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Determining dislocation Love numbers using satellite gravity mission
observations
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This paper presents a new approach to calculate dislocation Love numbers using observations of a satellite
gravity mission (e.g. GRACE). The necessary condition is that the co-seismic potential change be sufficiently
large to be detected by the gravity mission. Co-seismic deformations for each spherical harmonic degree n are
decoupled. Therefore, dislocation Love numbers of degree n can be determined independently. The determinable
maximum harmonic degree n depends on the seismic size, source type, magnitude, and the accuracy of a satellite
gravity mission. For an arbitrary seismic source, all four types of dislocation Love numbers can be determined
using data from only one seismic event because all deformation components are involved together. Only the
concerned dislocation Love numbers can be computed for any one of the four types of sources. To prove the
validity of the method proposed in this study, a simulation test is carried out by considering a similar case to the
2004 Sumatra earthquake (Mw 9.1). Results show that the method works well and guarantee the accuracy.
Key words: Co-seismic deformation, dislocation Love number, gravity mission, earthquake GRACE, Sumatra
earthquake.

1. Introduction
Dedicated satellite missions, such as The Gravity Recov-

ery and Climate Experiment (GRACE) (NRC, 1997), are
now available for gravity field determination from space.
They provide an extremely accurate, global, and high-
resolution estimate of constant and time-variable compo-
nents of the earth’s gravity field every 30 days over a 5-year
period (Wahr et al., 1998). It is anticipated that the grav-
ity missions will yield extremely wide geophysical applica-
tions in geosciences, with measurement of temporal grav-
ity variations caused by various geophysical processes in-
cluding atmospheric mass redistribution, ocean circulation,
polar ice melting or aggregation, visco-elastic response of
the Earth’s lithosphere to past and present loads, and others
(Chao et al., 2000; Chao, 2003). In addition to these pro-
cesses, earthquakes can produce large global gravity per-
turbations that are detectable through analysis of gravity
mission data. Gross and Chao (2001) investigated gravity
perturbations using normal mode technique based on Chao
and Gross (1987). Comparing the degree amplitude spec-
tra of some earthquakes with expected GRACE sensitivity,
they concluded that co-seismic effects of great earthquakes
such as the 1960 Chilean or 1964 Alaska events can cause
global gravitational field changes that are sufficiently large
as to be detectable by GRACE. Sun and Okubo (2004a, b)
approached this problem from two perspectives. They de-
rived theoretical formulations of co-seismic geoid and grav-
ity changes and their degree variances, expressed by dislo-
cation Love numbers. These expressions are achieved using
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the dislocation theory of Sun and Okubo (1993), for a spher-
ical earth as it is expressed in the form of spherical harmon-
ics. They investigated co-seismic geoid and gravity changes
by observing the distribution of their degree variances in
comparison to the expected sensitivity of satellite gravity
missions. Co-seismic deformations for large earthquakes
are discussed with respect to their detectability. Results
indicate that both the gravity and geoid changes are near
two orders of magnitude larger than the precision of gravity
missions in low harmonic degrees. Based on those results,
they derived the minimum magnitudes of earthquakes de-
tectable by GRACE. Their conclusion was that co-seismic
deformations for an earthquake with a seismic magnitude
greater than m = 7.5 (for tensile sources) and m = 9.0 (for
shear sources) are expected to be detectable by GRACE.
Note that the dislocation Love numbers used in Sun and
Okubo (2004a, b) are obtained conventionally for a spheri-
cally symmetric earth model such as the 1066A (Gilbert and
Dziewonski, 1975) or the preliminary reference earth model
(PREM) (Dziewonski and Anderson, 1981). However, dis-
location Love numbers calculated based on an earth model
are theoretically different from those of the earth. On the
other hand, Okubo et al. (2002) showed that the co-seismic
deformations vary if the earth parameters are adjusted. That
fact implies that the accuracy of the dislocation Love num-
bers depends directly on the rightness of the adopted earth
model. If possible, it is better to determine them by real
observations because they carry real information regarding
the earth’s structure. Satellite gravity missions provide the
possibility of determining the dislocation Love numbers.

