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Even one-step prediction of natural time series without delay especially in main phase of storm is difficult
for many complicated time series such as Dst index. In this study, with a new method based on singular
spectrum analysis, we extract the main components of the time series, model each component with a locally
linear neurofuzzy network, and utilize the trained networks for multi-step ahead prediction of a validation set of
data, and finally combine the predicted patterns for construction of general prediction. Our methods are compared
with several previous studies for Dst index prediction. Several solar geomagnetic extreme events are predicted
well with our state-of-the-art method; such as extreme events in 14 March 1989 that led to power black-out in

Quebec, as well as other extreme storms.
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1. Introduction

Disturbance storm time (Dst) index is intended to be a
direct measure of the symmetric ring current. It is a well
known fact that rapid variations of the geomagnetic field
can be harmful to technological systems. But the ring cur-
rent variations are normally not very rapid compared to the
sub storm effects at higher latitudes. Further, the magnitude
of Dst variations is smaller than the magnitude of high-
latitude magnetic disturbances. Why then should we make
Dst forecasts? Dst approximately measures the strength
of the ring current, and the ring current is one of the major
current systems of the magnetosphere. An enhanced ring
current, indicated by a decrease of the Ds¢ index, indicates
amajor impact on the structure and location of the magneto-
sphere regions and the boundaries that separate them. On a
global scale, the ring current generates a magnetic moment
which augments the Earth’s magnetic moment as presented
to the solar wind. For these reasons, many specification
models—i.e. models that specify the state of the near-Earth
space environment—are parameterized in Ds¢. Operational
Dst forecasts provide us with inputs to such models, and
tell us much about current and upcoming space weather
conditions. Another reason to make Dst forecasts is that
some of the most adverse effects of space weather take place
during magnetic storms, and the ring-current strength is the
basic defining property of a magnetic storm. The Dst index
can thus be used as a proxy for many types of disturbance
that occur during a storm, even though the space-weather
effects are not directly caused by the ring-current mag-
netic field variations. For prediction of geomagnetic storms,
monitored by Dst index, a number of data driven tech-
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niques are available (Kamide et al., 1998; Detman and Vas-
silaidis, 1997; Joselyn, 1995). The more successful tech-
niques include statistical time series analysis (Baker, 1986),
linear prediction filters (Iyemori et al., 1979), and linear and
nonlinear autoregressive and moving average filters includ-
ing local linear prediction (Vassiliadis et al., 1995). Several
of these techniques are being implemented and tested for
reliable prediction of geomagnetic indices under real time
conditions, e.g. a linear filter for predicting Kp. An Al
technique is used internally in the Magnetospheric Speci-
fication and Forecast Model (MSFM) to predict Dst (Free-
man et al., 1994). Several neural models (Munsami, 2000;
Gleisner et al., 1996; Wintoft, 1997; Wintoft and Lundst-
edt, 1998; Wu et al., 1998a, b) as well as analogue models
(differential model) based upon physical knowledge (Na-
gatsuma, 2002; Burton et al., 1975; Fenrich and Luhmann,
1998; O’Brien and McPherron, 2000) are applied for geo-
magnetic storms prediction. Most of these methods are us-
ing solar wind data (solar wind magnetic field component
Bz, density n, and velocity V, etc) or a very large training
dataset to make short-term prediction of some storms in the
test set. Powerful black box neural and neurofuzzy methods
fail when the prediction the time horizon increases and the
number of training data decreases, especially when training
set contains some few number of storms and contains minor
storms but test set contains some extreme storms. In this ar-
ticle a novel combination of nonlinear and linear techniques
that has been successfully utilized for long term prediction
of space weather (Gholipour et al., 2005) has been adopted
for multi-step forecasting Dst values. The paper is orga-
nized as follows: In Section 2, singular spectral analysis
(SSA) method is introduced and in Section 3, locally lin-
ear neurofuzzy (LLNF) model is introduced for Black-Box
modeling. Section 4 covers the one-step prediction. In Sec-
tion 5, LOLIMOT and LOLIMOT + SSA are applied for
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multi-step prediction.

