Earth Planets Space, 58, 555-567, 2006

Simulations of SH wave scattering due to cracks by the 2-D finite difference
method
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We simulate SH wave scattering by 2-D parallel cracks using the finite difference method (FDM), instead of
the popularly used boundary integral equation method (BIEM). Here special emphasis is put on simplicity; we
apply a standard FDM (fourth-order velocity-stress scheme with a staggered grid) to media including traction-
free cracks, which are expressed by arrays of grid points with zero traction. Two types of accuracy tests based on
comparison with a reliable BIEM, suggest that the present method gives practically sufficient accuracy, except
for the wavefields in the vicinity of cracks, which can be well handled if the second-order FDM is used instead.
As an application of this method, we also simulate wave propagation in media with randomly distributed cracks
of the same length. We experimentally determine the attenuation and velocity dispersion induced by scattering
from the synthetic seismograms, using a waveform averaging technique. It is shown that the results are well
explained by a theory based on the Foldy approximation for crack densities of up to about 0.1. The presence of
a free surface does not affect the validity of the theory. A preliminary experiment also suggests that the validity

will not change even for multi-scale cracks.
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1. Introduction

It is well known that the Earth’s interior, especially the
lithosphere, has considerably strong short-wavelength het-
erogeneities that scatter the seismic waves and thereby
cause phenomena such as the scattering attenuation, the de-
lay of the arrival times, and the generation of coda waves
(e.g., Sato and Fehler, 1998). For revealing the short-
wavelength heterogeneous structures in the Earth, it is im-
portant to understand theoretically how they act on wave-
fields.

For this purpose, two types of heterogeneity models
are preferably considered; random spatial fluctuations of
medium parameters (called random media), and spatial dis-
tributions of discrete scatterers such as cracks, inclusions,
or cavities. The wave propagation and scattering in media
with such heterogeneities have been studied both analyti-
cally and numerically. When calculating wavefields in ran-
dom media, one usually uses domain-type methods, among
which the finite difference method (FDM) may be the most
popular because of its tractability (e.g., Frankel, 1989; Gib-
son and Levander, 1990; Jannaud et al., 1991a, b; Ikelle et
al., 1993; Roth and Korn, 1993; Samuelides and Mukerji,
1998; Miiller and Shapiro, 2001; Saito et al., 2003). In con-
trast, when dealing with discrete scatterers, boundary-type
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methods such as the boundary integral equation method
(BIEM) has been preferred (e.g., Bouchon, 1987; Coutant,
1989; Benites et al., 1992, 1997; Murai et al., 1995; Pointer
et al., 1998; Kelner et al., 1999; Liu and Zhang, 2001;
Yomogida and Benites, 2002); the application of the FDM
is rather restricted (see below as to the references). It may
be because the BIEM is generally considered to have advan-
tages over the FDM in the computational accuracy when
dealing with discrete heterogeneities (e.g., Benites et al.,
1992; Liu and Zhang, 2001), and in the great flexibility on
the shapes of scatterers. However, the BIEM has also some
shortcomings. For example, it cannot easily to be applied
to media with discrete scatterers when the surrounding ma-
trices have velocity or density heterogeneities. Moreover,
its computational costs rapidly increase with the increas-
ing number of scatterers; its computer program could be
also rather hard for beginners to code. Since the FDM is
suitable in these points, it is meaningful to apply it to the
scattering by discrete scatterers if it gives practically suffi-
cient accuracy with reasonable computational costs. One of
the purposes of our study is to clarify this point concerning
cracks.

The key to the FDM simulations of scattering by cracks
(or fractures) is how we incorporate the cracks into the
computational grids. Coates and Schoenberg (1995) pro-
posed a technique in which materials in the grid cells inter-
sected by fractures are modeled by equivalent homogeneous
anisotropic materials, on the basis of the theory of Muir et
al. (1992); here the fractures are modeled by thin weak elas-
tic layers embedded in a surrounding matrix. The merit of
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this technique is that the surfaces of fractures can take ar-
bitrary angles to the grids. It was adopted by Vlastos et al.
(2003) in their simulations of P-SV wave scattering in 2-D
cracked media. Van Baren et al. (2001) and van Antwerpen
et al. (2002) developed another technique in which cracks
are replaced by distributed point sources of scattered waves.
This is a hybrid method with the BIEM, that is used for eval-
uating the source. Note that its application is restricted to
relatively sparse microcracks, because it neglects multiple
scattering and is also based on the long-wavelength approx-
imation. Saenger et al. (2000) have expressed cracks by
an assembly of the grid points with zero elastic constants
and small densities. This is much simpler than the above
techniques of crack incorporation and has an advantage in
the flexibility on the crack shapes. It requires, however, a
rotated staggered grid they proposed to make the computa-
tions stable. Using it, Saenger and Shapiro (2002) treated
wave propagation in 2-D media with intersecting cracks.
Saenger et al. (2004) further extended this approach to 3-D
cases. Note that Hong and Kennett (2002) also incorporated
a fluid-filled crack in the grid in a similar manner, to which
their wavelet-based method was applied.

