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Aeromagnetic analyses have been conducted in and around the Unzen Volcano, Kyushu, Japan, in order to
reveal the subsurface structure of the Unzen graben. First, we applied a magnetization intensity mapping method
to analyze the aeromagnetic anomalies of the central part of the Shimabara peninsula. Magnetization highs
and lows correspond to the Older Unzen (0.15-0.5 Ma) and the Younger Unzen (<0.15 Ma), respectively.
However, the Mayu-Yama volcano is exceptionally high in the Younger Unzen. Moreover, it turns out that
the Pre-Unzen (>0.5 Ma) or localized hydrothermally altered areas show magnetization lows. Next, magnetic
models were constructed from aeromagnetic anomalies, drilling data and the result of magnetization intensity
mapping. Finally, similar to the results of other geophysical data, it turns out that the Unzen graben has the
features of a half-graben, with the northern fault (the Chijiwa fault) down in the western Unzen region and the
southern fault (the Futsu and Fukae fault) down in the eastern Unzen region. Moreover, it clarified that the layers
of low magnetization extend to the near-surface beneath Shimo-Dake, Kami-Dake, and the Unzen hot spring.
These layers of low magnetization reflect the fractured or hydrothermally altered zones caused by the upflow of

geothermal convection that exists in the central part in the graben.
Key words: Aeromagnetic analyses, the Unzen graben, and magnetic structure.

1. Introduction
The Unzen Volcano (Fig. 1) has been formed in the Un-
zen graben in a north-south extensional tectonic stress field
(Tada, 1984). This volcano is cut by east-west trending nor-
mal faults, such as the Chijiwa, Kanahama, Futsu and Fukae
faults, in the central Shimabara peninsula of Kyushu Island,
Japan. The northern and southern boundaries of the graben
are not clear because volcanic rocks have almost entirely
filled the depression. Recently, the Unzen volcano began
phreatic eruptions, in November 1990, and yielded frequent
pyroclastic flows until 1995. Thereby, the eastern Unzen re-
gion was covered with pyroclastic flows (Hoshizumi, 1999).
Rock magnetization depends on the difference in the
sedimentary rock or the volcanic rock, or the generation
process of volcanic rock. Moreover, it changes through
geothermal activity. Therefore, acromagnetic analysis is a
powerful tool for seeing the subsurface distribution of tec-
tonic and geothermal structures. The analysis can tell us
‘how the Unzen volcano and the Unzen graben was formed’
or ‘in what place the volcanic activity has been generated’
by clarifying the magnetic structure of the volcanic edifice.
Moreover, future change of the structure associated with
volcanic activity can be studied with repeat aeromagnetic
surveys. Among previous aeromagnetic surveys in this re-
gion, only Nakatsuka (1994) presented an outline structure
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of the graben from the data analysis of a high-altitude aero-
magnetic survey in 1991. The analysis demonstrated the
tendency that the part of the surface covered with magne-
tization highs forms deep inside the graben. The problem
of Nakatsuka (1994) is that uniform magnetization was as-
sumed for the whole of the Unzen Volcano and that geolog-
ical information or drilling data were not considered.

Recently, information on the subsurface geology and
ages of Unzen volcanic rocks was acquired in more detail
by the Unzen Scientific Drilling Project (USDP). Drilling
data of USDP especially clarified the growth history and
subsurface structure of the Unzen Volcano (Uto et al., 2002;
Hoshizumi et al., 2002). Therefore, we performed a more
detailed magnetic analysis that reflects this geological in-
formation and existing drilling data to reveal the detailed
subsurface structure of the volcano and its surrounding ar-
eas.