Therefore, dislocation Love numbers are considered in
this study as unknown variables. They are derived from
observations of satellite gravity missions such as GRACE.
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Then theoretical formulations are presented for determin-
ing the dislocation Love numbers. Numerical applications
should be useful for a seismic event that is sufficiently large
to be detectable from space.

2. Co-Seismic Potential Change and Dislocation
Love Numbers

Assume that an inclined point dislocation is located on
the polar axis in a compressible and self-gravitating spheri-
cal earth, and that the fault line is in the direction of ϕ = 0
(Greenwich meridian). According to the quasi-static dislo-
cation theory, the co-seismic potential change at an obser-
vation point (a, θ, ϕ) can be expressed as (Sun and Okubo,
1993)

ψ i j (a, θ, ϕ) =
∑
n,m

ki j
nmY m

n (θ, ϕ) · νi n j
g0Ud S

a2
, (1)

where ki j
nm (related to the gravitational potential change) are

the dislocation Love numbers, function of the spherical har-
monic degree, order, source depth, and source type. Com-
ponents of the slip vector and its normal on the infinites-
imal fault area d S are νi and n j with total dislocation U .
Gravity on the earth surface is g0, a is the Earth’s radius,
and Y m

n (θ, ϕ) is the spherical harmonic function of degree
n and order m. The so-called dislocation factor, g0Ud S/a2,
defines the earthquake magnitude and gives the unit of po-
tential change.

A combination of the three slip and three normal com-
ponents means that nine solutions exist for all possible
sources. However, only four independent solutions exist if
the earth model is spherically symmetric and isotropic. A
deformation caused by an arbitrary source can be obtained
by a proper combination of the four types of independent
sources. In this study, we choose the following four inde-
pendent solutions: i j = 12, 32, 22, and 33. They represent
strike-slip, dip-slip, horizontal tensile and vertical tensile,
respectively. Components of i j = 22 include two parts:
m = 0 and 2. Computation of m = 2 is derived easily from
the component of i j = 12. Expressions of the four indepen-
dent solutions are given as the following (Sun and Okubo,
1993).

ψ12(a, θ, ϕ) = 2
∞∑

n=2

k12
n2 P2

n (cos θ) sin 2ϕ
g0Ud S

a2
(2)

ψ32(a, θ, ϕ) = 2
∞∑

n=1

k32
n1 P1

n (cos θ) sin ϕ
g0Ud S

a2
(3)

ψ22(a, θ, ϕ) =
[ ∞∑

n=0

k22
n0 Pn(cos θ)

− 2
∞∑

n=2

k12
n2 P2

n (cos θ) cos 2ϕ

]
g0Ud S

a2
(4)

ψ33(a, θ, ϕ) =
∞∑

n=0

k33
n0 Pn(cos θ)

g0Ud S

a2
. (5)

A co-seismic potential change caused by an arbitrary in-
clined fault can be expressed by the above four independent
solutions. In this case, a dislocation vector νννννννν and its normal

n can be described in terms of dip-angle δ and slip-angle λ

of the fault as

n = e3 cos δ − e2 sin δ (6)

νννννννν = e3 sin δ sin λ + e1 cos λ + e2 cos δ sin λ. (7)

We face a shear dislocation problem if dislocation vector
νννννννν runs parallel to the fault plane. Similarly, for a tensile
opening, the dislocation vector νννννννν and its normal n become
equal:

νννννννν = n = e3 cos δ − e2 sin δ. (8)

Then for an arbitrary shear fault on the polar axis, accord-
ing to Eqs. (1)–(5) the co-seismic potential change can be
written as the following.

ψShear(a, θ, ϕ) =
∞∑

n=2

{(sin λ sin 2δ cos 2ϕ

− 2 cos λ sin δ sin 2ϕ) P2
n (cos θ)k12

n2

+ 2 (sin λ cos 2δ sin ϕ

+ cos λ cos δ cos ϕ) P1
n (cos θ)k32

n1

+ 1

2
sin λ sin 2δPn(cos θ)

(
k33

n0 − k22
n0

)}

· g0Ud S

a2
. (9)

Similarly, for a tensile source, the co-seismic potential
change becomes the following.