In comparison with the above-mentioned techniques,
special emphasis is put on the simplicity of the simulation
technique we adopt. Here we treat 2-D SH (or acoustic)
wave scattering due to traction-free cracks. For this pur-
pose, we adopt a standard velocity-stress FDM (Virieux,
1984; Levander, 1988). We express cracks just by arrays
of grid points with zero traction. Note that this is a natural
extension of the simulations of crack propagation based on
the velocity-stress FDM originated by Madariaga (1976), in
which the boundary conditions on the crack planes can be
directly given. Indeed, Fehler and Aki (1978) successfully
applied Madariaga’s scheme to the diffraction by a single
crack in a full space, where they divided the problem into a
pair of mixed boundary value problems in half spaces and
then solved them. Such a manner, however, has little ap-
plicability to many non-coplanar cracks that can be easily
treated by the present method. For validating it, we perform
two types of accuracy tests based on the comparison with
BIEM calculations (Murai et al., 1995). First, we calcu-
late the displacement discontinuity along an isolated crack
caused by incident harmonic waves. Second, we synthe-
size seismograms of waves scattered by clusters of several
cracks at distant stations. We then discuss the numerical
errors of the FDM calculations, assuming the BIEM coun-
terparts to be exact. We will show that the present method
gives practically sufficient accuracy. Note that dealing with
2-D SH waves may not be very practical, but it is our scope
to validate the present method sufficiently in such a simple
case; the extension to P-SV waves in 2-D cracked media
will be given in a later paper.

An interesting topic on cracked media may be the attenu-
ation and velocity dispersion of waves propagating therein.
Theoretically, they can be predicted by a stochastic theory
based on Foldy’s (1945) approximation (Kikuchi, 1981a, b;
Yamashita, 1990; Kawahara and Yamashita, 1992; Kawa-
hara, 1992; Zhang and Gross, 1997). This approximation is
based on the assumption that many scatterers are distributed
randomly and sparsely (Ishimaru, 1978), and it is expected
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Fig. 1. Staggered grid and implementation of cracks. Antiplane
(y-component) velocity and density are defined at the points with cir-
cles. Antiplane shear stresses, T,y and 7y, are defined at the points with
squares and triangles, respectively, at both of which rigidity is also de-
fined. The region enclosed by the dotted line corresponds to a crack
where the solid triangle denote the points with ,, = 0.

to give results that are accurate to the first order in the dis-
tribution density (Keller, 1964). However, its actual validity
limit with respect to the density is not very clear. Using their
BIEM, Murai et al. (1995) simulated SH wave scattering
by 2-D cracks and experimentally determined the scatter-
ing attenuation and dispersion, thus validating the Foldy ap-
proximation theory as long as the crack density is relatively
low (<0.02). Unfortunately, the ordinary peak picking tech-
nique as they used in measurement will not work for dense
crack distributions, because the initial motions of propa-
gating waves will be often distorted too much to pick the
peaks properly. As an application of the present simulation
method, we perform here numerical experiments as Murai
et al. (1995) did, though we adopt an alternative waveform
averaging method. We simulate SH wave propagation in
media with randomly distributed cracks, and determine the
attenuation and dispersion from the spectral changes of av-
eraged seismograms. We show that these parameters are
obtained stably, even for rather dense crack distributions,
thereby investigating the validity limit of the theory. This
is another purpose of this paper and we will show that the
theory remains valid, even for considerably high crack den-
sities.

This paper is organized as follows. In the next section,
we outline the FDM that we adopt, including the imple-
mentation of cracks. We validate the method in Section 3
through the two accuracy tests. On the basis of the numer-
ical experiments using it, we then investigate the validity
of the Foldy approximation theory in Sections 4 and 5; the
former section is focused on the validity limit of the the-
ory, assuming identical cracks, whereas the latter concerns
cracks with variable lengths. A discussion and conclusions
are presented in the last section.

2. Finite Difference Method

We adopt a velocity-stress finite difference scheme for 2-
D SH waves with the accuracy of fourth order in space and
second order in time in most simulations. It is a straight-
forward extension of Virieux’s (1984) second-order scheme
for SH waves after Levander’s (1988) fourth-order scheme
for P-SV waves. In some cases, we also use Virieux’s orig-
inal second-order scheme for comparison. Their algorithm
is so standard that it is not detailed; we just illustrate a stag-
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gered grid (Fig. 1). Here the x-, y- and z-axes are taken
in the horizontal, antiplane, and vertical directions, respec-
tively. Note that the grid spacings in the x- and z-directions
are assumed to have the same length Ah.

We assume that any crack is horizontal (parallel to the x-
axis) and traction-free and is incorporated into the grid just
by imposing the shear stress 7,. = 0 on the horizontally
arrayed grid points (Fig. 1). As mentioned in Section 1, this
may be analogous to the method of Fehler and Aki (1978)
in that a Neumann problem is explicitly set; although they
transformed the problem into a pair of mixed problems, we
solve it in a straightforward way. We define the crack tips as
the leftmost and rightmost points of the array (e.g., the grid
point (i + 1, j) in Fig. 1); though it may be also possible
to define them as the positions half a grid spacing outside
these grid points (e.g., (i + 3/2, j)), it is confirmed that the
difference is negligible for sufficiently small grid spacings
as expected.

In any simulation performed, a plane wavelet is assumed
to propagate upward (in the negative z-direction) from be-
low and be normally incident on cracks. Then velocity seis-
mograms are synthesized at specified grid points, which are
finally integrated with the trapezoidal rule to yield the dis-
placement seismograms. Concerning the artificial bound-
aries of the whole grid (model space), we again impose sim-
ple conditions. The cyclic boundary condition is applied to
the left and right ends to approximately express an infinitely
long cracked layer. A standard absorbing boundary condi-
tion of Clayton and Engquist (1977) is assumed along the
bottom end. The condition of the top end is chosen between
the absorbing or traction-free boundary conditions, depend-
ing on simulations. Although artificial reflections from the
absorbing boundaries cannot be perfectly erased, we actu-
ally analyze the portions of seismograms not contaminated
with them.