In this paper, we aim to clarify the magnetic structure
of the Unzen graben, which has developed in close rela-
tionship with the volcanic activity, and to discuss the tec-
tonic and geothermal subsurface structure based on these
results. First, we reanalyzed the aeromagnetic data of Au-
gust, 1991 (Nakatsuka, 1994) in order to clarify the regional
spatial distribution of the geology in the central part of
the Shimabara peninsula. Then, we reveal 2.5-dimensional
models for three-dimensional interpretation and discuss
these results based on the other geophysical and drilling
data accumulated so far.
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Fig. 1. Topographic map of the central Shimabara Peninsula. Contour interval is 100 m. Box A shows the aeromagnetic data area

used in this study.

(above sealevel) of the top surface of the basement rocks of the Unzen volcano.
MA=Mayu-Yama; IN=Inao-Yama; IW=Iwatoko-Yama; FG=Fugendake; HS=Heisei-Shinzan; MI=Maidake; TK=Torikabuto-Yama;

(2002).

Solid circles of UZ-1 to 7, and USDP-1 and 2 show the locations of drilling sites and numerals show the altitude

Thick lines indicate normal faults after Hoshizumi et al.

KN=Kunimidake; KU=Kusenbudake; MY=Myokendake; NO=Nodake; YA=Yadake; TA=Takaiwa-Yama; SA=Saruba-Yama; S-D=Shimo-Dake;
K-D=Kami-Dake; UZ-HS=Unzen hot spring; OB-HS=Obama hot spring.

2. Geologic Framework

The geology in the Unzen graben can be summarized, af-
ter Hoshizumi et al. (1999) and Hoshizumi et al. (2002),
as follows. During the past 500,000 years, the Unzen Vol-
cano has erupted lavas and pyroclastics of andesite and
dacite composition in association with the development of
volcano-tectonic graben. The Unzen Volcano can be di-
vided into the Older Unzen (150-500 ka) and the Younger
Unzen (0-150 ka) volcanoes. The Younger Unzen vol-
cano consists of the No-Dake, Myoken-Dake, Fugen-Dake,
and Mayu-Yama volcanoes, in order of oldest to youngest
(Fig. 1). As high ridges west of these volcanic edifices have
acted as a topographic barrier, no volcanic products younger
than 180 ka have reached the western half of the Unzen
Volcano. The Older Unzen volcano is exposed mainly in
the western part of the Unzen volcano and underlies the
Younger Unzen volcano in the eastern part. In addition,
the Older Unzen volcano is characterized mainly by effu-
sions of thick lava flows, while the Younger Unzen by the
formation of lava domes and their collapsed pyroclastic de-
posits. The Pre-Unzen (>500 ka) volcanics reach to near
the surface on the south of Kanahama fault (see Fig. 2). The
drill holes UZ-1 to 6 showed the altitude (above sealevel)
of the top surface of basement rocks of Unzen volcano (see
Fig. 1). Recently, in the Unzen Scientific Drilling Project
(USDP), two drillings USDP-1 and 2 penetrated the Unzen
volcanic products and reached the Pre-Unzen pyroxene an-
desite of 500 ka at depths of 680 and 1180 m, respectively.

Inoue and Takemura (2002) inferred the outline of the
subsurface structure around the Unzen volcano by two-
dimensional gravity data analysis with constraints of ge-

ological data obtained from these drillings. Their result
shows that the depth to the basement inside the graben is
greater on the south side in the eastern Unzen, while the
depth is greater on the north side in the western Unzen. The
geological cross-section based on two sets of drilling data,
USDP-1 and 2, also indicates that the depth is greater on the
south side in the eastern foot of the Unzen volcano.

In geothermal areas, hydrothermal alteration typically
destroys the magnetic signature of volcanic rocks either by
completely removing the iron or by converting magnetite
to hematite, which has a very low magnetic susceptibility
(Finn and Morgan, 2002). The drilling data (UZ-1 to 6) of
NEDO (1988) showed that the geothermal signs suggesting
geothermal convection systems are distributed in the ‘Un-
zen hot spring’, ‘Obama hot spring’, and ‘Shimo-Dake or
Kami-Dake’ inside the Unzen graben of the western Un-
zen region. In addition, hydrothermally altered material was
found in those areas, and it was especially more remarkable
around the Unzen hot spring, Kami-Dake and Shimo-Dake.
An area of positive SP anomaly (NEDO, 1984; Hashimoto
and Joint Research Group of Universities for Unzen Vol-
cano, 1995a) is located around the Unzen hot spring, and
expands in an east-west direction almost in parallel and
about 1 km south of the Kusenbu fault. In the eastern part of
the Unzen Volcano is the Shimabara hot spring which lies
to the east of Mayu-Yama.