2. Singular Spectrum Analysis

SSA is a tool to extract information from short and noisy
chaotic time series (Vautard ef al., 1992). It relies on the
Karhunen-Loeve decomposition of an estimate of covari-
ance matrix based on M lagged copies of the time series.
Thus as the first step, the embedding procedure is applied
to construct a sequence {X (1)} of M-dimensional vectors
from time series {X(¢) :t =1,...,N}:

X()=X@),Xt+1D,....Xt+M-1)),

t=1,....N, N=N-M+1. (1)

The N’ x M trajectory matrix (D) of the time series has
the M dimensional vectors as its columns, and is obviously
a Hankel matrix (the elements on the diagonals j + j =
constant are equal). In the second step, the M x M covari-
ance matrix Cy is calculated as
L oor

CX = VD D
Cx Eigenelements can be determined by Singular Value
Decomposition (SVD):

(@)

cx=Uxvl, v'u=1, viv=1L 3)

The elements of diagonal matrix ¥ = [diag(oy, ..., on)]
are the singular values of D and are equal to square
roots of the Cyx eigenvalues. The Cyx eigenelements
{(Ak, pr) : k=1,..., M} are obtained from

“

Each eigenvalue, A, estimates the partial variance in the
pr. direction, and the sum of all eigenvalues equals the total
variance of the original time series. In the third step, the
time series is projected onto each eigenvector, and yields the
corresponding principal component (PC) for each PCy (¢):

Cx pr = A k-

M
PC,(1) = Y X(t+ j — Dou())-

Jj=1

&)

Each of the principal components, a nonlinear or linear
trend, a periodic or quasi-periodic pattern, or a multi-
periodic pattern, has a narrow band frequency spectrum and
well defined characteristics to be estimated. As the fourth
step, the time series is reconstructed by combining the as-
sociated principal components:

1 U
Re() = =3 3 PCilt = j+Dpe()- - (6)

! keK j=L,

The normalization factor (M, ), and the lower (L,) and upper
(U;) bounds of reconstruction procedure differ for the center
and edges of the time series, and are defined by following
formula

t, 1,0, 1<t<M-1

M, 1,M), M<t<N’

(min(¢, N —t+1),t — N+ M, M),
N +1<t<N.

M;,L;,U;) =

)
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To enhance signal to noise ratio, one can use the singular
spectrum (the logarithmic scale plot of singular values of
covariance matrix in decreasing order). The principal com-
ponents related to lower singular values can be omitted in
the reconstruction stage, to obtain adaptive noise cancella-
tion. If all the components are used in reconstructing the
time series, no information is lost.

3. Locally Linear Neurofuzzy with Model Tree
Learning

The main idea for utilizing the locally linear neurofuzzy
(LLNF) model for function approximation is dividing the
input space into small linear subspaces with fuzzy validity
functions, ¢;(u), which describe the validity of each lin-
ear model in its region. The validity function is used in
this study is the normalized Gaussian function, defined as

w(x) = exp(— (Xzz‘;)z), where c is the center and o is the
standard deviation of the Gaussian.

Each local linear subspace with its validity function is
called a fuzzy neuron. Thus the total model is a neurofuzzy
network with one hidden layer, and a linear neuron in the
output layer which simply calculates the weighted sum of

the outputs of locally linear models (LLMs) as follows:

A

Vi = wjy +wj Uy + WUy + -+ iU,

M
=D fitiw. ®)
i=1

Where u = [u; us -+ u,]” is the model input, M is the
number of LLM neurons, and w;; denotes the LLM param-
eters of the ith neuron. The validity functions are chosen
as normalized Gaussians; normalization is necessary for a

proper interpretation of validity functions.

€))

—ci1)? N2
wi(u) = exp (—% ((’410——2011) 4+ .+ (ul’o——zcll’)>>
il ip

D — Cil)2>

2
2 o}

1 )2
X...Xexp<_§<upg+w>),

p

(10)

Each Gaussian validity function has two sets of parame-
ters, centers (¢;;) and standard deviations (o;;) that are the
parameters of the nonlinear hidden layer and the number
of them is 2MP. Least square optimization method is used
to adjust the parameters of local linear models (w;;) and
learning algorithm would describe here could adjust the pa-
rameters of validity functions (c;; and o;;). Global opti-
mization of linear parameters is simply obtained by least
squares technique. The complete parameter vector contains
M (p + 1) elements:

o = [wi o an

"'wlprszl "'wMO"'pr]

and the associated regression matrix X for N measured data
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samples is
X=[X, X, Xy (12)
¢i (D) ur (D (1)) - up(Di(u(l))

¢i(u(2)) w12 (2)) --- up2)¢i((2))

2

3 u(N)) 11 (V)i u(N)) - -~ 1ty (N )i (w(N))
(13)
Thus
= Xo;

a1l (14)

b=X'X+aD7'Xy;

|*<>

« is the regularization parameter for avoiding any near sin-
gularity of matrix X7 X in Eq. (14). The remarkable proper-
ties of locally linear neurofuzzy model, its transparency and
intuitive construction, lead to the use of least squares tech-
nique for rule antecedent parameters. In each iteration, the
worst performing locally linear neuron is determined to be
divided. All the possible divisions in the p dimensional in-
put space are checked and the best is performed. The split-
ting ratio can be simply adjusted as 1/2, which means that
the locally linear neuron is divided into two equal halves.
The fuzzy validity functions for the new construction are
updated; their centers are the centers of the new hypercubes,
and the standard deviations are usually set as 0.7 times the
width of the hypercube in that dimension. The learning al-
gorithm is introduced as follows:

Learning Algorithm:

Locally Linear Model Tree (LOLIMOT) is an incre-
mental tree-construction algorithm that partitions the input
space by axis bisection in all directions of input space. It
implements a heuristic search for the rule premise parame-
ters and avoids a time consuming nonlinear optimization.