Hereafter, the shear wave velocity and the density of the
background material, 8 and p, are set to be unity. We
also assume that all the cracks have the same half length
a = 1, except in Section 5 where we consider a distribu-
tion of crack lengths. The values of other parameters are
normalized with them. The grid spacing A/ are chosen to
satisfy the ordinary sampling criterion

Ah < B/nfu, (1)

where n is 5 and 10 for the fourth- and second-order
schemes, respectively, and f,; is the effective upper limit
of the frequency band of waves.

3. Accuracy Tests
3.1 Crack displacement discontinuity

In this section, we compare the results of our FDM sim-
ulations with those given with the frequency-domain BIEM
of Murai et al. (1995), thus trying to validate the present
method. In order to treat the results of the BIEM as the cor-
rect answers, we pay special attention to their accuracyj; i.e.,
we discretize the crack planes finely so that the discretiza-
tion interval As in the BIEM may be much smaller than not
only the crack length and the wavelength but also the dis-
tances between neighboring cracks (namely, the minimum
distance between two crack planes). Actually, we choose
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As = 0.0025a. In the first test, we check the validity of the
present method through calculation of displacement discon-
tinuity along a single crack, caused by the normal incidence
of harmonic SH waves. This was analytically solved by Mal
(1970), whose results have often been used by several au-
thors to validate their own BIEM. Yamashita (1990), among
others, developed a BIEM algorithm for treating an isolated
crack, which reproduces Mal’s results quite accurately. It
was extended by Murai et al. (1995) to treat many cracks.
Its code is used here.

Now let us calculate the results corresponding to Mal’s
(1970) using the present FDM. Consider an isolated crack
with the length 2a, upon which a quasi-monochromatic
wave train

u®(x,z,1) = H(kz + wt) sin(kz + wt) )

normally impinges; here @ = 2nf, f is the frequency,
k = w/pB is the wavenumber, and H ( ) is the step func-
tion. This causes the oscillation of the crack faces, and ap-
proaches the stationary state with the lapse time. We eval-
uate the amplitudes of the oscillatory displacement discon-
tinuity along the crack when the oscillation appears almost
stationary. Since the displacement discontinuity cannot be
defined on the crack plane, we measure instead the differ-
ences of the displacement seismograms calculated at the
pairs of grid points just above and below the crack plane
(e.g., the grid points (i, j &= 1/2) in Fig. 1), and then take
their amplitudes. The approximation errors due to the off-
sets of the measurement points from the crack plane would
be small if A# is sufficiently small.

The results are summarized in Fig. 2(a), where the cases
of the normalized wavenumber ka = 1.0, 2.8, 4.2, and 6.0
are examined after Mal (1970); the corresponding wave-
lengths are 6.3a, 2.2a, 1.5a, and 1.0a, respectively. Here
we set At = 0.003 (in unit of a/B) and impose the ab-
sorbing boundary condition on the top end of the grid. On
the basis of the fourth-order finite difference scheme, we
repeatedly calculate the crack displacement discontinuity
with Ah/a = 0.05, 0.025, and 0.0125. Note that the cor-
responding results using the BIEM agree well with Mal’s.
One might expect that the FDM results may approach the
BIEM results (i.e., the exact solutions) as Al /a decreases;
instead, they appear to converge on somewhat (several per-
cents) smaller values on the whole. This may not be sur-
prising if the nonlocality of the fourth-order finite differ-
ence operator is considered, that is, the calculation of the
particle velocity at a grid point (e.g., (i, j + 1/2) in Fig. 1)
requires the stresses at the preceding time at, not only the
neighboring points ((7, j), (i, j+1)and (i £1/2, j+1/2)),
but also the points beyond them ((i, j — 1), (i, j + 2) and
(i£3/2, j+1/2)). This means that the operator acts across
the crack plane when the particle velocity is calculated at its
very vicinity, resulting in errors. [As an aside, the nonvan-
ishing displacement discontinuity at a distance larger than
1.0 in Fig. 2(a) can be explained by the offsets of the mea-
surement points from the crack plane, and therefore gets
smaller for smaller Ak]. Such a problem would not occur
when the more local second-order operator is adopted, that
never crosses the crack plane. We confirm it by recalculat-
ing the displacement discontinuity using the second-order
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(a) 4th-order scheme
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Fig. 2. Displacement discontinuity along a single crack due to normal incidence of harmonic SH waves, normalized with respect to the value at the
center of the crack at ka — 0. The abscissas represent the distance from the center (in unit of @). The curve parameters denote ka. The open circles
indicate the calculations by the BIEM of Murai et al. (1995), whereas the lines do the FDM calculations. (a) The solid, dashed, and dotted lines
denote the calculations by the fourth-order scheme with Az /a = 0.0125, 0.025, and 0.05, respectively. (b) The solid lines denote the calculations by

the second-order scheme with Ah/a = 0.01.

scheme. Now we assume that At = 0.00125 (a/B) and
Ah = 0.01a. The results are indeed shown to agree with
the BIEM calculations almost perfectly (Fig. 2(b)), support-
ing the above discussion.

In summary, it is shown that crack displacement discon-
tinuity, or wavefields in the vicinity of cracks, can be quite
accurately evaluated using the second-order FDM. On the
other hand, the fourth-order FDM systematically underesti-
mates them, even for considerably small grid spacing, be-
cause of the nonlocality of the finite difference operator.
The relative errors, however, are several percents at most.
If they are tolerable, the fourth-order FDM may be useful
because of the lower computational costs due to its numeri-
cal dispersion behavior better than that of the second-order
one.