The magnetization derived from the magnetic survey is
equivalent to the sum of the natural remanent magnetization
(NRM) and induced magnetization. Here the total mag-
netization primarily reflects the variations in NRM inten-
sity, because the NRM intensity in volcanic rock is gener-
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Fig. 2. Simplified geological map of the central Shimabara Peninsula, after Hoshizumi et al. (2002).

ally higher than induced magnetization. In a paleomagnetic
study, Tanaka et al. (2004) measured NRM intensities of
many specimens from the Unzen Volcano, and found that
the NRM intensities of the Pre-Unzen are also smaller by
one order of magnitude than the Younger or Older Unzens.

3. Aeromagnetic Data

Concerning the Unzen Volcano, among several data
sources of aeromagnetic surveys conducted at different
times with varying survey specifications (NEDO, 1988;
Nakatsuka, 1994; Mogi et al., 1995; Okubo et al., 2005),
the following data set is useful to discuss the tectonic and
geothermal subsurface structure of the Unzen graben.

An aeromagnetic survey covering the central part of the
Shimabara peninsula was carried out in August, 1991, after
the commencement of a recent eruption (Nakatsuka, 1994).
Although it was before the formation of the Heisei Dome,
the data from this survey is still useful, because we don’t
discuss the Heisei Dome in this report. A total of 26 traverse
lines in the E-W direction and five tie lines in the N-S direc-
tion were recorded at an altitude of 7500 ft (2300 m) above
sealevel. Average line spacing of the traverse lines is about
500 m, uncovering above the summit lava dome. Nakatsuka
(1994) did the data reduction and the analysis as follows:
(1) The data were corrected for the diurnal variations of
the magnetic field, (2) values of the International Geomag-
netic Reference Field (IGRF 1990) were removed from the
data, (3) the average terrain magnetization was estimated as
2.9 A/m from the statistical analysis, and (4) the terrain-
corrected anomaly was derived as a result of subtracting
the effect of the uniform magnetization of the terrain. This
terrain-corrected anomaly is shown in Fig. 3. Nakatsuka
(1994) presented a three-dimensional rough model of the
graben from the analysis of the terrain-corrected anomaly.
However, further analysis including geological data was not
carried out.

Therefore, in order to discuss the tectonic and geother-

mal subsurface structure in the Unzen graben in more de-
tails, we have re-analyzed the same data. New magnetic
modeling was performed based on the results of magnetiza-
tion intensity mapping in combination with drilling data of
UZ-1 to 6 and USDP-1 and 2.

4. Magnetization Intensity Mapping

The methods of magnetization intensity mapping were
applied to the data after removing the effect of the topo-
graphic relief of the uniformly magnetized terrain, and the
model of the distribution of magnetization intensities was
derived by inverse analysis. There are a lot of examples
leading to an effective analytical result (e.g. Okuma et al.,
1994; Nakatsuka, 1995; Okuma, 1998; Okubo et al., 2005).

Therefore, in order to obtain information on the regional
subsurface structures such as lavas, pyroclastic flows, and
fractured or hydrothermally altered areas, we also applied a
magnetization intensity mapping on the assumption that the
magnetic anomalies are caused by the terrain magnetized
in the same direction as the Earth’s magnetic field (a rea-
sonable assumption given the young (<0.3 Ma) age of the
Unzen) and the magnetization intensity varies only laterally.
We will now describe this method.

