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Introducing localized constraints in global geomagnetic field modelling
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A set of functions is defined that can be used for modelling the internal part of the geomagnetic field. These
functions are represented in term of spherical harmonics of a given maximum degree L and are centred at specific
latitudes and longitudes. The number of functions needed and the positions of their centres are such that any
potential field of maximum spherical harmonic degree L can be modelled. Formulae are obtained to transform
between the potential field representation using these functions and a classic spherical harmonic representation.
The shape of these functions can be optimized to make them reasonably localized, and from there it is shown
how a localized constraint can be applied to an internal geomagnetic field model. The technique is demonstrated
by means of models built from a few months of the Swarm mission synthetic data set.
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1. Introduction
One of the major difficulties when building a geomag-

netic field model is to estimate the weights to be given to
the different data sets and, in the data sets themselves, the
appropriate weight for each data value. The data with un-
correlated errors should be weighted by the inverse of their
variances but usually these variances are not known. Fur-
thermore, geomagnetic field models do not generally model
all the sources of magnetic field and the data weights should
take into account the part of the signal that is not modelled.
Again, estimating accurately the amplitude of these signals
is very difficult, if not impossible.
The usual approach when building spherical harmonic

models of the geomagnetic field from satellite data is to
weight the data to take into account the higher data density
close to the poles and the increase in noise level at high
latitude. This approach, however, is not always satisfactory.
The problem would not be so acute if, in place of a spherical
harmonic representation, local basis functions were used. In
this case, localized noisy data would not have any influence
on a local basis function parameter situated far away and,
if necessary, a constraint could be applied locally to control
the field model behaviour wherever there are noisy, sparse
or poor quality data.
Local basis functions can be seen as a special case of

wavelets and theoretical work has been done to develop
wavelets on a sphere (Freeden et al., 1998). There are very
few models of the internal geomagnetic field built using
wavelets. Maier and Mayer (2003) present an application to
the crustal magnetic field. Another example is presented in
Holschneider et al. (2003) where the authors used Poisson
multipole wavelets that contain all spherical harmonic de-
grees. In the present work we develop a set of functions for
the representation of the internal magnetic field where each
function can be described with only spherical harmonics of
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degrees less than or equal to a given value L . These func-
tions are a special case of “band-limited wavelets” (Free-
den et al., 1998). We choose to limit the maximum spher-
ical harmonic degree of the functions to have good control
on the downward continuation process associated with the
use of satellite data. Because our functions do not contain
spherical harmonic degrees larger than L , we define and
place them on the sphere in such a way that any harmonic
function of spherical harmonic degree less than or equal to
L can be represented. Therefore, we will see that it is easy
to transform between a spherical harmonic representation of
a potential field and a representation using our set of func-
tions. Indeed, since we have only a finite number of spheri-
cal harmonic degrees we can only build “quasi-local” func-
tions that have very small amplitude outside a given latitude
and longitude window (but not zero as would be expected
for truly local functions). However, we will see that we can
make them reasonably localized, and as a result, it is easy
to implement localized constraints.
In the next section, the theory is presented, and in the

third section an example is given of an application using
the Swarm synthetic satellite data set (Olsen et al., 2006).

2. Theory
A general description of wavelets on the sphere and,

more specifically, band-limited wavelets can be found in
Freeden et al. (1998), but in the following we concentrate
on the representation we choose. Then, formulae are estab-
lished to transform a spherical harmonic representation into
the new system of representation, and conversely. The func-
tions used for the representation are then optimized to make
them as local as possible. Finally localized constraints are
introduced.
Let HaL(�) be the space of the restriction of all har-

monic functions of maximum degree L to the unit sphere�.
If g(θ, ϕ) is a function of HaL(�), it can be expressed as
a linear combination of Schmidt normalized spherical har-

477



478 V. LESUR: INTRODUCING LOCALIZED CONSTRAINTS IN GLOBAL GEOMAGNETIC FIELD MODELLING

monics Y m
l (θ, ϕ)1:

g(θ, ϕ) =
L∑

l=0

l∑
m=−l

g̃m
l Y m

l (θ, ϕ) (1)

The negative orders (m < 0) are associated with sin(mϕ)

terms, whereas zero or positive orders (m ≥ 0) are associ-
ated with cos(mϕ) terms. The g̃m

l are calculated by integra-
tion:

g̃m
l = 2l + 1

4π

2π∫

0

π∫

0

g(θ, ϕ)Y m
l (θ, ϕ) sin θdθdϕ (2)