3.2 Scattered waveforms due to clustered cracks

In the second test, we synthesize the displacement seis-
mograms of scattered waves by clustered several cracks and
examine the numerical errors. Here we adopt the fourth-
order FDM only. We locate the cracks rather closely (with
the intervals not very larger than Ah) to see the effect on
the accuracy of multiple scattering that would be strongly
excited under such situations. In contrast, the observation
points (hereafter, called stations) are located not very close
to the cracks (with the distance larger than 2a), since the
inaccuracy of “near-field” displacement calculated by the
fourth-order FDM has been demonstrated in the above sub-
section.

In the following, we set At = 0.005 (a/B) and Ah =
0.025a throughout; the absorbing boundary condition is
again imposed on the top end of a grid (model space). Small
numbers of cracks are closely located at around the center of
the grid, and a plane wavelet is assumed to impinge on the
cracks from below. Here we adopt a Ricker wavelet (second
derivative of a Gaussian function; see Murai et al., 1995 for

details), with the dominant frequency f, = 0.6 (in unit of
B/a) corresponding to ka = 3.77; here the corresponding
wavelength A, = 1.67a is close to the crack length so
that scattering would occur strongly. We then synthesize
the seismograms at horizontally arrayed stations above the
cracks.

First, we treat a single crack for reference as shown in
Fig. 3(a). Note that the center of the crack is located at
(x,z) = (10a, 6.25a), defining the origin as the top left
corner of the area. We evenly space 101 stations between
(x,z) = (0,0) and (0, 20a), among which the stations at
(x,z) = (0,0), (5a, 0) and (10a, 0) are termed S3, S, and
S1, respectively. The FDM as well as BIEM seismograms
obtained at these three stations are depicted by Figs. 3(b)
to 3(d). It is demonstrated that the single-scattered waves
with relatively short durations follow the incident wavelets.
They are separately recognized at the horizontally distant
station S3, whereas they overlap at S; right above the crack,
resulting in the deformation of the Ricker wavelet. In each
case, the agreement between both seismograms is quite sat-
isfactory, in spite of the discrepancy observed at the vicinity
of cracks (Fig. 2(a)). This suggests that the errors due to the
nonlocal finite difference operator would not strongly af-
fect the “far-field” displacement. In order to closely look
into the difference between the FDM and BIEM traces, we
define here a normalized residual trace as

R(t) = [u™M(r) — u®™®)] /max |u®™M®)|,  3)

where ¥ and uB™M are the FDM and BIEM traces,
respectively.

Note that the time steps of both traces were originally
different; we therefore cubic spline-interpolated the FDM
traces and then resampled them to match the BIEM traces.
Figure 3(e) denotes the gather of the residual traces at all
the stations. Considering the BIEM traces to be correct, we
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Fig. 3. Comparison of seismograms based on the FDM and BIEM simu-
lations. (a) Geometry of the simulation model examined. Here a single
crack is located, above which 101 stations are horizontally spaced (the
thick horizontal line). Note that Ah = 0.025a. (b) FDM and BIEM
traces at the station Sy, indicated in (a), normalized with the maximum
amplitude of the initial wavelet. (c) As for (b) except for the station S5.
(d) As for (b) except for the station S3. (e) Residual traces (difference
between the FDM and BIEM traces). The thick solid, thin solid and dot-
ted lines denote the residuals at Sy, S» and S3, respectively. Residuals at
all the other stations are indicated by the cloud of the fine gray lines.

may remark that the relative errors of the FDM traces are
about 2% at most and, hence, considerably small.

Next, we add one more crack at (x, z) = (9a, 6a), where
the interval between the cracks in the vertical direction is
0.25a = 10Ah = 0.15A. (Fig. 4(a)). This results in long
wave trains after the single-scattered waves, reflecting the
reverberation between the cracks (Figs. 4(b) to 4(d)). Al-
though the FDM and BIEM traces agree well, the ampli-
tudes of the residual traces are rather larger than before
(compare Fig. 4(e) with Fig. 3(e)). Careful observation of
the traces in Figs. 4(b) to 4(d) suggests that these errors
are mainly attributed to the slight phase offsets between the
traces; except for these offsets, the errors in amplitude are
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Fig. 4. Same as those in Fig. 3, except for two cracks closely located with
the vertical interval 0.25a.

still quite small. To see the effect of the interval between
the cracks on the FDM accuracy, we also reexamine the
same model, except that the center of the upper crack is
relocated at (x, z) = (9a, 4.25a), with the vertical interval
2a = 80Ah = 1.2, (Fig. 5(a)). Comparison of Figs. 4(b)
to 4(d) with Figs. 5(b) to 5(d) shows that the longer crack
interval results in a somewhat longer duration of the rever-
beration. Figures 4(e) and 5(e) suggest, however, that the
FDM errors appear roughly unchanged, especially for the
later waves. Concerning the direct waves, the errors are
somewhat amplified at some stations (as Si).

We finally examine the case of 10 cracks closely spaced
with vertical intervals > 0.25a, as depicted by Fig. 6(a). In
this case, we observe a large number of wave trains, which
are interpreted as coda waves excited by strong multiple
scattering (Figs. 6(b) to 6(d)). Here a small but perceptible
discrepancy is observed between the FDM and BIDM traces
in some portions of the late coda; the normalized residuals
exceed 10% at the maximum (Fig. 6(e)). Nevertheless, the
apparent coincidence of both traces is still fairly good. Note
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Fig. 5. Same as those in Fig. 3, except for two cracks located with the
vertical interval 2a.

that max [uBM(¢)| in Eq. (3) (mostly, the amplitudes of
the direct waves) largely varies with the stations (Figs. 6(b)
to 6(d)). This would be responsible for the large spatial
variation of the residuals shown in Fig. 6(e).