First, we considered the magnetic anomalies caused by
an assembly of prismatic bodies forming the volcanic ter-
rain (Fig. 4). The total anomaly g; for all prismatic bodies
can be written as

gi=y wy-J;  (=12..n). ¢))
j=1

Here, w;; is the geometrical factor of the jth source prism
for the ith observation point (Bhattacharyya, 1964) and J;
indicates magnetization of the jth prism. » and m denote
the number of observation points and the number of source
prisms, respectively.

If we have the observation f; (i = 1,2,...,n) of the
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Fig. 3. Terrain-corrected magnetic anomalies at a flying altitude of 2300 m above sealevel for box A shown in Fig. 1, from the aeromagnetic survey of
1991 (Nakatsuka, 1994). Contour interval is 20 nT. Dotted lines indicate track-line paths.
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Fig. 4. Schematic configuration of the terrain model used for the magneti-
zation intensity mapping. J;: Magnetization of the jth a source prism,
w;;: the geometric contribution factor of the jth source prism against
the magnetic anomaly at the ith observation point (x,y,z).

magnetic anomaly, the magnetization intensity distribution
Ji (j = 1,2,...,m) can be solved from n simultaneous
linear equations

Dwy-Ji=f (=
=1

In this study, as we deal with the case of m < n, Equa-

1,2,... 2)

,n).

tion (2) has no exact solution and usually a least-squares
method is used to estimate J; (j = 1,2,...,m). Here we
employed the conjugate gradient (CG) method (Nakatsuka,
1995; Okuma, 1998) instead directly of solving Equation
(2). The CG method also gives a least-squares solution.

We applied this method to the anomalies of Fig. 3 em-
ploying the following configuration of assumed prismatic
bodies:

1) We divided the terrain into a mesh of 300 m squares,
and the vertical extent from the surface to 2 km below
sealevel was considered. The top face undulation repre-
sented by 50 m-grid topography was taken into account.

2) The prismatic bodies are arranged to cover an area 1.5
km beyond the survey area in order to avoid edge effects.
4.1 Results

As the data analyzed are those after terrain correction,
the analysis gives magnetization differences from the aver-
age magetization adopted for the terrain correction. Bellow
we describe the values of magnetization after adding this
average of 2.9 A/m. This procedure is equivalent to ana-
lyzing the observed magnetic anomaly (before terrain cor-
rection) with the starting model of uniformly magnetized
terrain of 2.9 A/m. Characteristics of the obtained regional
magnetization intensity distribution in the central part of the
Shimabara peninsula (Fig. 5) are summarized as follows.

For the western Unzen region, generally, magnetization
highs (about 4.5 A/m) predominate on the Older Unzen vol-
cano, for example, around Saruba-Yama. However, magne-
tization lows (about 1.0 A/m) occur around the Unzen hot
spring, and extend in an east-west direction on the south
side of the Kusenbu fault. These areas correspond to the
hydrothermal altered areas, causing a large loss of magnetic
minerals in the volcanic rocks.
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Fig. 5. Result of magnetization intensity mapping for box A. The terrain-corrected anomalies of Fig. 3 were the input data for the inversion process.

On the other hand, for the eastern Unzen region, mag-
netization highs (about 6 A/m) predominate at the Mayu-
Yama volcano, while magnetization lows (about 1.0 A/m)
predominate on the circumference of Mayu-Yama. We con-
clude that the Mayu-Yama lava has the highest magnetiza-
tion on the Unzen Volcano. The fan deposit located between
the Mayu-Yama volcano and the Fukae fault shows magne-
tization highs, and there is a clear magnetization intensity
associated with the Fukae fault. This suggests that magnetic
fan deposits have thickly accumulated inside the graben.