We want to use an alternative representation for g(θ, ϕ):

g(θ, ϕ) =
∑
i, j

g̃i j F L
i j (θ, ϕ). (3)

The functions F L
i j (θ, ϕ) are centred on a point (θi , ϕ j ) of

the unit sphere � and are defined by:

F L
i j (θ, ϕ) =

L∑
l=0

l∑
m=−l

flY
m
l (θi , ϕ j )Y

m
l (θ, ϕ) fl �= 0

=
L∑

l=0

fl Pl(cosμ) (4)

where μ is the angle between the two unit vectors pointing
in the directions (θi , ϕ j ) and (θ, ϕ) and Pl(cosμ) are the
Legendre polynomials of degree l (see Backus et al., 1996,
p. 141). Obviously the functions F L

i j (θ, ϕ) are in HaL(�).
We show below that for any function g(θ, ϕ) of HaL(�)

to be defined in terms of F L
i j (θ, ϕ), as in Eq. (3), only

(L + 1)(2L + 1) functions F L
i j (θ, ϕ) are needed, centred

at the (θi , ϕ j ) given by:

θi = arccos(xi )

ϕ j = 2π j

(2L + 1)
(5)

where xi is the i th zero of the Legendre polynomial
PL+1(x).
This is a direct consequence of the following sampling

theorem on �:
Theorem-1: Let g̃m

l be the spherical harmonic coefficients
of a function g(θ, ϕ) of HaL(�) (i.e. g̃m

l = 0 for l > L)
then:

g̃m
l = 2l + 1

2(2L + 1)

L+1∑
i=1

wL+1
i

2L+1∑
j=1

g(θi , ϕ j )Y
m
l (θi , ϕ j ) (6)

for l ≤ L and −l ≤ m ≤ l. The (θi , ϕ j ) are defined as in
(5) and the weights wL+1

i are given by:

wL+1
i = 2

(1 − x2
i )

(∂x PL+1(xi ))
−2 i = 1, · · · , L +1 (7)

We do not give here a proof for this theorem that is of-
ten used in geophysics (e.g., Lesur and Gubbins, 1999 or

1In our formulation we will include the spherical harmonic of zero degree
and order, but it can be excluded for geomagnetic applications.

Sneeuw, 1994). An alternative sampling theorem could
be used with regular sampling both in θ and ϕ (Driscoll
and Healy, 1994) but twice as many functions F L

i j (θ, ϕ)

would then be required. To the author’s knowledge an
exact sampling theorem on the sphere requiring less than
(L + 1)(2L + 1) sampling points has not been established
yet. By using such a theorem, one would be able to re-
produce the results presented below with fewer functions
F L

i j (θ, ϕ).

We can rewrite Eq. (6) for the function Y m ′
l ′ (θ, ϕ), l ′ ≤ L:

δll ′δmm ′ = 2l ′ + 1

2(2L + 1)

L+1∑
i=1

2L+1∑
j=1

wL+1
i Y m ′

l ′ (θi , ϕ j )Y
m
l (θi , ϕ j )

(8)
where δi j = 1 if i = j and zero otherwise. Starting from
Eq. (1) and then introducing Eq. (8) gives:

g(θ, ϕ) =
∑
l,m

g̃m
l Y m

l (θ, ϕ)

=
∑
l ′,m ′

∑
l,m

g̃m ′
l ′

fl

fl ′
{δll ′δmm ′ } Y m

l (θ, ϕ)

=
∑
l ′,m ′

∑
l,m

g̃m ′
l ′

fl

fl ′

{
2l ′ + 1

2(2L + 1)

L+1∑
i=1

2L+1∑
j=1

wL+1
i

·Y m ′
l ′ (θi , ϕ j )Y

m
l (θi , ϕ j )

}
Y m

l (θ, ϕ)

=
L+1∑
i=1

2L+1∑
j=1

∑
l ′,m ′

g̃m ′
l ′

fl ′

2l ′ + 1

2(2L + 1)
wL+1

i

·Y m ′
l ′ (θi , ϕ j )

{∑
l,m

flY
m
l (θi , ϕ j )Y

m
l (θ, ϕ)