The LOLIMOT algorithm is described in five steps ac-
cording to (Nelles, 1999, 2001):

1. Start with an initial model: start with a single LLM,
which is a global linear model over the whole input
space with ®{(u) = 1 and set M = 1. If there is
a priori input space partitioning it can be used as the
initial structure.

2. Find the worst LLM: Calculate a local loss function
e.g. Mean Square Error (MSE) for each of the i =
1,..., M LLMs, and find the worst performing LLM.

3. Check all divisions: The worst LLM is considered for
further refinement. The hyper rectangle of this LLM
is split into two halves with an axis orthogonal split.
Divisions in all dimensions are tried, and for each of
the p divisions the following steps are carried out:

a. Construction of the multi-dimensional member-
ship functions for both generated hyper rectan-
gles;

b. Construction of all validity functions: in part a,
only the membership function of LLM that is
split would change and the membership function
of other neurons not change, but all of the validity
functions change that must be updated for all
LLMs by Eq. (9).!

! Although by increasing the number of neurons, only the membership
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Fig. 1. Tllustration of LOLIMOT algorithm for two dimensional input

space.

c. Estimation of the rule consequent parameters for
newly generated LLMs.

d. Calculations of the loss function for the current
overall model.

4. Find the best division: The best of the p alternatives
checked in step 3 is selected, and the related validity
functions and LLMs are constructed. The number of
LLM neurons is incremented M = M + 1.

5. Test the termination condition: If the termination
condition is met, then stop, else go to step 2.

The termination condition is reaching to a predefined error
between output (y) and LLNF output with M neuron (), i.e.
when the condition: ||y — || < ¢ is satisfied. In practice we
used a predefined number of neurons in LOLIMOT, plotted
the error as a function of this number, and kept increasing
the number of neurons until satisfactory performance was
obtained.

In Fig. 1 the algorithm is represented for two dimensional
input spaces.

4. One-Step Ahead Prediction of Dst Index

Many neural and neurofuzzy methods like Multi Layer
Perceptron (MLP) neural network (Kugblenu et al., 1999)
with back propagation learning algorithm (BP), Radial Ba-
sis Function (RBF) neural networks with orthogonal least
square (OLS) for center learning of RBFs and recently
Adaptive Network-Based Fuzzy Inference System (AN-
FIS) are widely used for nonlinear system identification
and also for prediction of chaotic time series. In this sec-
tion we utilize locally linear neurofuzzy models with Lo-

function of LLM that is split is change but the validity functions that
are the normalized version of membership functions (Egs. (9), (10)), then
for each validity function all of other neurons membership functions have
contribution, then all validity functions of neurons must update based on
Eq. (9).
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Table 1. Comparing LLNF with several neural methods for one-step prediction of Dst (Best Results).

Minimum

Models Learning Neuron Epochs Number Training set Test set Prediction

Method number NMSE NMSE Percentage
MLP BP 63 120 0.0058 0.0336 83.67
RBF OLS 20 24 0.0045 0.0286 97.76
ANFIS LS +BP 16 Fuzzy rule 30 0.0051 0.031 92.41
LLNF LOLIMOT 2 Epoch = Neuron 0.0044 0.0294 98.81

Table 2. Comparison of LLNF model with ENN for prediction of some storms during the year 1998 (error percentage for minimum Dst value

prediction).
Method Feb 10-13 Mar 9-12 May 2-5 May(2,4) May 29 Jul 28-31 Aug 5-8 Sep 24-27 Oct 16-19
to June 1
ENN 1.85% 22% 22%, 21% 1.42% 7.6% 6% 18% 48%
LLNF 1.46% 8.08% 7.35%, 1.69% 0.74% 5.08% 4.35% 6.91% 13.88%
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Fig. 2. Correlation coefficient between Dst and solar wind parameters.

cally Linear Model Tree (LOLIMOT) learning algorithm
for one-step ahead prediction of Dst index and compare
the results with mentioned previous methods. We se-
lected 11000 hours of Dst data for training and used the
next 300 hours for test set; the test set interval contains
the strongest geomagnetic storm between the years 1999
and 2000 with minimum value of —301 nT. Table 1
shows the result for best fit for one hour prediction of
Dst time series for some neural and neurofuzzy methods
and our method. For all cases, input to black-box model
is[Dst(t — 1) Dst(t —2) Dst(t —3) Dst(t —4)] to pre-
dict Dst(t). The NMSE is defined as follows:

N N
NMSE = Y (y(i) — $0)?/ Y ()

i=1 i=1

(15)

where N is the number of test data and y is observed value
and y is predicted value. In Table 1 Error percentage for
prediction of Dst minimum on test set is defined as follows:

100 — 100 * (min(Dst) — Predicted Dst minimum)/ min(Dst).