In summary, the fourth-order FDM generally gives con-
siderably accurate seismograms (except for the vicinity of
cracks), especially concerning the direct and early coda
waves. The overall agreement between the FDM and BIEM
(or correct) traces seems to be successful, though the rel-
ative errors tend to somewhat increase with the increasing
number of cracks (Figs. 3(e) to 6(e)). Moreover, the de-
pendence of the errors on the intervals between cracks ap-
pears much weaker. These characteristics would be prefer-
able, especially when one deals with scattering by a large
number of densely distributed cracks. Although we did not
thoroughly pursue it here, the accuracy might be improved
if the second-order FDM is totally adopted to the cracked
media. In that case, however, we will probably need to use
smaller grid spacings than those used in the present paper,
because the second-order FDM is less accurate concerning
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Fig. 6. Same as those in Fig. 3, except for 10 cracks closely clustered with
the minimum vertical interval 0.25a.

the crack-free regions, due to its poorer numerical disper-
sion relation.

We also point out that the FDM may be more cost-
effective than the BIEM in treating many cracks, because
the latter’s costs rapidly increase as the number of cracks
increases, whereas the former’s costs are essentially un-
changed (depending on the grid size instead). This is il-
lustrated by a side experiment (not shown), where As was
taken to be five times larger than in the above experiments
(i.e., As = Ah/2 = 0.0125a). It reduced the accuracy of
the BIEM traces to the same level as for the FDM traces but
remarkably saved the costs. Even then, the present BIEM
needed larger CPU times than the FDM when more than 10
cracks were treated. This suggests the practicability of the
present simulation method from the viewpoints of costs as
well as of accuracy.

4. Validation of the Foldy Approximation Theory
In this section, we show an example of the application
of the present simulation method, whose accuracy has been
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confirmed above. Using the method, we investigate here
the validity of the Foldy approximation theory of Kawa-
hara and Yamashita (1992) that predicts the scattering at-
tenuation and velocity dispersion of elastic waves in 2-D
media with identical parallel cracks. Here the prediction is
stochastic in a sense that the theory is based on the mean
wave formalism, i.e., it treats the ensemble average of real
wavefields. Note that the theory also adopts an approxi-
mation in which the waves effectively impinging on each
scatterer (crack) are equal to the waves that would be ob-
served without the scatterer. This approximation, first intro-
duced by Foldy (1945), yields a closed equation for mean
waves (called the Foldy—Twersky integral equation; Ishi-
maru, 1978); Kawahara and Yamashita (1992) solved it to
obtain the attenuation and phase velocity of the mean waves
to the first order in the crack density. The approximation
is sometimes considered as a kind of single scattering ap-
proximation, since it does not take account of interactions
between scatterers explicitly.

A similar trial to validate the theory of Kawahara and
Yamashita (1992) was done by Murai et al. (1995) on the
basis of a peak picking technique, in which the attenua-
tion and phase velocity are determined from the amplitudes
and travel times of the maximum peaks of bandpass-filtered
seismograms and then averaged. Although the peak pick-
ing technique is simple and practical in real seismic obser-
vations, it also has some shortcomings. One of them is its
less applicability to dense crack distributions, as mentioned
in Section 1. In addition, its results depend on the choice of
filter bandwidths. Another popular method may be to stack
the amplitude spectra of individual seismograms, thereby
estimating the averaged spectral change (e.g., Roth and
Korn, 1993). The results, however, now depend on the time
windows used for Fourier-transforming the seismograms,
since no window perfectly separates the direct wave com-
ponents from the seismograms. We also notice that none
of these methods are conceptually consistent with the mean
wave formalism. To overcome these problems, we adopt an
alternative waveform-averaging method loyal to the formal-
ism, as stated below.

First, we assume N cracks with the length 2a inside a
rectangular area with the horizontal size W and vertical
size L. Using a uniform random number series, the cracks
are distributed inside the area almost randomly, except for
the non-overlapping constraint that the interval between any
two points belonging, respectively, to any two crack planes
must be greater than 0.25a. Here the 2-D crack density is
defined as € = Na?/W L. Second, we array 100 stations
evenly along a horizontal line 2a above the top end of
the crack distribution area. We then let a plane wavelet
be vertically incident on the bottom end from below, and
synthesize seismograms at the stations using the FDM. We
adopt here an incident wavelet with the following source
time function (first derivative of a Gaussian function; see
Fig. 7):

W0(t) = —dmre 2", )
whose amplitude spectrum is
Flo) = %e—wz/8”. (5)
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Fig. 7. (a) Source time function of the incident wavelet used. The abscissa
denotes time in unit of a/B. (b) Amplitude spectrum of the wavelet as a
function of normalized wavenumber ka = wa/p.