}

=
L+1∑
i=1

2L+1∑
j=1

g̃i j F L
i j (θ, ϕ) (9)

where

g̃i j =
L∑

l ′=0

l ′∑
m=−l ′

g̃m ′
l ′

fl ′

2l ′ + 1

2(2L + 1)
wL+1

i Y m ′
l ′ (θi , ϕ j ) (10)

Therefore any function g(θ, ϕ) defined as in Eq. (1) can be
expressed in terms of F L

i j (θ, ϕ), as in Eq. (3), as long as
fl �= 0, i.e. the F L

i j (θ, ϕ) span the whole HaL(�) space.
It would be tempting to reduce the required number

of functions F L
i j (θ, ϕ) (see for example Cui and Freeden,

1997). However, by doing so, we would not be able to es-
tablish the set of Eqs. (9) and Eq. (10). It is because we
are using an exact sampling theorem on the sphere that we
are able to prove that the F L

i j (θ, ϕ) span the whole HaL(�)

space.
The (L + 1)(2L + 1) functions F L

i j (θ, ϕ) are not lin-
early independent since the dimension of HaL(�) is only
(L + 1)2. Therefore there is not a unique decomposition of
a function of HaL(�) in terms of F L

i j (θ, ϕ). Equation (10)
gives a possible set of g̃i j as a function of the g̃m

l . By equat-
ing Eqs. (1) and (3), multiplying both sides by Y m

l (θ, ϕ) and
integrating over the sphere, it is straightforward to find the
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Fig. 1. Normalized absolute value of the potential F20
00 (θ, ϕ, a) and its gradients in the θ and r directions.
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Fig. 2. Power spectra of model 1, model 2 and of their differences relative to the reference field model for 1997.5.

reciprocal formula:

g̃m ′
l ′ =

L+1∑
i=1

2L+1∑
j=1

g̃i j fl ′Y
m ′
l ′ (θi , ϕ j ) (11)

We now consider the problem in the whole 3-D space and
define the function F L

i j (θ, ϕ, r) by:

F L
i j (θ, ϕ, r) = a

L∑
l=0

l∑
m=−l

(a

r

)l+1
flY

m
l (θi , ϕ j )Y

m
l (θ, ϕ)

fl �= 0 r ≥ a (12)

Finding the best possible fl to build “local” F L
i j (θ, ϕ, r)

functions is very similar to the discussion about the “δ-
ness” of averaging kernels in Backus and Gilbert (1968)
(see also: Backus et al., 1996, p. 153). In the present work,
the fl that minimize Eq. (13) below are used, with ad hoc
weight function wL(θ) and associated value γ = 0.873
(in radians). This minimizes the magnitude of the gradi-
ent of F L

00(θ, ϕ, a) for all θ �= 0 (and not the amplitude
of F L

00(θ, ϕ, a) because we have ultimately to model a mag-
netic field that is a gradient of a potential). All the functions
F L

i j (θ, ϕ) have the same basic shape and are symmetric rel-
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ative to the vector pointing in the direction of their centre
(θi , ϕ j ). In Eq. (13), the function F L

00(θ, ϕ, a) is centred on
the North Pole so that it does not depend on longitude ϕ.

I = {
1 − ∂r F L

00(0, 0, a)
}2 +

π∫

θ=0

{
wL(θ)∂θ F L

00(θ, 0, a)
}2

dθ

+
π∫

θ=0

{
wL(θ)∂r F L

00(θ, 0, a)
}2

dθ (13)

{
θ0 = 0
ϕ0 = 0

and wL(θ) =
⎧
⎨
⎩
exp

(
−

(
θ−π

γ

)2
)
for θ �= 0

0 for θ = 0

The fl are then normalized such that ∂r F L
00(θ, 0, a)|θ=0=1.