Fig. 3. One-step prediction of some storms in year 1998 with LOLIMOT:
observed Dst (solid lines) and one-step predicted values (dashed lines).

Also in (Watanabe et al., 2002) used an Elman Neural
Network (ENN) with Dst and solar wind parameters: speed
(V), solar wind density (n), and the southward Interplan-
etary Magnetic Field (IMF) component (Bz) as inputs to
ENN. The ENN model is trained with solar wind OMNI
data from NASA’s National Space Science Data Center
(NSSDC) for the period from 1978-1982, which offers rel-
atively continuous solar wind data for prediction of some
storms over the year 1998 from January to September. In
Fig. 2, correlation coefficient between Dst index and other
solar wind parameters is plotted and shows poor correlation
between Dst and solar wind data. Our method used only
Dst(t — 1), Dst(t — 2), Dst(t — 3), Dst(t — 4) index as
input for prediction of next Ds¢ value. Table 2 shows the
comparison of LLNF with ENN in the sense of error per-
centage for prediction of Dst minimum for some storms.
In Fig. 3 observed Dst and predicted Dst with LLNF with
LOLIMOT learning from February to October is depicted
and in Fig. 4 the measured value versus predicted values
for these intervals is depicted. The storm of October 16—
19 is not more extreme than other storms of this year but
prediction of this storm has much more error (13.88%) this



J. SHARIFI et al.: DST PREDICTION WITH SPECTRUM ANALY SIS AND NEUROFUZZY MODELING

>

o
e ™
& -10 =)
= S
Q -2
[ 0 - S .
% 3 =
-30 25 -20 15 10 5 -120 -100 -80 -60 -40 -20 [} 20
o Py ‘dc') 20
3 bd S 0 had
>, -100 . 2 2 o
T ) . N .
= 200} e, > a0l %2 s
- — E
-250 -200 -150 -100 -50 0 -50 -40 -30 -20 -10 [} 10 20
40 50
- Y _
©® 20 . © 0
@ - 0
t; 0 . A o -50 .
2 . 3 BT
5 -20 . ' < -100 .o L 2
= 0 L -150 | e
40 -20 0 20 -150 100 50 [} 50
~ ° ~ 50
3 100 * 9-', 0
a L 5
Q > . -
@ 200 O -100
@ ° o -150
250 -200 -150 -100 -50 -150 -100 -50 0 50

Fig. 4. Predicted values (horizontal axis) versus observed values (vertical

axis) for storms in year 1998.

Table 3. Comparison of LLNF with some previous studies for prediction

of storm during 2 May 1998.

Models RMSE Correlation
Sharifi 6.3 0.94
Lund Dst model 10.3 0.88
O’Brian and McPherron 12.3 0.83
Fenrich and Luhmann 15.3 0.78
Burton 16.4 0.76

is because of lack of data distribution between —20 nT and
—70 nT as shown in Fig. 4, as a result each model would
have bad interpolation. Also the correlation coefficient for
these eight time interval of storms is as following:

{0.8879 0.9880 0.9517 0.9419 0.8817 0.9863 0.9758 0.9809 }.

This is much better than previous studies.

In Table 3 our method (LOLIMOT) is compared with
several previous studies for predicting the storm in 2 May
1998 root mean square error in this table is defined as fol-
lows:

N
> i — 9i)?

i=1

RMSE = (16)

N
Where N is the number of data points. Correlation coeffi-
cient value (0.94) in Table 3 differs from that reported on
above (0.9517), because this value (0.94) is only for 2 May
1998 not for 2—4 May.

Many modeling methods (Vassiliadis ef al., 1999) relates
Dst index to Bz negative part (Bs) and used as an important
to system. Bs is defined as follows:

BS:{O; B, >0

B.; B. <0 (17

In Fig. 5, correlation coefficient between Dst and its lagged
values and Bs lagged values is plotted as a function of time
for 2001 dataset. It is obvious from this figure that Dst (¢)
is more correlated with {Dst(t — 1), Dst(t — 2), Dst(t —
3), Dst(t—10), Dst(t—11), Dst(t—12), Dst(t—13)} and
also {Bs(t — 1), Bs(t —2), Bs(t — 3), Bs(t — 4), Bs(t —
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Fig. 5. Autocorrelation between Dst(t), Dst(t—k) and Dst(t), Bs(t—k);
(k=1,...,20) for 2001 dataset.