This is because the present wavelet has a broader spectral
band than that of the Ricker wavelet, being more effective
for the present purpose. We then repeat the above simu-
lation for Np different realizations of the crack distribu-
tion that are stochastically identical but are generated using
different random number series. Third, we average all the
seismograms obtained for each realization. This means that
spatial averaging is substituted for ensemble averaging, as-
suming ergodicity. The results are then ensemble-averaged
over the Np realizations of the crack distribution; the final
result is termed “synthetic mean wave”. Fourth, the spec-
trum of the mean wave is calculated. In doing this, we se-
lect a time window that effectively includes the whole mean
wave. If sufficiently many seismograms are stacked, the
incoherent coda waves will be removed almost completely
and, hence, the window width will not influence the results;
actually, we choose Np enough to achieve this state. We
then evaluate the attenuation Q' and the phase velocity
v from the spectral ratio, C(f), of the mean wave to the
initial wavelet that would be observed without the cracks.
After some calculation, we obtain

Clw) ol 1 1 wL ©)
= €X —_— = —
w exp|iw s B 200 |’
and, hence,
1 1 1 , ImC
—=—+4 —tan= ——, 7
v B +a)L an ReC ™
1 2v
0 =———1log|C]|, 3
ol

where “Im” and “Re” denote the imaginary and real parts,
respectively. Practically, we evaluate them only for some
frequency band inside which the initial wavelet has suffi-
ciently high energy for accurate calculation. A disadvan-
tage of the method is that it is not straightforward to explic-
itly evaluate the estimation errors of 0! and v. Instead,
we calculate the standard deviation of the synthetic mean
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Table 1.

FS indicates a free surface being settled along the array.
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Parameters of the crack distribution models used in simulations.
BC indicates the boundary condition on the top end of the grid. AB
indicates an absorbing boundary being settled above the station array.

Model N W x L € Np BC
1 20 40a x 38a 0.013 6 AB
2 40 40a x 38a 0.026 9 AB
3 40 40a x 18a 0.056 12 AB
4 32 40a x 8a 0.1 18 AB
5 40 40a x 5a 0.2 18 AB
da 32 40a x 8a 0.1 18 FS

wave and regard it as the estimation error. We also compute
the waveform predicted by the Foldy approximation theory
(“predicted mean wave”), using Eq. (6) with Q! and v
given by the theory and then inverse Fourier-transforming.
If the predicted mean wave coincides with the synthetic one
within the error range, we regard their coincidence as sig-
nificant.

In the following, we choose At = 0.005 (a/B) and
Ah = 0.025a throughout. Other parameters of the crack
distribution models used are summarized in Table 1. An ex-
ample of the realizations for each crack distribution model
is depicted in Fig. 8.

We first demonstrate the results for Model 1 (Fig. 9),
that is, the case where the crack density (¢ = 0.013) is
so low that the Foldy approximation is expected to be valid.
In Fig. 9(a), we plot Np x 100 seismograms used in the
analysis. Here we also show the trace of the synthetic mean
wave and its standard deviation (error range) derived from
the seismograms; the initial wavelet without the cracks is
also plotted for reference (see also Fig. 9(b) as the close-
up). Here one may clearly observe the attenuation on the
direct wave part of the mean wave trace (44 < t < 46
in unit of a/B). The direct wave is also followed by a
pulse of relatively long duration (around 46 < ¢t < 50).
However, the trace does not contain a coda-like long wave
train, implying that the averaging process is successful in
removing coda waves. We further plot the trace of the
predicted mean wave in the figure. The coincidence of the
synthetic and predicted mean waves is considerably good.
This also suggests that the above-mentioned pulse, after the
direct wave, should result from the waveform dispersion of
the initial wavelet due to scattering. The values of Q! and
Av/B derived from the both traces are plotted in Figs. 9(c)
and 9(d) for 0.5 < ka < 10 (k = w/p), respectively,
where Av = B — v is the phase velocity reduction due
to scattering. The agreement between the experimental
and theoretical values are fairly good on the whole, even
including the ripple pattern of Av/g for high wavenumbers,
as may be expected from the above results. It may strongly
support the validity of the Foldy approximation theory on
cracked media, being consistent with the results of Murai et
al. (1995).

We next show the results for the models with denser dis-
tributions (Models 2 to 5), focusing on the validity limit of
the theory. Here, however, we skip the result for Model 2

(@) -10
204 _ - L
.30 - - - L
40 - - _ L

-50 T T T
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b) 10 — | | !
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Fig. 8.  Examples of crack distribution realizations for (a) Models 1
(e = 0.013), (b) 2 (¢ = 0.026), (c) 3 (¢ = 0.055), (d) 4 (¢ = 0.1),
and (e) 5 (¢ = 0.2). The axes denote length normalized with a. 100
stations are evenly spaced along the top end of each rectangular region,
just below which is a gap with the thickness 2a between the stations and
the really cracked area.

(e = 0.026), since it is almost the same as that for Model 1.
The results for Models 3 and 4 with a relatively dense dis-
tribution (¢ = 0.056 and 0.1) are shown in Figs. 10 and
11, respectively, where we may still recognize the fairly
good agreement between the synthetic and theoretical re-
sults in both the traces (Figs. 10(a), 11(a)) and Q' and
Av/B (Figs. 10(b), 10(c), 11(b), 11(c)). Concerning the
more denser distribution (Model 5, ¢ = 0.2), however, we
observe a clear discrepancy, as shown in Fig. 12. Here the
predicted values of Q~! and Av/B systematically overes-
timate the measurements for ka < 1. This may be partly
attributed to the effect of multiple scattering among closely
located scatterers. As stated in Section 1, the Foldy ap-
proximation is based on the randomness and sparseness of
scatterer distributions. Strictly speaking, however, a dis-
tribution of non-overlapping scatterers cannot be perfectly
random for finite distribution densities. In the present case,
with such a dense distribution, the randomness would be
largely degraded and result in large approximation errors.
Indeed, a more rigorous treatment of mean waves revealed
that the terms of order €2, neglected by Kawahara and Ya-
mashita (1992), can be described in terms of such nonran-
domness (Keller, 1964). Another possible reason for the
discrepancy may be the inappropriate definition of Q for
strongly attenuated waves. In the theory as well as the mea-
surement, we assume the exponential decay expressed by
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Fig. 9. (a) Seismograms obtained for Model 1 (¢ = 0.013). The cloud of thin light blue lines denotes all the synthetic seismograms. The solid blue