Figure 1 shows the absolute value of the poten-
tial F20

00 (θ, ϕ, a) and its gradients ∂θ F20
00 (θ, 0, a) and

∂r F20
00 (θ, 0, a) as a function of colatitude θ . These gradients

decrease rapidly as μ, the angle between the two unit vec-
tors pointing in the directions (θ0, 0) and (θ, 0), increases.
Obviously, if the maximum degree L is increased, functions
F L
00(θ, ϕ, a) can be built with gradients that decrease even

faster with μ.
In geomagnetic applications, the functions F L

i j (θ, ϕ, r)

defined in Eq. (12) can be used to parameterise a magnetic
field whose sources are inside a sphere of radius a. The
magnetic field is a gradient of a potential therefore:

B = −∇
{

L+1∑
i=1

2L+1∑
j=1

g̃i j F L
i j (θ, ϕ, r)

}
(14)

Finding the g̃i j that fit a set of geomagnetic data is a prob-
lem with no unique solution (because the F L

i j (θ, ϕ) are not
linearly independent) and regularization is needed. Further
problems can arise if one of the fl is too small, leading to
a normal equation matrix that displays (non-zero but) very
small eigenvalues. Typically this will happen for large val-
ues of “l” when the data acquisition surface is away from
the reference surface of radius a. For this case, again, some
regularization will be needed.
Consider N (N ≤ (L +1)(2L +1)) pairs of indices {i, j}

and the associated subset SN of functions F L
i j (θ, ϕ, r). A

magnetic field B̃ is then defined by:

B̃ = −∇
{∑

{i, j}
g̃i j F L

i j (θ, ϕ, r)

}
(15)

where the g̃i j are the parameters that define the magnetic
field B in Eq. (14). If a constraint is applied for all latitudes
and longitudes on B̃, it will only have a local effect on B
as long as the N functions F L

i j (θ, ϕ, r) all have their centres
(θi , ϕ j ) in a restricted latitude and longitude window. In
the next section, an internal magnetic field model will be
estimated from a data set and a measure of the roughness
of its vertical component on the sphere of radius a will
be minimized at high latitude. Using the definition of the
functions F L

i j (θ, ϕ, r) in Eq. (12), the vertical component of

B̃ on the sphere of radius a is:

B̃z(θ, ϕ, a) =
∑
{i, j}

g̃i j

∑
l,m

(l + 1) flY
m
l (θi , ϕ j )Y

m
l (θ, ϕ)

(16)

The measure of the roughness (i.e. the measure of the am-
plitude of the second tangential derivative) of the magnetic
field B̃ vertical component on the sphere of radius a is then:

Ia =
∫

�a

(∇2
s B̃z)

2d� =
∑
{i, j}

∑
{t,s}

g̃i j g̃ts

·
L∑

l=0

4πa2

2l + 1
l2(l + 1)4 f 2l Pl(cosμ) (17)

where μ is the angle between the two directions (θi , ϕ j ) and
(θt , ϕs). We have used the Schmidt normalization relation:

∫

�a

Y m
l (θ, ϕ)Y m ′

l ′ (θ, ϕ)d� = 4πa2

2l + 1
δll ′δmm ′ (18)

and
∇2

s Y m
l (θ, ϕ) = −l(l + 1)Y m

l (θ, ϕ). (19)

The model of the main magnetic field that minimizes the
integral (17) is built by introducing in the least-squares
scheme a damping matrix D whose elements associated
with the parameters g̃i j and g̃ts are given by:

Di j,ts =
L∑

l=0

l2(l + 1)4

2l + 1
f 2l Pl(cosμ) (20)

In our approach, a geomagnetic field model is defined by
Eq. (14) and the damping matrix defined in (20) is used.
Alternatively, the field can be modelled by a spherical har-
monic representation and the damping matrix is then the
same as above but right multiplied by the matrix defined
in Eq. (10) and left multiplied by its transpose. In this lat-
ter approach, which we would use for example to build a
model of the crustal magnetic field to a high spherical har-
monic degree, the advantage is a smaller number of parame-
ters. Building the damping matrix would then require more
work but it is straightforward.

3. Application to a Synthetic Data Set
In this section we use the Swarm synthetic data set (Olsen

et al., 2006) spanning several months in 1997 and compare
models with and without local constraints. These models
are also compared with the Swarm reference model for
1997.5.
The Swarm synthetic data set was built using the Com-

prehensive Model (Sabaka et al., 2004), and includes con-
tributions from the core field, the crustal magnetization,
the ionospheric and magnetospheric systems of currents
(and the fields they induce in the Earth), field-aligned cur-
rents (whose associated fields are not necessarily potential
fields), and, finally, instrumental noise. We selected data
from four satellites (satellites A, B, C and D in Olsen et
al., 2006) between 1997.315 and 1997.5479 filtered accord-
ing to: local-times 23:00–06:00; K p < 1+ (and < 2− in
the previous three hours); −10 < Dst < +10 (±15 for
the previous hour); interplanetary magnetic field data with
−1 < Bz < +5,

∣∣By

∣∣ < 3, |Bx | < 10 nT and solar wind
speed V sw < 450 km/s. Vector data only were selected in
the magnetic latitude range [−60◦: 60◦] ; elsewhere, scalar
data were used.
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Table 1. Mean and rms misfit to the data set for the two models.