X 10'3 NMSE: (a) using from Bs as an input to LOLIMOT and (b) not using it
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N
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train NMSE: case (b)

train NMSE: case (a)\

1 \ .
B H\ =)
W
0_5 1 1 1
1 2 3 4 5 6 7 8 9 10

Number of LLMs

Fig. 6. NMSE for train data and test data for two cases: (a) using
past values of Bs and Dst as inputs to LOLIMOT and (b) only using
past values of Dst; training set contains data in year 2001 from first
of year prior to 24 September 2001 and future 13 days for testing.
Appropriate number of LLMs for case (a, b) is (2, 4); NMSE for test
set is (0.0028, 0.0033) and correlation coefficient for test set is (0.978,
0.982) respectively. (Results is for one-step prediction).

5), Bs(t — 6), Bs(t — 7)}, we use these parameters as in-
put to model (LOLIMOT) to predict Dst(¢). Data in year
2001 from first prior to 24 September is used as training to
LOLIMOT and next 13 days for testing. In Fig. 6, NMSE
for training data and test data for both cases is plotted as
a function of LLMs that shows by using Bs as an exter-
nal input to model, NMSE decreases for training and test
data. Also many researchers have shown that Ds¢ deriva-
tive (d(Dst)/dt) is correlated with V x Bs and also Dst is
correlated with dynamic pressure. But in this study, we used
only Bs as an external input to LOLIMOT model. In Fig. 7
the result of prediction of storm in 3—4 October 2001 is de-
picted for two cases; the first one employed only past Dst
values and the second one employed past Dst values and
also past Bs values as an external input to model. By using
Bs as an external input, NMSE decreased from 0.0033 to
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One-step prediction of storm in 3,4 October 2001 with LOLIMOT

8" —o— Observed Dst

. —-— One-step prediction using Bs,Dst

o \\. -—&— One-step prediction using Dst
]

Dst (nT)

-120

-140

-160

-180

Time (hour)

Fig. 7. One-step prediction of storm in 3, 4 October 2001 with LOLIMOT
for both cases: using Bs, Dst past values and using only Dst past
values. Training data are as the same with previous figure.
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Fig. 8. NMSE versus the number of LLMs for train data (first 11000
hourly sample data from first of year 2000) and test data for two hour
ahead prediction of storms of 14-16 July 2000, we select the number
of LLMs where test error is approximately smooth and after it error
increase with increasing the number of LLMs and in this case is 9
LLMs.

0.0028 and correlation coefficient increased from 0.978 to
0.982; also the number of LLMs decreased from 4 to 2.

5. Multi-Step Prediction of Dst Index

In this section, both the LOLIMOT and LOLIMOT+SSA
method are applied for multi-step prediction of Ds¢ index.
By LOLIMOT method, input vector to Locally Linear Neu-
rofuzzy Model is: [Dst(t —2) Dst(t —3) Dst(t —4)
Dst(t — 5)] to predict. In Fig. 8 error criteria both for train-
ing data and test data is plotted as a function of LLMs. ap-
propriate number of LLMs to achieve to maximum gener-
alization, are 9. the result of two hour ahead prediction of
geomagnetic storm with LOLIMOT method with 9 LLMs is
depicted in Fig. 9, the Observed Dst values versus two-step
ahead predicted Dst is depict in Fig. 10. Based on Fig. 9,
neither seems by increasing the prediction horizon, even the
LLNF model with a sophisticated training dataset (11000
hourly data of Dst index containing several big storms) nor
can predict very good the storm in testing dataset and nor
learn the dynamic of system in decay time but can learn
the recovery phase of the storm. In the remaining part of
this section, in order to enhance the accuracy for multi-step
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Two-step ahead predicted Dst with LOLIMOT :(Number of LLMs=9)

—o— Observed Dst
—o—two-step ahead predicted Dst |
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15 July 2000

Dst (nT)
g

-250

-300} b

3504 25 29 70

Time (hour)

Fig. 9. Two-step ahead prediction of extreme storm of 15-16 July 2000
with LOLIMOT with 9 LLMs: the correlation coefficient of this pre-
diction is 0.94 and the prediction of main phase of storm has two hours
delay.
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Fig. 10. Observed Dst versus two-step ahead predicted Dst of 1416 July
2000 with LOLIMOT: correlation coefficient is 0.94.

ahead prediction of Dst index, a combination of SSA and
LLNF is used as depicted in Fig. 11. Eigenvalues of co-
variance matrix of Dst¢ time series are depicted in Fig. 12
in logarithmic scale. It can be seen from this spectrum that
the first fifty components have more significance and other
components have small effect in prediction and furthermore
can decrease the statistical reliability of the analysis. (Us-
ing all 150 components or 50 first ones have very similar
results). Using Eq. (5), 50 PC’s are constructed and then
each PC constitutes a new series for the modeling of which
a different LLNF model must be used. Thus for modeling
PC;(¢) the input vector of k£ ’th LLNF (LLNF; ) is as follows:

[PCi(t —2) PCi(t — 3) PCy(t —4) PCr(t —5) 1.