ψTensile(a, θ, ϕ) =
∞∑

n=2

[
cos2 δPn(cos θ)k33

n0

+ sin2 δPn(cos θ)k22
n0

− 2 sin2 δ cos 2ϕP2
n (cos θ)k12

n2

− 2 sin 2δ sin ϕP1
n (cos θ)k32

n1

]
· g0Ud S

a2
. (10)

Dislocation Love numbers ki j
nm in (9) and (10) are ob-

tained conventionally for a spherically symmetric earth
model (Sun and Okubo, 1993) such as the 1066A (Gilbert
and Dziewonski, 1975) or the preliminary reference earth
model (PREM) (Dziewonski and Anderson, 1981). Once a
dislocation source or earthquake parameter is provided, co-
seismic deformations can be calculated easily using these
Love numbers. Subsequently, the potential change can be
calculated by the above summations in (9) or (10). Note
that the dislocation Love numbers k33

n0 − k22
n0 in (9) can be

considered as a whole since they appear in the formula in
form of difference of the two tensile sources.

However, the dislocation Love numbers calculated based
on an earth model are theoretically worse than those of the
earth. Furthermore, Okubo et al. (2002) showed the depen-
dence of co-seismic deformations on the earth parameters.
That fact implies that the accuracy of the dislocation Love
numbers depends directly on the adopted earth model. If
possible, it is better to determine those using real observa-
tions. Satellite gravity missions provide just such a possi-
bility. For that reason, dislocation Love numbers are con-
sidered to be unknown variables in this study, and are de-
rived from observations of satellite gravity missions, such
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as GRACE. In previous studies, Sun and Okubo (2004a, b)
proved that the satellite gravity mission (GRACE) is able to
detect co-seismic deformations from space. This benefit al-
lows the study of the earth’s inner structure from a new van-
tage because dislocation Love numbers, when they are de-
rived independently from space, carry reliable information
of the earth’s mass distribution. Therefore, the observed
dislocation Love numbers are useful not only for geodetic
application, but also for modeling the earth structure as a
new condition, in combination with seismic knowledge.

Co-seismic deformations can be studied for individual
harmonic degrees because the satellite gravity missions pro-
vide potential measurements in the form of spherical har-
monic coefficients, as indicated by Chao and Gross (1987).
Note that the terms of degrees n = 0 and n = 1 in Eqs. (9)
and (10) vanish because the total mass of the earth is con-
stant and the reference frame origin is located at the center
of mass of the earth model. On the other hand, the angular
order m vanishes except m = 0, 1 and 2 because the source
is chosen at the polar axis and because of the symmetric
property of the source functions.

3. Potential Change Observed by Satellite Gravity
Missions

On the other hand, satellite gravity missions provide the
following observations for a potential anomaly as a spheri-
cal harmonic series (Heiskanen and Moritz, 1967):

T (a, θ, ϕ) = a
∞∑

n=0

n∑
m=−n

(�Cnm cos mϕ

+ �Snm sin mϕ) Pm
n (cos θ), (11)

where �Cnm and �Snm are differences of two sets of spher-
ical harmonic coefficients (C1

nm, S1
nm) and (C2

nm, S1
nm) of the

geo-potential model observed by the GRACE mission:

�Cnm = C2
nm − C1

nm, and (12)

�Snm = S2
nm − S1

nm . (13)

Notice that a dislocation may occur at an arbitrary position
in the earth in practice, whereas satellite gravity missions al-
ways provide results in spherical coordinates with the North
Pole as orientation. Then the theoretical co-seismic po-
tential changes expressed in (9) and (10) and the potential
change provided by the satellite in (11) are for two differ-
ent spherical coordinate systems: (a, θ, ϕ) and (a, θ ′, ϕ′).
For comparison, they must be unified into one coordinate
system by transforming one of them to the other’s format.
Because of the spherical symmetric property, results are
identical whichever is transformed. Nevertheless, the dis-
location Love numbers in (9) and (10) are unknown and are
derived from satellite observations. For that reason, it is
convenient to leave them unchanged. On the other hand, if
the seismic source is chosen at a pole, the co-seismic poten-
tial change only contains spherical harmonic orders m = 0,
1 and 2. Otherwise, all spherical harmonic orders m will be
involved. Therefore, we transform Eq. (11) into the same
system as that used in (9) and (10) below:

T (a, θ, ϕ) = a
∞∑

n=0

n∑
k=−n

(�cnk cos kϕ

+ �cnk sin kϕ) Pk
n (cos θ), (14)

where

�cnk =
n∑

m=0

ak
nm�Cnm (15)

�snk =
n∑

m=0

bk
nm�Snm (16)

and coefficients ak
nm and bk

nm can be obtained by a set of
reoccurrence formulas, as listed in Appendix A.

4. Dislocation Love Numbers Derived From Ob-
servations of Gravity Missions

Theoretically, the predicted potential change
ψShear(a, θ, ϕ) (or ψTensile(a, θ, ϕ)) should be identi-
cal to the observed T (a, θ, ϕ) anywhere on the earth
surface, as

ψ(a, θ, ϕ) ≡ T (a, θ, ϕ). (17)

In practice, the use of either ψShear(a, θ, ϕ) or
ψTensile(a, θ, ϕ) depends on the actual source type—
shear or tensile. On the other hand, relation (17) holds
for any harmonic degree. Consequently, we only discuss
spherical harmonic degree n in the following. Assuming a
shear seismic source, inserting (9) and (14) into (17) yields

f1(θ, ϕ)k12
n2 + f2(θ, ϕ)k32

n1 + f3(θ, ϕ)
(
k33

n0 − k22
n0

)
= g(θ, ϕ), (18)

where

f1(θ, ϕ) = (sin λ sin 2δ cos 2ϕ

− 2 cos λ sin δ sin 2ϕ) P2
n (cos θ)

g0Ud S

a2
(19)

f2(θ, ϕ) = 2 (sin λ cos 2δ sin ϕ

+ cos λ cos δ cos ϕ) P1
n (cos θ)

g0Ud S

a2
(20)

f3(θ, ϕ) = 1

2
sin λ sin 2δPn(cos θ)

g0Ud S

a2
(21)

g(θ, ϕ) = a
n∑

k=−n

(�cnk cos kϕ

+ �cnk sin kϕ) Pk
n (cos θ). (22)

Note that fi (θ, ϕ) (i = 1, 2, 3) and g(θ, ϕ) in (18) are
known once the parameters of an earthquake are provided.
The only unknowns are the dislocation Love numbers k12

n2,
k32

n1 and k33
n0 − k22

n0. The remaining task is to solve Eq. (18).
For that purpose, (18) can be discretized into a linear system

FK = G, (23)

where

K = (
k12

n2, k32
n1, k33

n0 − k22
n0

)T
(24)

G = (g(θ1, ϕ1), g(θ2, ϕ2), · · · g(θN , ϕN ))T (25)

F =

⎛
⎜⎝

f1(θ1, ϕ1) f2(θ1, ϕ1) f3(θ1, ϕ1)

f1(θ2, ϕ2) f2(θ2, ϕ2) f3(θ2, ϕ2)

· · · · · · · · ·
f1(θN , ϕN ) f2(θN , ϕN ) f3(θN , ϕN )

⎞
⎟⎠ (26)
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So that the unknown dislocation Love numbers K can be
obtained easily as

K = F−1G. (27)

Decoupling of the dislocation Love numbers simplifies mat-
ters if the seismic source is occasionally one of the four in-
dependent types. For a vertical strike-slip (m = 2), Eq. (18)
can be reduced to

f1(θ, ϕ)k12
n2 = g(θ, ϕ). (28)

Thereby, the dislocation Love number can be written as

k12
n2 = g(θ, ϕ)/ f1(θ, ϕ). (29)

Similarly, we may obtain dislocation Love numbers for the
other three source types as

k32
n1 = g(θ, ϕ)/ f2(θ, ϕ) (30)

k22
n0 = −g(θ, ϕ)/ f3(θ, ϕ) (31)

k33
n0 = g(θ, ϕ)/ f3(θ, ϕ). (32)

However, in this special case, not all, but only the concerned
dislocation Love numbers can be determined.