Magnetization lows predominate outside the main faults
forming the Unzen graben (i.e., to the north of the Chijiwa
fault, and to the south of the Kanahama, Fukae, and Futsu
faults). However, magnetization highs are distributed with
an east-west trend north of the Chijiwa fault. It is consid-
ered to be the effect of lavas on the Older Unzen volcano,
which extend beyond the graben (see Fig. 2), because the
eruption rate was greater than the subsidence. Moreover, it
is suggested that the magnetization of the Pre-Unzen must
be weak (about 1.0 A/m) because the Pre-Unzen volcanics
occur near the surface south of the Kanahama fault (see
Fig. 2).

Generally, the above results have a good correlation with
the surficial measurements of NRM intensity (Tanaka, per-
sonal communication; Tanaka ef al., 2004).

5. Forward Modeling for Magnetic Structure
From the results of the magnetization intensity mapping,
we were able to guess that the magnetization intensity of

the Older Unzen is strong, and the Pre-Unzen, the Younger
Unzen, and the hydrothermal altered area are weak. Al-
though the magnetization intensity mapping mainly reflects
the general distribution of magnetization near the surface, it
does not give information on the depth. Actually, magnetic
anomalies also reflect the thickness of the magnetic layer.
The lack of a unique solution is inherent in potential field
data, and it is difficult to decide both “the thickness change
of magnetic layer” and “the lateral variation of magneti-
zation” from magnetic anomalies. Therefore, we thought,
judging from the geological condition, that it was suitable
to consider the thickness change of the uniformly magne-
tized layer, in order to clarify the subsurface structure of the
Unzen graben and the volcanic activity based on it.

In order to simplify the modeling process, terrain
reduced-to-pole acromagnetic anomalies were derived from
the terrain-corrected anomalies in Fig. 3 using the method
of Baranov and Naudy (1964) (see Fig. 6). Then, we used a
2.5-dimensional, foward-and-inverse magnetic profile mod-
eling program (Webring, 1985) along the profiles crossing
the main anomalies shown in Fig. 6. The total magnetiza-
tion used in this forward calculation is a vector sum of the
induced and remanent magnetization. All the selected pro-
files, produced by slicing this terrain reduced-to-pole mag-
netic anomaly grid assume that both the magnetic field and
the magnetization vector are vertical. The magnetization
values discussed below are those after adding average ter-
rain magnetization of 2.9 A/m.

The two-layer models along profiles 1 to 6 were con-
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Fig. 6. Terrain-corrected reduced-to-pole magnetic anomaly map of box A, and the locations of profiles of forward modeling. Contour interval is 20 nT.

Table 1. Values of magnetization intensity used for forward calculations based on Fig. 5.

Geological feature

Magnetization (A/m)

the Pre Unzen volcanics
the Older Unzen volcanics
the Younger Unzen volcanics

Mayu-Yama volcanics

Hydrothermally altered or fractured area

1.0
4.5
1.0
4.5-6.0
1.0

structed as shown in Fig. 7, so as to match the magnetic
anomalies and drilling data. We adopted the average mag-
netization intensities of 4.5 A/m for the Older Unzen vol-
cano lava, and 1 A/m for the layers of the Pre-Unzen vol-
canics and the hydrothermally altered area, based on the
result of the magnetization intensity mapping (Fig. 5). For
profile 7 (Fig. 6) in the eastern Unzen region, modeling was
performed considering the Younger Unzen and the Mayu-
Yama lava, in addition to the above. From the result of
magnetization intensity mapping (Fig. 5), the magnetiza-
tion intensity of the Mayu-Yama lava was assumed to be
4.5-6 A/m, while the Younger Unzen, consisting mainly
of collapsed or lahar products of No-Dake, Myoken-Dake
and Fugen-Dake, was assumed to be 1 A/m. The values
of magnetization intensity used for forward calculations are
shown in Table 1. For the drilling sites along profiles 1 to
7, the boundary depths between the Older Unzen and the
Pre-Unzen (after Hoshizumi et al., 2002) were adopted as
the control points (see Fig. 1). However, as drill holes UZ-
3 and UZ-6 did not reach the Pre-Unzen, they contributed
only towards restricting the Older Unzen thickness. The
constructed models are illustrated in Figs. 7 and 8 in the
form of cross-sections.