curve indicates the synthetic mean wave, and the dotted blue curves do

its standard deviation. The predicted mean wave is indicated by the red

curve, though almost masked by the solid blue one. The thin black curve denotes the initial wavelet that would be observed without the cracks.
(b) The close-up of the direct wave part in (a). The synthetic seismograms are omitted. (c) 0! for the synthetic seismograms (thick solid curve).
The prediction by the Foldy approximation theory is denoted by the dashed curve. (d) As for (d), except for Av/8, where Av is the phase velocity

reduction.
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Fig. 10. Same as those in Fig. 9 except for Model 3 (¢ = 0.056). The seismograms in the full range as Fig. 9(a) is omitted.

exp(—kQ~'x/2) as usual, where x is the travel distance.
Strictly, however, it is an approximation valid for weak at-
tenuation, ie., 07! « 1 (e.g., Aki and Richards, 2002).
This will not be satisfied in the present case, where the max-
imum value of Q~! approximates to 1, probably making
both the theory and measurement less reliable. This infer-
ence appears to be supported by the distinct acausal motion
of the predicted mean wave before the onset of the initial

wavelet without cracks (f ~ 11), which deviates from the
error range of the synthetic mean wave (Fig. 12(a)).
Finally, we investigate the effect of a free surface on the
attenuation and dispersion. For the purpose, we reexam-
ine the same model as Model 4, except that the stations are
located on the free surface, termed Model 4a. The results
for the model is shown in Fig. 13. Here the theoretical re-
sults are essentially unchanged, except that the amplitude
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Fig. 12. Same as those in Fig. 11 except for Model 5 (¢ = 0.2).

of the predicted mean wave (as well as the initial wavelet
without cracks) is exactly duplicated on the surface. We
also observe the experimental results similar to those for
Model 4 (Fig. 11) on the whole. A noticeable difference
is that the measured Av/B are not stably determined for
high wavenumbers. This may reflect the fact that the high-
frequency coda waves are not sufficiently removed in this
case, even though we assume here Np = 18 as before (see
the ripples of the coda part of the synthetic mean wave for
Model 4a, not seen for Model 4 (Fig. 13(d))). The ampli-
tude of the direct waveform of the synthetic mean wave is
also slightly different from that for Model 4, correspond-
ing to the slightly larger values of the measured Q! in the
dominant wavenumber range 0.2 < ka < 0.5. Such dis-
crepancies should be regarded as the effects of a free sur-
face, since any other conditions are unchanged, though they
are rather small so that they are negligible.

In summary, one may say that the theory is valid for crack
densities up to about 0.1 but probably not beyond it. The
presence of a free surface does not change the conclusion.
We remark that the real (though 3-D) crack densities of the
crustal rock inferred from the shear-wave splitting analyses
do not generally exceed 0.1, except for regions under some
special conditions such as very near-surface layers or tec-
tonically active regions (Crampin, 1994). We may therefore
infer that the Foldy approximation theory may be applicable
to most regions of the Earth’s crust, though more accurate

statements would require the researches on scattering in 3-
D cracked media.

5. Scattering Due to Cracks with Binary Lengths

Up to now, we have assumed the distributions of cracks
identical except for the locations, as Murai et al. (1995) did.
This assumption, however, may be too simple to model the
real crustal cracks or fractures, which are generally multi-
scale with a fractal nature (e.g., Main et al., 1990). The
present FDM would be useful in dealing with such multi-
scale crack systems because its application will be straight-
forward, in contrast to the BIEM of Murai et al. (1995) that
would require a significant amount of modification to be
applied. Here we just carry out a preliminary experiment;
we simulate the scattering by cracks with binary lengths us-
ing the FDM. We then evaluate the attenuation and disper-
sion and compare them with the predictions of the Foldy
approximation theory, as in the preceding section. Note
that Yamashita (1990) dealt with the attenuation and dis-
persion due to scattering by cracks whose lengths obey a
band-limited power law distribution. He directly solved the
Foldy—Twersky integral equation that includes the integral
with respect to the crack length in this case, using a tech-
nique in which the equation is transformed to a pair of dif-
ferential equations. Instead of such a rather laborious man-
ner, we assume a simple superposition principle; we just
sum up the values of Q! or Av/p for the subgroups com-
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Fig. 13. Effect of a free surface. (a) to (c) are the same as for Figs. 10(a) to (c), except for Model 4a (Model 4 plus the free surface). (d) indicates the
comparison among the coda traces for Models 4 (green curves), Models 4a (blue curves) and the corresponding predicted mean wave (red curve).

The meanings of the solid and dotted curves are the same as for (a).

posed of identical cracks. This should be valid as long as the
crack density is so low that one can neglect the higher-order
terms in the crack density (e.g., Hudson, 1986).