For a tensile source, similar equations exist as (18)–
(33), but with slightly different contents for fi (θ, ϕ) (i =
1, 2, 3, 4). They are omitted here because a pure tensile rup-
ture occurs very rarely in practice. If necessary, they can be
written out easily in the same manner as those for the shear
source.

5. Synthetic Test—Case of the 2004 Sumatra
Earthquake (Mw 9.1)

In this section, we perform a simulation test for the 2004
Sumatra-Andaman earthquake (Mw 9.1) in order to prove
the validity of the method proposed here. The gravity po-
tential coefficients determined by GRACE after this earth-
quake have not been released yet. However, our test study
is very realistic, and the whole simulation procedure could
be directly applied for the actual GRACE data after their
release in the future.

The 2004 Sumatra-Andaman earthquake occurred about
100 km off the west coast of the Northern Sumatra, causing
a devastating tsunami that hit coastlines across the Indian
Ocean. The main geological background of the earthquake
is that the relatively dense Indo-Australian plate subducts
beneath the lighter Burma plate with a relative velocity of
about 6 cm/year (Khan and Gudmundsson, 2005). On 26
December 2004, the two plates moved several meters, re-
leasing stress accumulated over hundreds of years. Several
fault models have been proposed for this earthquake (e.g.,
Ammon et al., 2005). The parameters used in the calcu-
lation are listed in Table 1 (Yamanaka, 2004). Note that
these parameters were obtained solely from seismological
data, and may underestimate the whole moment released by
this earthquake. However, the above theory and the follow-
ing numerical results show that the parameters change the
seismic factor g0Ud S/a2 somehow but do not affect the in-
versed dislocation Love numbers for the current simulation.
For the actual GRACE data, a more realistic fault model
should be considered.

Table 1. Source parameters of the 2004 Sumatra earthquake.

Parameter Fault

Strike angle 340◦

Dip angle 8◦

Slip angle 112◦

L × W × U 1135 km3

Latitude 3.251◦N

Longitude 95.799◦E

Depth 10 km

Fig. 1. Relative errors of the inverted dislocation Love numbers for degree
n = 2, based on various discretization cap area, i.e. 10◦–179◦ in the
epicentral distance.

At first, we assume no errors exist in GRACE observa-
tion. It means that the difference (�Cnm, �Snm) in (12)
and (13) of two sets of geo-potential models (C1

nm, S1
nm)

and (C2
nm, S2

nm) observed by GRACE contains the pure co-
seismic deformation. On the other hand, synthetic data can
be created by known dislocation Love numbers, e.g., for
degree n = 2

k12
22 = 0.00437720437

k32
21 = 0.0002946987178

k33
20 − k22

20 = −0.0268207390418.

(33)

Next, we calculated the function g(θ, ϕ) using (23), tak-
ing the coordinate origin at the epicenter of the earthquake.
We then discretize the functions fi (θ, ϕ) (i = 1, 2, 3) and
g(θ, ϕ) in (19)–(23) by 1◦ ×1◦, so that the elements in G, F
can be obtained. After the discretized linear equation (24)
is prepared, the dislocation Love numbers vector K can be
solved by (28). To investigate the convergence of the so-
lutions, we first solve the linear equations by considering a
cap around the epicenter with radius (epicentral distance) of
10◦, with a system of 3600 equations. The inversed dislo-
cation Love numbers are listed in Table 2 (the second row).
It shows that dislocation Love numbers are obtained with
an error less than 2.49−9 relative to the true values. Bet-
ter results are obtained by increasing the radius gradually to
the whole earth (Table 2) while the relative error decreases
correspondingly (see Fig. 1).