Component Number of No damping λ = 0 Slight damping λ = 5 × 10−6

data mean rms mean rms

X 27315 0.16 8.77 0.23 8.75

Y 27315 −3.31 9.60 −3.31 9.59

Z 27315 0.31 5.81 0.42 5.94

F 15017 5.19 7.65 6.41 10.40

These data were fitted with a very simple geomagnetic
field model:

B = −∇
{

L+1∑
i=1

2L+1∑
j=1

g̃i j F L
i j (θ, ϕ, r)

+a
2∑

l=1

l∑
m=−l

q̃m
l

( r

a

)l
Y m

l (θ, ϕ)

}
(21)

The model is not time dependent and corresponds roughly
to a snapshot model for 1997.5. The functions F L

i j (θ, ϕ, r)

are defined in Eq. (12) and the maximum spherical har-
monic degree used for the internal part of the model is
L = 19.
This model is defined by 788 parameters (780 inter-

nal and 8 external parameters) whereas in the equivalent
“spherical harmonic only” representation only 408 parame-
ters (including the l = 0, m = 0 internal parameter) would
have been required.
The standard deviations associated with the data are de-

fined by:
σ = σ0 + dz(1 + cos(za)) (22)

where za is the zenith angle of the sun at 250 km alti-
tude, the factor dz = 10 nT and σ0 = 2 nT are used for
all data. During the inversion the data are multiplied by
weights proportional to the inverse of these standard devi-
ations. To deal with the data density at high latitude, these
weights are further divided by the number of data in roughly
equal-area cells whose size at the equator was 5◦ in lati-
tude and longitude. Since they are selected for the northern
hemisphere summer, the data at high (positive) latitudes are
sparse, noisy and strongly down-weighted in the inversion
process.
The model parameters are estimated using the usual least-

squares iterative process:

di = G(pi )

δδδδδδδδdi = dobs − di

δδδδδδδδpi = [
Gt

i WGi + λD
]−1 [

Gt
i Wδδδδδδδδdi − λDpi

]

pi+1 = pi + δδδδδδδδpi (23)

where the superscript i denotes the i th iterate, p is the model
vector (i.e. the model parameters), G(p) is the forward non-
linear function used to calculate the predicted data values d
from a model p, W is a diagonal matrix whose elements are
the weights described above, squared. D is the damping
matrix whose non-zero elements are defined in Eq. (20)
using the N = 156 functions whose centres are at latitude
higher than 40◦ North. λ is the usual damping parameter.

dobs is the data vector and finally, G is the n × p matrix
associated with the equations of condition (n: number of
data values; p : number of model parameters):

G =
[

∂Gi (p)

∂p j

]

i=1,n
j=1,p

(24)

The linear system is solved using eigenvalue/eigenvector
decomposition. The problem is regularised by removing the
null or very small eigenvalues and their associated eigen-
vectors.
It is important to understand that when only the null

eigenvalues and associated eigenvectors are removed, the
output solution is exactly the one that would be obtained
using a spherical harmonic representation of the magnetic
field if the equivalent damping is used. This is because
both the (L + 1)2 spherical harmonic functions of degree
smaller or equal to L and the (L + 1)(2L + 1) functions
F L

i j (θ, ϕ, a) span exactly the same space. However, in the
solutions presented below, all eigenvalues smaller than 10−8

times the largest eigenvalue were removed for the inversion
of the normal equation matrix.
Two sets of model parameters were estimated in four

iterations following the process (23) and their Gauss co-
efficients were calculated using Eq. (11). The first set
(model 1) was obtained without damping (i.e. λ = 0) and
the second set (model 2) was estimated with slight damp-
ing: λ = 5 × 10−6. Table 1 gives the number of data,
mean and the rms misfit for both models. The increase in
the rms misfit with the damping mainly affects, as expected,
the high latitude scalar data.
Figure 2 shows the power spectrum of the two models as