In order to achieve maximum generalization for each of the

fifty components, as in Fig. 8, error criteria for each PCs
must be used for selecting the appropriate number of LLMs
for each PC. Number of LLMs for each PC for prediction
of extreme storm of 14—16 July 2000 is as follows:

M={,111,12,1,1,1,1,2,2,2,1,1,3,1,1, 1, 1,
2’ 27 2’ 17 1’ 1?3’ 1’27 2’ 17 1’3? 2’ 1’ 17 1’274’ 1?



J. SHARIFI et al.: DST PREDICTION WITH SPECTRUM ANALY SIS AND NEUROFUZZY MODELING

Time series 1

Extraction
Decomp:
to several time |
series (PCs)

Reconstructiorn
Composition of
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Main Time
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Fig. 11. Block Diagram of SSA + LOLIMOT method for time series
prediction: M principle component extracted and then for each PC
a LLNF model should train then next value prediction of each PC
obtained; finally predicted PCs combined for achievement to prediction
of main series (Gholipour et al., 2005).
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Fig. 12. Singular Spectrum of Dst training data in year 2000 with a
150 x 150 covariance matrix: (singular values is plotted in logarithmic
scale).

1,1,2,1,1,2,1,1, 1, 1}.

Then for each PC this number of LLMs is trained for use
in LLNF models for multi-step prediction of that PC. In
Fig. 13 the result of two-step ahead prediction of PCs is
depicted. Finally using from Eqgs. (6), (7) to construct the
Multi-step prediction of main Dst time series from pre-
dicted PCs that is let after training PCs. The result of
combination of PCs both for training set and prediction is
shown in Figs. 14 and 15, respectively. Comparing Fig. 15
with Fig. 9 shows that two-step ahead prediction of main
phase of storm has one-hour delay with SSA 4+ LOLIMOT
against two-hour delay with LOLIMOT and many other
methods. Some physical models (Nagatsuma, 2002) have
achieved to correlation coefficient of 0.9 which is reported
for one step prediction of Dst index, but our method cor-
relation coefficient is 0.94 (LOLIMOT method) and 0.98
(LOLIMOT + SSA method) for one-step prediction. For
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Fig. 13. Two-step ahead prediction of each principle component of Dst
index in 14-16 July 2000 with LOLIMOT: (only nine PCs is shown).
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Fig. 14. Two-step ahead modeling of train data (about 1300 data points in
year 2000 prior to event 14-16 July 2000) with LOLIMOT + SSA.

most of PCs the number of LLMs is only one, but why
we use nonlinear process (LOLIMOT) for modeling? re-
ply is that with the aim of using LOLIMOT for each PC
we only could found that some PC for modeling only need
one global linear model and also some PC need more that
one line or in the other hand need locally linear model, then
it’s reasonable to doing nonlinear process for each PC to
obtain best locally linear number for modeling to achieve
maximum generalization.

Also most of the black-box models would predict the
start and peak of storms with delay and with increasing
the prediction horizon the delays increase, then its useful to
achieve a method for prediction without delays for warning
when the storm start. Our start-of-the art method is combi-
nation of SSA and LLNF is used as depicted in Fig. 11.

With SSA + LOLIMOT modeling method first SSA
method with M = 150 in Eq. (1) is applied. Then a
150 x 150 covariance matrix is constructed based on Eq. (2)
and eigenvalues of covariance matrix with logarithmic scale
is plotted if Fig. 12 and approximately most important
eigenvalues are first coming 50. Using from Eq. (5) 50 PCs
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Real time two-step ahead prediction

— e — two-step ahead predicted Dst
—8— Observed Dst ]

16 July 2000
-100|

-150}
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-350 ! 1 ! ! 1 !
12 24 36 48 60 70
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Fig. 15. Two-step ahead prediction of Dst index (15-16 July 2000) with
LOLIMOT + SSA: the method predicted the start and decay phase of
extreme storm with 1 hour delay from two hour ahead. When we are at
time (a) in figure then the method must predict the point (b) that is near
the event of two-next hour of point (a) but it predict the point (c) that is
near the actual event of one-next hour (point d). Note that train data is
shown in Fig. 14.
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Fig. 16. Observed Dst versus two-step ahead predicted Dst
(LOLIMOT + SSA) for prediction of storm 16 July 2000 (data from
15-18 July 2000): the correlation coefficient is 0.93.

is constructed and then each PC is a new series that must
use for modeling of each, a LLNF model. For modeling of
each PC the input vector to LLNF;. for modeling of PCy (¢)
is the following inputs:

[PCr(t —2) PCy(t — 3) PCi(t —4) PCy(r —5) 1.