Similarly, the inverted dislocation Love numbers for de-
grees n = 2–100 are calculated. The relative errors are
plotted in Fig. 2. It is shown that the relative errors for all
degrees are less than 10−12. It indicates than the method
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Table 2. Theoretical dislocation Love numbers and the inverted results for degree n = 2, obtained for various discretization cap area with the epicentral
distance from 10◦ to 179◦. The numbers in the brackets give the error relative to the theoretical value.

k12
22 k32

31 k33
20 − k22

20

Theoretical value 0.00437720437000000 0.00029469871780000 −0.02682073904180000

θ = 1◦–10◦ 0.00437720436991047

(2.04e−09)

0.00029469871779842

(5.35e−10)

-0.02682073904179054

(3.52e−11)

θ = 1◦–30◦ 0.00437720437002778

(6.34e−10)

0.00029469871779875

(4.23e−10)

-0.02682073904180265

(9.88e−12)

θ = 1◦–60◦ 0.00437720437000351

(8.01e−11)

0.00029469871779984

(5.27e−11)

-0.02682073904180550

(2.04e−11)

θ = 1◦–100◦ 0.00437720437000321

(7.32e−11)

0.00029469871779984

(5.40e−11)

-0.02682073904181473

(5.49e−11)

θ = 1◦–179◦ 0.00437720437000325

(7.42e−11)

0.00029469871779983

(5.87e−11)

-0.02682073904180870

(3.24e−11)

Fig. 2. The relative error of the inversed dislocation Love numbers for degree n = 2–100.

proposed here works well for inversing dislocation Love
numbers from a satellite gravity mission, provided the ob-
servation is accurate enough. It should be pointed out that
relatively large errors for the parameters k12

n2 in Fig. 2 are
considered to be due to the original input of the dislocation
Love numbers (see (34)). That is, k12

n2 has less valid digits
(nine digits) in comparison with the other two (10 and 12
digits for k32

n1 and k33
n0 − k22

n0, respectively).
We further check the method by assuming a 1% ran-

dom error in the GRACE data for degree n = 100. The
corresponding results are listed in Table 3. It shows that
the estimated dislocation Love numbers are as accurate as
the GRACE data (1%) (Fig. 3). It implies that if an earth-
quake is large enough to cause gravity signature detectable
by a gravity satellite mission, the dislocation Love numbers
can be obtained by this method with sufficient accuracy. It

should be pointed out that the 1% random error used here
is an assumption. The purpose of the investigation is to
observe whether or not the method guarantees the same ac-
curacy as the GRACE observation. Since the real GRACE
data for high degrees get less accurate as n increases, there
should be a certain limit to the determinable maximum de-
gree/order of the dislocation Love numbers. However, the
above results show that only if the coseismic signal is larger
than the accuracy for certain degree n, the corresponding
dislocation Love numbers can be determined.

6. Discussion and Final Remarks
This study presents a new method to calculate disloca-

tion Love numbers using observations of a satellite gravity
mission such as GRACE. A necessary condition is that the
co-seismic deformations (e.g., potential change) should be
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Table 3. Estimated dislocation Love numbers of n = 100 for the discretization cap area with the epicentral distance 10◦, 30◦ and 60◦. The geo-potential
model by GRACE is considered to be more accurate than the co-seismic signals by two orders of magnitude. The numbers in the brackets give the
errors relative to the theoretical value.

k12
22 k32

31 k33
20 − k22

20

Theoretical value 1.66875077200000e-04 3.28713649800000e-04 9.50572394700000e-04

θ = 10◦ 1.67996570262265e−04

(0.67%)

3.30348613882692e−04

(0.49%)

9.55049795206746e−04

(0.47%)

θ = 30◦ 1.67733609659271e−04

(0.51%)

3.30324454394680e−04

(0.49%)

9.55141835750042e−04

(0.48%)

θ = 60◦ 1.67838920786571e−04

(0.57%)

3.30344969817822e−04

(0.49%)

9.55151237245961e−04

(0.48%)

Fig. 3. The relative error of the inversed dislocation Love numbers for
degree n = 100. The geo-potential model observed by GRACE is
assumed to be more accurate than the co-seismic deformation by two
orders of magnitude.