5.1 Results

The north-south sections along profiles 1-3 in the west-
ern Unzen region are shown in Fig. 7(a)—(c). In profile 1, a
layer of 4.5 A/m is thickly deposited inside the graben bor-
dered at the Chijiwa and the Kanahama faults. However, in
profile 2, the layer of 4.5 A/m is thinner around the Kana-
hama fault while it is thicker around the Chijiwa fault. In
profile 3, there is the same tendency as profile 2, although
the layer of 1.0 A/m reaches the surface around Unzen hot
spring.

The east-west sections along profiles 4—6 in the western
Unzen region are shown in Fig. 7(d)-(f). In Profile 4, the
layer of 4.5 A/m becomes thinner to the east, from UZ-1 to
Kami-Dake, and further east from Shimo-Dake. In profile
5, although the layer of 4.5 A/m is thick in the western
part, the layer of 1.0 A/m reaches the surface around the
Unzen hot spring, as in profile 3. In profile 6, the thickness
variation of the layer of 4.5 A/m becomes a little calmer,
still having the same tendency in profile 5.

In the north-south section along profile 7 in the eastern
Unzen region (Fig. 8), forward modeling was performed
dividing the magnetization intensity of the Mayu-Yama lava
in the case of 4.5 A/m (Case 1; Fig. 8(a)) and 6 A/m (Case
2; Fig. 8(b)). In Case 1, the residual of the calculation value
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Fig. 7. Results of the magnetic modeling along the N-S profiles [(a) profile 1, (b) profile 2 and (c) profile 3] and the E-W profiles [(d) profile 4, (e)
profile 5 and (f) profile 6] shown in Fig. 6. Squares indicate the control points used for modeling after NEDO (1988).

and the observation value becomes large around the control
point of USDP-2. On the other hand, as for the difference
between the calculated and observed values of Case 2, about
6.0 nT is smaller than Case 1 around USDP-2, as shown
in Fig. 8. Therefore, we decided to make Case 2 the final
model. It was shown that the magnetization low is deep
in the area placed between the Chijiwa fault and Futsu and
Fukae fault, magnetization high occupies the inside, and the
south is deeper. In addition, magnetization high area exists
in Mayu-Yama.

6. Discussion

It is pointed out from analysis of the geology (Hoshizumi
et al., 2002) and gravity (Inoue and Takemura, 2002), that
there are different features of the geologic structure between
west and east of the Unzen region. Here, we discuss the
subsurface structure of the Unzen graben in each region.
6.1 Western Unzen region

The Chijiwa and Kanahama faults are known to be the ba-
sic frame for the graben in the western Unzen region. From
our result of Fig. 7, it is suggested that the lava and pyro-
clastic flow deposits of the Older Unzen are associated with
the subsidence of the basement near the Chijiwa fault, while
the subsidence of the basement is not clear at the Kanahama
fault. This result indicates that the northern and southern
faults forming the Unzen graben, have different characters,
and our result suggests that the subsurface structure in the

western Unzen region is a half-graben which has fallen at
the northern fault. Also from the results of a MT survey by
Utada et al. (1994) and Kagiyama et al. (1992), it is known
that a thick layer of high resistivity exists near the Chijiwa
fault, while a layer of low resistivity exists under the surface
near the Kanahama fault. In other words, they showed that
the fault on the north side (the Chijiwa fault) and one on the
south side (the Kanahama fault) were asymmetric structures
like this. Therefore, the half-graben model is also consistent
with the results of the MT survey.