We consider a random distribution of parallel cracks that
are divided into two subgroups, each of which contains N;
cracks with the length 2/;a (j = 1,2), where a is now
a reference scale. Letting the distribution area be W x L
again, one may define the crack density in this case as

2
€ = E Ej, Ej
j=1

Then the theoretical predictions of the attenuation and dis-
persion may be given as

_ Nj(lja)z

WL ©)

AV(klja)
i )
(10)
where the caret means a prediction for identical cracks
distributed with unit crack density. We assume here that
Ny =32, N, = 12, and [/, = 1/2; assigning a to the
mean crack length, then /; = 11/14 and I, = 11/7. We
choose the same values of W, L, At and Ah as for Model 1;
thereby the crack density is also the same (¢ = 0.013). Con-
cerning the boundary conditions and the values of N, how-
ever, they are set as for Model 4a. We term this simulation
model as Model 6; an example of the crack distribution re-
alization is depicted in Fig. 14.
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Fig. 14. Same as those in Fig. 8 except for Model 6 (¢ = 0.013, with a
free surface).

We show the results for Model 6 in Fig. 15. A notice-
able feature is that the peak of Q! curve and the corner of
Av/B curve are somewhat blunted because of smoothing
over the different crack lengths. Except for that, we again
recognize the relatively good agreement between the theo-
retical and experimental results. This suggests the validity
of the theory, even for mixed cracks with different sizes, as
well as the validity of the superposition principle assumed.
We also remark that Suzuki (2004) made a similar experi-
ment on cracks with the lengths varying more smoothly and
obtained a consistent result. Those may probably be the first
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Fig. 15. Same as those in Fig. 11 except for Model 6. Note that @ denotes the mean crack length only in this case.

examples of validating the Foldy approximation theory for
multi-scale scatterers.

6. Discussion and Conclusions

In this paper, we applied a standard fourth-order velocity-
stress FDM to the simulations of SH waves scattered by 2-
D parallel cracks. We expressed traction-free cracks on the
finite-difference grid in probably the simplest manner, i.e,
assuming arrays of grid points with zero traction. We per-
formed two types of accuracy tests of the method, on the
basis of comparison with a reliable BIEM; one is the cal-
culation of the displacement discontinuity along an isolated
crack acted on by harmonic waves, and the other is syn-
thesizing seismograms of waves scattered by several clus-
tered cracks at somewhat distant stations. Both tests suggest
that the fourth-order FDM yields practically sufficient accu-
racy, except for the wavefields in the very vicinity of cracks,
which can be well described by the second-order FDM.

The present method has some advantages over the BIEM.
First of all, it has no limitation with respect to the variation
of crack lengths, as we demonstrated above. Also men-
tioned in Subsection 3.2, it could be more cost-effective
when dealing with many densely distributed cracks, though
the quantitative conclusions depend on many factors such as
required accuracy. The most remarkable merit of the FDM
would be, however, the ability to incorporate the back-
ground heterogeneity in a straightforward manner. This
would be the point that the BIEM is weak, since it is es-
sentially applicable only to structures with their Green func-
tions known. Although we did not show any examples here,
the FDM could be readily applied to many seismological
problems, such as waves trapped by a fault zone made of
weak materials with many fractures. We also remark that
the extensions of the present method concerning 2-D SH
wave scattering to other types of waves is almost straight-
forward; the extension to P-SV waves in 2-D cracked me-
dia will be demonstrated in our next paper, as mentioned in
Section 1.

On the other hand, the present method can deal with
rather limited types of cracks, as the price of its high sim-
plicity. For instance, only the cracks parallel to the grid
lines (x- or z-directions) can be exactly (in the discretized
numerical sense) treated by the present method. Incorpora-
tion of inclined cracks into the grid retaining the computa-

tional accuracy, remains to be investigated. One of the can-
didates for inclined cracks is the use of stairsteps of FDM
grids; the stairstep approximation has been successfully ap-
plied to the fluid-solid boundary with tangential discontinu-
ity (e.g., van Vossen et al., 2002; Okamoto and Takenaka,
2005).

The present method has also been validated only for
cracks with the traction-free condition, namely, empty
cracks. They are not, of course, realistic in the crust. Thus
the extensions of the method with respect to these points is
required. For handling more general crack boundary condi-
tions, the approach of Fehler and Aki (1978) might be use-
ful. For evaluating the diffraction by a single crack filled
with compressible inviscid fluid, they defined the boundary
condition as the constitutive relation with respect to the dis-
placement discontinuity and the resistance by the internal
fluid, which was successfully solved using the FDM. We
remark that it is essentially the same as the manner of Kawa-
hara and Yamashita (1992) to deal with a crack filled with
incompressible viscous fluid, that was adopted in the BIEM
simulations of Murai et al. (1995). We therefore infer that
general compressible viscous fluid could be also treated in
the same manner.

As an application of this method, we performed the sim-
ulations of wave propagation in media with randomly dis-
tributed cracks of the same length. We experimentally de-
termined the attenuation and velocity dispersion induced by
scattering from synthetic seismograms, using a waveform
averaging technique. It was shown that the results are well
explained by the theory of Kawahara and Yamashita (1992)
based on the Foldy approximation for crack densities up to
about 0.1. The presence of a free surface does not affect the
validity of the theory. An additional experiment also sug-
gests that the validity will be unchanged, even for cracks
with varying lengths. Note that the theory has also been
verified with regard to 2-D SH wave scattering by cracks
filled with viscous liquid (Murai et al., 1995). In addition,
we will validate the theory in the case of P-SV wave scat-
tering by 2-D cracks (Kawahara, 1992) in our next paper.
All these results strongly suggest the universal validity of
the Foldy approximation theory independently of the types
of cracks and waves, as long as its precondition (i.e., the
assumption of random sparse distributions) is satisfied.
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