sufficiently large to be detectable by the gravity mission.
Deformations for each spherical harmonic degree n are de-
coupled. Therefore, the dislocation Love numbers can be
determined independently for each n. However, the maxi-
mum determinable harmonic degree n depends on the seis-
mic size, source type, and the accuracy (detectability) of a
satellite gravity mission. For example, for a seismic event
as large as the 1964 Alaska earthquake, the dislocation Love
numbers of the first 70 spherical harmonic degrees are ex-
pected to be determinable using GRACE observations (Sun
and Okubo, 2004a, b). Since the 2004 Sumatra earthquake
(Mw 9.1) is a little bit smaller than the Alaska earthquake,
it is hopeful to be detected by GRACE, but the detectable
harmonic degrees should be less than 70. The forthcoming
gravity mission GRACE follow-on is expected to improve
accuracy by two orders (Watkins et al., 2000). Therefore,
more harmonic degrees are expected to be determined. On
the other hand, for an arbitrary seismic source (with certain
dip angle, e.g., around δ = 45◦), all types of dislocation
Love numbers can be determined using only one seismic
event because all deformation components are involved to-
gether. However, only the related dislocation Love numbers
can be computed in the case of any one of the four types of
sources, e.g., only k12

n2 can be obtained for a vertical strike-
slip earthquake. A simulation test is carried out by consid-
ering a similar case to the Sumatra earthquake, in order to
prove the validity of the method proposed in this study. Re-
sults show that the method works well and guarantee the
accuracy. Since the dislocation Love numbers are expected

to be sensitive to local structure of the earth, it is considered
to be more reasonable to obtain them from a realistic obser-
vation such as GRACE. In addition, there are certain rela-
tion between the dislocation Love numbers and other con-
ventional Love numbers, such as tidal Love numbers and
load Love numbers (Okubo, 1993). Once the dislocation
Love numbers are obtained, other dislocation Love num-
bers are also expected to be obtained. Since GRACE pro-
vided real observation data since about two years ago, many
relative application studies have been performed, such as
detections of seasonal/secular mass changes (Tapley et al.,
2004; Tamissiea et al., 2005). It is also expected to apply
real GRACE data to studying co-seismic deformations in
the near future.
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Appendix A. Transformation coefficients ak
nm and

bk
nm

According to Xu and Jiang (1964), the transformation co-
efficients ak

nm and bk
nm used in (15) and (16) can be derived

by the following recurrence formulas, assuming (θ0, ϕ0) as
the orientation of the seismic source, i.e.

a0
nm = Pnm(cos θ0); b0

nm = 0

for k = 1:

(n − m + 1)a1
n+1,m = n cos θ0a1

nm + sin θ0a0
nm

− 1

2
(n − 1)n sin θ0a2

nm

(n − m + 1)b1
n+1,m = n cos θ0b1

nm + sin θ0b0
nm

− 1

2
(n − 1)n sin θ0b2

nm

a1
n,n = (n − 1) sin θ0a1

n−1,n−1

+ (
b0

n−1,n−1 − cos θ0a0
n−1,n−1

)
+ 1

2
(n − 1)(n − 2)

(
b2

n−1,n−1 + cos θ0a2
n−1,n−1

)
b1

n,n = (n − 1) sin θ0b1
n−1,n−1

+ (
a0

n−1,n−1 − cos θ0b0
n−1,n−1

)
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+ 1

2
(n − 1)(n − 2)

(
a2

n−1,n−1 + cos θ0b2
n−1,n−1

)
for k ≥ 2:

(n − m + 1)ak
n+1,m = (n − k + 1) cos θ0ak

nm

+ 1

2
sin θ0ak−1

nm

− 1

2
(n − k)(n − k + 1) sin θ0ak+1

nm

(n − m + 1)bk
n+1,m = (n − k + 1) cos θ0bk

nm

+ 1

2
sin θ0bk−1

nm

− 1

2
(n − k)(n − k + 1) sin θ0bk+1

nm

ak
n,n = (n − k) sin θ0ak

n−1,n−1

+ 1

2

(
bk−1

n−1,n−1 − cos θ0ak−1
n−1,n−1

)
+ 1

2
(n − k)(n − k − 1)

× (
bk+1

n−1,n−1 + cos θ0ak+1
n−1,n−1

)
bk

n,n = (n − k) sin θ0bk
n−1,n−1

+ 1

2

(
ak−1

n−1,n−1 − cos θ0bk−1
n−1,n−1

)
+ 1

2
(n − k)(n − k − 1)

× (
ak+1

n−1,n−1 + cos θ0bk+1
n−1,n−1

)
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