4 are for solar maximum.

Fioz 8 I 83 8
[W/(m*Hz)] [nT] [nT] [nT] [nT]
induced, solar maximum (1957-59) 200 - 10722 3.31 0.63 —2.77 —0.26
induced, solar minimum (1964-65) 651072 242 0.17 —0.88 —0.02
induced, from CM4 150 - 10722 3.26 —0.19 —1.40 0.07
ionospheric, from CM4 150 - 10722 —2.08 0.41 —1.07 —0.12
sum, from CM4 150 - 10~22 1.18 0.22 —2.47 —0.05

ionosphere

Fig. 4. Magnetic radial component for March 21, 2000 at ground due to ionospheric (top) and induced (bottom) currents, as predicted by CM4. The
left part shows a snapshot for 12 UT; the right panel shows the field contributions at the respective local midnight (00 LT).

tivity does not vanish during night). However, induced con-
tributions (lower panel) are significant at all latitudes and all
local times. Note that the polar ionospheric field does not
contribute significantly to the induced field. This is proba-
bly due to the fact that it is quasi-stationary (at least during
quiet times). This result should however be taken with care,
since it might be a result of the model parameterization of
CM4 (which is not optimal for describing the variability of
polar current systems).

The midnight fields are mainly independent of longitude
and antisymmetric with respect to the equator, and therefore
dominated by the odd degree zonal coefficients g(l), gg, .
Table 1 lists g0 for n = 1 — 4 produced by the iono-
spheric, respectively induced, part of CM4. There is reason-
able agreement between the induced field contribution as
predicted by CM4 and those derived from the independent
models of Malin (1973) and Winch (1981). Note that the
sign of g(l) is reversed between the ionospheric and induced
fields, and hence these fields tend to cancel each other in g?,

which is the reason for the dominance of gg = —247nT
(compared to g(l) = 1.18 nT) if ionospheric and induced
contributions are combined, and explains the peak atn = 3
in the left panel of Fig. 2.

These numbers would represent the ionospheric leakage
into the OSVM model if all data were taken exactly at local
midnight, and at that solar flux. However, the actual data
window spans local times between 19:00 and 07:00, and
a range of solar flux. It was therefore decided to estimate
ionospheric leakage indirectly, as described in more detail
in Lowes and Olsen (2004). The ionospheric and induced
field contributions, as predicted by CM4, were calculated
for each data point that went into the OSVM modeling, and
the effect on the output coefficients noted. The correspond-
ing radial magnetic field correction is shown in the right
panel of Fig. 1 (which is close, but not equal, to the sum of
ionospheric and induced fields shown in the right panel of
Fig. 4).
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3.3 The OSVM candidate for DGRF 2000

The candidate for DGRF 2000 (called DGRF2000-
OSVM) is a npa.x = 13 truncation of the OSVM internal
field coefficients for epoch 2000, corrected for ionospheric
leakage and rounded to nearest 0.1 nT. In detail:

1) To produce the candidate model we have subtracted
from the OSVM coefficients the estimate of the n < 8
ionospheric leakage, as described in the previous sec-
tion. This reduces the accumulated difference between
CM4 and OSVM, \/ > 1_; Ri(OSVM — CM4), shown
in the right panel of Fig. 2, for n > 2. This accu-
mulated difference may be regarded as an estimate of
the accumulated model error, which is about 5 nT for
degrees up to n = 12 after applying the correction.
Without correction, a 5 nT accumulated error is al-
ready reached at degree n = 5.

2) A full model covariance matrix has been estimated for
the OSVM coefficients. However, Lowes and Olsen
(2004) have shown that, because the modeling ignored
the serial correlation of the residual (mainly magne-
tospheric) noise, the variances quoted for the OSVM
sectoral (n = m) and near-sectoral coefficients were
too small. Similarly, leakage of the day-to-day vari-
ations of the ionospheric field meant that the quoted
variances for the axial and near-axial coefficients were
also too small. Conversely, for other coefficients the
quoted variances were too large. They estimated a
smoothly varying correction factor, which has been ap-
plied to the original OSVM variance estimates.

3) The leakage subtracted in step 1) is only an approxima-
tion. We estimate (somewhat arbitrarily) that the cor-
rection is accurate to about 12% for each coefficient,
corresponding to a (pseudo-random) variance equal to
about 25% of the square of the coefficient. We have
added this variance contribution to the variance pro-
duced by step 2) above.

4) The covariances, a 195x 195 matrix are then estimated
(fairly arbitrarily) using the final variance estimates
(combination of steps 2) and 3)). It is available from
http://www.spacecenter.dk/projects/oersted/models.
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The original OSVM correlation matrix and the
original OSVM covariance matrix, both truncated to
n < 13, are also available at that site.

4. Conclusions

We described the extraction of three candidate models
(one for DGRF 1995, and two for DGRF 2000) for the 9th
generation of the IGRF. These models are based on the
CM4 (Sabaka et al., 2004), respectively the OSVM (Olsen,
2002; Lowes and Olsen, 2004), as parent models. How-
ever, since the low-degree zonal coefficients of the main
field part of OSVM are contaminated by ionospheric and
induced contributions, we derived a scheme to correct for
this contamination, which affects (by 1-2 nT) mainly the
coefficients g(f and gg).

‘We believe that most, if not all, models that have been de-
rived primarily from local night-time data suffer from such
an ionospheric leakage. The presented correction scheme
could also be be applied to approximately correct other
models.
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