On the other hand, magnetization lows (about 1 A/m)
predominate around the Unzen hot spring, Shimo-Dake and
Kami-Dake. It is difficult to distinguish whether they are
caused by the Older Unzen or the Pre Unzen (basement)
from aeromagnetic data only. In particular, our magnetic
model demonstrated that the layer of low magnetization (1
A/m) extends near the surface beneath Kami-Dake, Shimo-
Dake and the Unzen hot spring (Fig. 7). According to
drilling data (NEDO, 1988) at UZ-3 and other sites, the
layer generally corresponds to the hydrothermal alteration
of fractured rocks. Kagiyama et al. (1992) also showed
that the layer of low resistivity becomes extremely shal-
low around the Unzen hot spring to reach the surface at that
spring. Therefore, it is thought that the rises of the low mag-
netization layer correspond to the fractured or hydrother-
mally altered zones caused by the upflow of geothermal
convection. Thus, the layer of low magnetization dominates
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at the Unzen hot spring and at the area from Shimo-Dake
to Kami-Dake, reflecting hydrothermal alteration (Figs. 5,
7(c) and (e)). However, no magnetization lows are found at
the Obama hot spring (Figs. 5, 7(a) and (f)). It is therefore
expected that the scale of the geothermal convection system
at the Obama hot spring is much smaller than that for the
Unzen hot spring.
6.2 Eastern Unzen region

In the volcanic fans extending southwards, we conclude
that the basement was much depressed at the stage of the
Older Unzen and a thick distribution of the Older Un-
zen products inside the graben (Fig. 8) exists beneath the
younger deposits. In particular, it is shown in our magnetic
analysis that the geological boundary is plainly seen along
the Fukae fault (see Fig. 5). Moreover, it seems that the axis
of the Unzen graben shifts to the south as one moves east
in the Shimabara peninsula (Figs. 7 and 8). Thus, the mag-
netic structure in the western Unzen region is characterized
by a half-graben down at the southern fault. The same ten-
dency has also been shown in the geologic cross-section by
Hoshizumi et al. (2003) and in the two-dimensional analy-
sis of the gravity basement structure (Inoue and Takemura,
2002). The magnetization intensity of the Mayu-Yama lava
give values much higher than other lavas in the Unzen Vol-
cano, which is consistent with the results of the analysis
from aeromagnetic data by Mogi et al. (1995). From the
paleomagnetic study of Unzen, Tanaka (personal commu-
nication) measured the magnetic susceptibility based on
the sample data in Fugen-Dake and Mayu-Yama, respec-
tively, and it turns out that the value of Mayu-Yama (2006—
2135 x 1073 emu) shows the result to be about two times
higher than the value of Fugen-Dake (1126-1349 x 1073
emu). In addition, Miki, Kyoto Univ. (personal communi-

cation) also measured the strength of the NRM intensity of
Mayu-Yama, and gave a value of about 4.8 A/m.

7. Concluding Remarks

We conducted (1) a magnetization intensity mapping and
(2) forward modeling of the subsurface structure, in order
to better understand the magnetic subsurface structure of
the Unzen graben.

The magnetization intensity map gives magnetization
properties of volcanic rocks that relate to geological epoch,
hydrothermal alteration, and the subsurface structure in the
central Shimabara Peninsula. Magnetization highs of 4.5
A/m predominate on the Older Unzen volcano exposed in
the western Unzen region. For the eastern Unzen region,
magnetization highs of >6 A/m on the Mayu-Yama volcano
exceed the magnetization intensity of other lavas, reflecting
the strength of NRM intensity.

The magnetic models based on drilling data and geologi-
cal information have demonstrated that the Unzen graben is
best characterized as a half-graben (Fig. 9(a)). That is, the
Chijiwa fault in the north has thick sediment in the western
Unzen region (Fig. 9(b)), and the Fukae fault in the south
has thick sediment in the eastern Unzen region (Fig. 9(c)).
Moreover, it shows that magnetization lows extend to near
the surface beneath Kami-Dake, Shimo-Dake and the Un-
zen hot spring (Fig. 9(b)). The extent of these lows con-
strain the locations of modern and past hydrothermal activ-
ity in individual areas.
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