An interesting result of using SSA + LOLIMOT is that
for multi-step ahead prediction, it decrease one-step from
the delay of prediction (especially the prediction of main
phase of storm) that many methods could not, then if we
predict the storm two step ahead many models predict the
start and the main phase of storm with two hour delay,
but our method for two-step ahead prediction have one-
step delay (although for one-step prediction also our method
have one-step delay for prediction of main phase of storm
and from two-step ahead the recovery phase predict very
good) and then the result of two next hour prediction of
Dst index, is a point proximity to event that occur one next
hour and not two next hour. Then we predict two-step ahead
the storm and let it as the next hour event. The result of
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One-step ahead prediction of extreme storm 15-16 July 2000

——Observed Dst
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Fig. 17. One step ahead predicted Dst (shift back one-step the two-step
ahead predicted Dst with LOLIMOT 4 SSA); this prediction is perfect
and without delay for predicting the start and the main phase and also
for prediction of recovery phase of the storm and the correlation of this
prediction is 0.98.
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Fig. 18. Observed Dst versus one-step ahead predicted Dst

(LOLIMOT + SSA) for prediction of storm 16 July 2000 (data from
14-16 July 2000): the correlation coefficient is 0.98.

such innovation is depicted in Fig. 17. Also in Fig. 18,
Observed Dst versus one-step predicted of storm of 15-16
July 2000 is depicted that has much more compact error bar
in comparison with Fig. 16.

The extreme geomagnetic storm in 14 March 1989 lead
to Black-Out in Quebec and North America and as a re-
sult damage many expensive transformers and black-out for
about 12 hours. Until now many methods could not pre-
dict such extreme storm to warn the human technical sys-
tems such as power grids, satellites, etc. our start of the art
method (SSA + LOLIMOT) is applied here for two-hour
ahead prediction of this extreme storm, the result of pre-
diction is illustrated in Fig. 19, if analyze this figure, we
found that the two-step ahead prediction (especially the start
time and main phase of storm) only have one-step delay
and some one heuristically point of view could assume the
two-step ahead prediction of this storm as the event of next
hour, the result of such insight is depicted in Fig. 20 that
shows the benefices of such point of view for precise one-
step prediction of this extreme storm for alerting the techni-
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Two-step ahead prediction of extreme storm: 14 March,1989
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Fig. 19. Two step ahead prediction of extreme storm of 14 March 1989
that cause power grid black-out in Québec and US. (LOLIMOT + SSA
method for prediction).

One-step prediction of extreme storm in 14 March,1989
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Fig. 20. One-step ahead prediction of extreme storm of 14 March 1989
by SSA + LOLIMOT: (this prediction is obtained by shifting one-step
back the two-step ahead prediction).

cal systems. Two-step and one-step ahead Ds¢ prediction is
depicted in Figs. 19 and 20 respectively. The correlation co-
efficient of two-step and one-step prediction with this novel
insight is 0.88, 0.95 respectively. Two-step and one-step
ahead predicted versus observed Dst values is plotted in
Fig. 21. Also this method is used for prediction of storm in
1-2 October 2002 and the result of prediction is depicted in
Fig. 22. The correlation coefficient of 0.98 is obtained for
prediction of this storm with SSA 4+ LOLIMOT method.

6. Conclusion

In this article we used a powerful combination of
tools composed of singular spectrum analysis, and neuro-
fuzzy locally linear network with model tree learning
(LOLIMOT), for multi- step prediction of the Dst in-
dex. The method has also shown its effectiveness in the
long term prediction of the sunspot number time series
(Gholipour et al., 2005). The use of singular spectral anal-
ysis results in the identification and separation of the main
components with different periodicities. LOLIMOT, on the
other hand, allows the capture of the dynamic behaviors of
the different components and provides an excellent tool for
nonlinear prediction of their future values. Taken together,
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Predicted vesus Observed Dst of extreme storm March 14,1989:(SSA+LOLIMOT)
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Fig. 21. Predicted versus observed Dst index of 14—16 March 1989 with
correlation coefficient 0.88 and 0.96 for two step ahead and one step
ahead, respectively.