well as the power spectrum of their differences with respect
to the underlying model used to generate the synthetic data
set. The sharp drop of the model’s power at degree 19 is the
result of the regularization process described above. It is
interesting to note that the damping increases the power in
degrees 14 and above. This is in contrast to a damping ap-
plied at all latitudes and longitudes and is due to an increase
in the amplitude of the zonal Gauss coefficients. Indeed a
combination of zonal harmonics can generate an extremely
smooth magnetic field at high latitudes.
Figure 3 presents the contoured differences, for each

magnetic field component, between model 1 and the refer-
ence model and also between model 2 and model 1. In the
comparison of model 1 with the reference, the largest dif-
ferences are mainly at high latitudes in the northern hemi-
sphere where the noise level in the data is large. Large dif-
ferences are also seen in the middle of the Atlantic Ocean.
The effect of the damping can be seen in the differences
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Fig. 3. Contours of the differences between, to the left, model 1 and the reference field (contour interval 10 nT, blue contours are for negative values
and red positives), and to the right, model 2 and model 1 (contour interval 5 nT, blue contours are for negative values and red for positives).

between model 2 and model 1 where the contour interval
is now 5 nT. These differences are large exclusively over
the area where the damping was applied. Residual small
differences, less than 5 nT, are present over the rest of the
spherical surface in all components. It can be seen that the
damping affects mainly the zonal Gauss coefficients, which
was to be expected with the simple geometry and location
of the damping area.

4. Conclusion
We have presented a technique for modelling the inter-

nal part of the geomagnetic field based on “quasi-local”
functions. These functions are band-limited (i.e. they are
built from a set of spherical harmonics with a given maxi-
mum degree L) which provides better control of the down-
ward continuation of satellite data. The locations of these
functions are set such that any harmonic functions of maxi-
mum degree L can be represented with these “quasi-local”
functions. The consequence is that any spherical harmonic

model of the internal magnetic field can be easily trans-
formed into a representation using the quasi-local functions,
and conversely. The simplicity of these two transformations
is the main advantage of this technique over an approach us-
ing “non-band-limited” wavelets or a truly local representa-
tion such as spherical cap harmonics.
These functions share the flexibility of other types of

wavelets and should be well suited for building global or
regional models of the crustal magnetic field in the presence
of regional noise or un-modelled signal. However, in this
work these functions were used specifically to introduce a
localized constraint in a global magnetic field modelling
process and we have shown how this local constraint can
be applied to global spherical harmonic modelling. The
technique was successfully tested on a data set built for the
Swarm end-to-end simulator study.

Acknowledgments. Alan Thomson and Susan Macmillan from
BGS are thanked for their help. This paper is published with



V. LESUR: INTRODUCING LOCALIZED CONSTRAINTS IN GLOBAL GEOMAGNETIC FIELD MODELLING 483

the permission of the Executive Director of the British Geological
Survey (NERC).

References
Backus, G. and J. F. Gilbert, The resolving power of gross Earth data,

Geophysical Journal of the Royal Astronomical Society, 16, 169–205,
1968.

Backus, G., R. Parker, and C. Constable, Foundations of Geomagnetism,
Cambridge University Press, New York, 1996.

Cui, J. and W. Freeden, Equidistribution on the sphere, SIAM J. Sci. Com-
put., 18(2), 595–609, 1997.

Driscoll, J. R. and D. M. Healy, Computing Fourier transforms and convo-
lutions on the 2-sphere, Adv. Appl. Maths, 15, 202–250, 1994.

Freeden, W., T. Gervens, and M. Schreiner, Constructive Approximation
on the Sphere, with Applications to Geomathematics, Clarendon Press,
Oxford, 1998.

Holschneider, M., A. Chambodut, and M. Mandea, From global to re-
gional analysis of the magnetic field on the sphere using wavelet frames,
Physics of the Earth and Planetary Interiors, 135, 107–124, 2003.

Lesur, V. and D. Gubbins, Evaluation of fast spherical transforms for

geophysical applications, Geophysical Journal International, 139, 547–
555, 1999.

Maier, T. and C. Mayer, Multiscale downward continuation of CHAMP
FGM-data for crustal field modelling. First CHAMP Mission Results
for Graviy, Magnetic and Atmospheric Studies, edited by Reigber, Lühr,
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