One-step prediction of stom in 1-2 October 2002 with SSA+LOLIMOT
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Fig. 22. Two-step ahead prediction of storm in 1, 2 October 2002 with
SSA + LOLIMOT: data from 1 July 2002 prior to this event is used as
training. (Note that this prediction obtained from one-step shifting back
the two-step ahead prediction). Correlation coefficient is 0.98.

the methodology becomes a most powerful means for reli-
able multi- step and long term prediction of space weather
indices without the need to assume a physical model. This
is important for designing an alert system in order to protect
the satellites that are not protected by the ionospheric and
magnetospheric shields, as well as protecting high altitude
flights, power and communication lines, etc. The tools can
also be utilized for long term and black box prediction of
other naturally occurring phenomena the physical proper-
ties of which are not well understood.

In assessing the improvement in predictability of the time
series made possible by the SSA methodology, it should, in
all fairness, be pointed out that SSA uses much more than
a small number of data. So the prediction can no longer
be claimed to have been achieved via lagged values includ-
ing data for only a few hours. While more lagged values
quickly lose usefulness in regression analysis, neural net-
work models, LOLIMOT, and similar prediction method-
ologies, spectral methods like SSA are inherently using past
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data for periods much longer than cyclicities in the time
series. Although the training of the prediction tools like
LOLIMOT use even more data than SSA. In fact, the uti-
lization of SSA indirectly amounts to using external infor-
mation about the behavior of the time series in the pre-
vious cycles as well. Therein lies the secret of the suc-
cess in longer term prediction (Loskutov et al., 2001a, b;
Gholipour et al., 2005). We seem to be doing the impossible
by predicting multi-steps ahead by using only a few hours’
past data; but we are, in fact, indirectly using other data on
periodicities of the time series obtained through consider-
ation of much longer term past values that could not have
been directly used in prediction tools.

Another indirect advantage of this effort is the fact that
the analysis of periodicities carried out by the SSA method
paves the way for further physical investigations on the
nature of Dst. These empirical data can possibly be a
new source for improving our physical understanding of the
currents represented by Dst (Campbell, 1996; Temerin and
Li, 2002). Our concern, however, has been to show the
possibility of predicting geomagnetic activity indices for
periods longer than previously thought possible.

It is also very instructive, especially when SSA is not
used and ones tries to predict the future values of the ge-
omagnetic activity only by using past values of the same
time series, to focus our attention to important events, rather
than report general statistical properties of the prediction. It
is during the storm conditions, that one can appreciate the
pessimism of physicists with respect to the predictability
of Dst given its past values. Indeed, our simulation re-
sults demonstrate the validity of that concern. Although
LOLIMOT is very successful in the general prediction at
least in the short term, it shows obvious lags when storms
occur. Since no factor other than the past values of Dst is
used as an input to the predictor, LOLIMOT has no way of
knowing that a storm is about to begin until it sees its effect
in past Dst values. But this means that it can only predict
with considerable lag exactly when good and rapid predic-
tion is important. This in no way belittles the achievement
gained by using an excellent predictor. We can, of course,
try even stronger predictors; for example, locally quadratic
instead of locally linear. Although our group has reported
the possibility of improving predictions by this method in
other contexts, we did not achieve any significant improve-
ment in the case under study. But the important thing is that
even if future research finds much bettor predictors, neither
of the tools can do the impossible. When one attempts to
predict Dst by only using its past values, it cannot know
that some other factor will cause a dramatic change until
and unless that factor is somehow correlated with the past
vales of Dst that are being used as predictors. We believe
we have achieved an unbelievably successful predictive ca-
pability by the methodology discussed in this study. There
are two possibilities for improving this result. One is to find
a still more powerful predictor. But we have already men-
tioned that we already have achieved almost the best that is
practically possible. The other possibility is to use more in-
put signals. Our method has achieved predictive powers that
are already better than those achieved by other researchers
using physical data other than past Dst values. What if both
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past Dst values and other external factors are used as pre-
dictors? Our initial work indicates that other external fac-
tors, while having good predictive capability when used by
themselves, cannot add to the predictive capability of the
factors already used. Since highly nonlinear methodolo-
gies are being used, partial correlation analysis cannot be
conclusive. The result obviously depends on what external
signal is being used and in what way. So our negative an-
swer cannot be the last word. Recent physical studies show
much higher correlation between Dst and the negative part
of Bz or the derivative of Dst (d(Dst)/dt) (Temerin and
Li, 2002; Campbell, 1996). However, as already has been
pointed out, it is not the predictive power of those factors in
linear regression that is in question, but their added predic-
tive capability to an already excellent prediction in a highly
nonlinear fashion is what is really required. This calls for
much research in the future. But we have actually found a
third way of improved prediction. By using SSA we have,
as explained in the previous paragraph, in effect been us-
ing previous cycles of the time series as external factors.
The results have not only allowed much longer term predic-
tion, but also better performance in crucial periods of solar
storms, when LOLIMOT by itself did not have satisfactory
performance.
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