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Influence of the interplanetary magnetic field on the ring current injection rate
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In order to check the validity of Akasofu’s ¢ parameter and of the Vasyliunas et al. (1982) general formula,
we examine the dependence of the ring current injection rate, calculated from the Dst index for the period of
1965-1990, on the interplanetary magnetic field (IMF). We compare the influence of the Bz component with
the influence of the combination of sin(6/2), where 6 is the IMF clock angle, and the IMF magnitude, B, (or
the transverse component of the IMF, By = (By? 4+ Bz?)!/?) by using the regression analysis in a power law
form. The main results are as follows: (1) the exponent for Bz shows higher consistency than that for sin(6/2);
(2) we never obtain B> sin* (6/2) or B% sin* (6/2), which is the IMF dependence expected from the ¢ parameter;
and (3) the ring current injection rate has a very low correlation with the Alfven Mach number, from which the
IMF dependence of the Vasyliunas et al. general formula is assumed to arise. On the basis of the above results
we conclude that the & parameter and the Vasyliunas et al. general formula are less appropriate than a function
of Bz, and that the energy coupling function between the solar wind and the Earth’s magnetosphere is described
better by Bz than by the combination of B (or By) and sin(6/2). The above results and conclusions are the same

as those obtained by Aoki (2005) through the analysis of the AL index.
Key words: Ring current injection rate, € parameter, Vasyliunas ef al. general formula, IMF clock angle, Bz.

1. Introduction

It is firmly established by a large number of researchers
that the interplanetary magnetic field (IMF) plays a crucial
role on the energy coupling between the solar wind and
the Earth’s magnetosphere. Fairfield and Cahill (1966) first
showed that the Bz (north-south) component of the IMF
generally controls the level of geomagnetic activity at high
latitude observatories and that the southward direction is
usually associated with disturbances. Perreault and Aka-
sofu (1978) introduced the IMF clock angle (6), which is
defined as the angle that the projection of the IMF in the
Y-Z plane of the geocentric solar magnetospheric (GSM)
coordinate system makes relative to the positive Z-axis, and
emphasized its importance for the description of the energy
coupling function because of the possibility of expressing
the fact that the coupling can occur even for the north-
ward IMF conditions. They used this angle to express their
energy coupling function, the so-called epsilon parameter,
&= I(Z)BZV sin4(9/2), where [y is 7 Rg, B the IMF magni-
tude, V' the solar wind velocity, and ¢ has the dimension of
power. Since then this angle has been used as a fundamen-
tal parameter by a large number of researchers. Vasyliunas
et al. (1982) performed dimensional analysis on the magne-
tohydrodynamic (MHD) flow, and obtained a general for-
mula for the energy coupling function with the dimension
of power. They derived their formula by assuming that the
IMF dependence of the coupling function arises from the
Alfven Mach number and the IMF clock angle. Various
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forms of coupling functions including the clock angle were
proposed by a number of researchers through analyses of
quantities, such as the AL index, the Dst index, and po-
lar cap electric potentials (e.g., Gonzalez et al., 1994). The
IMF dependence of these functions is usually expressed as
the product of a power of sin(6/2) and a power of the IMF
magnitude, B, (or of the magnitude of the perpendicular
component of the IMF, By = (By* + Bz%)!/?).

On the other hand, some researchers proposed their cou-
pling functions without using the clock angle. Examples of
them are BzV (Rostoker et al., 1972; Burton et al., 1975)
and BsV? (Murayama and Hakamada, 1975; Maezawa and
Murayama, 1986), where Bs is the southward component
of the IMF, i.e., Bs = —Bz for Bz < 0, and Bs = 0 for
Bz > 0. O’Brien and McPherron (2002) recently revised
the Burton et al. equation to include the effect of the dipole
tilt angle, but they did not use the clock angle. The above
researchers express the IMF dependence of their coupling
functions by the linear proportionality to Bz.

However, comparison between the influence of Bz and
the influence of the combination of sin(6/2) and B (or Br)
has not been made until recently. Aoki (2005) has made
detailed comparisons by applying the regression analysis
in a power law form to the AL index, and obtained the
result that Bz shows superiority over the combination of
sin(0/2) and B (or By). He has concluded that the IMF
dependence of the AL index is described better by Bz than
by the combination of sin(6/2) and B (or Br), and that the
& parameter and the Vasyliunas et al. general formula are
less appropriate than a function of Bz.

The purpose of the present paper is to make comparisons
between the influence of Bz and that of the combination of
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Fig. 1. (a) Scatter plot of Q versus Bz for the data of —7 < Bz < —1

nT and V < 600 km/s. The solid line is the regression line between
Q and Bz. (b) Same as (a) but for the data of Bz < 0 nT and all V.
(c) Same as (a) but for the data without the condition of (4) and without
setting Q = 0 even if the value of Eq. (3) is positive. Red points show
the data for Ey < 0.50 mV/m, and blue ones the data for Ey > 0.50
mV/m. (Purple points indicate the data in the region where both data
coexist.) A red line is the regression line for the data of Ey < 0.50
mV/m, Q = 0.038Bz — 1.313 with a correlation coefficient of 0.029,
and a blue one is for Ey > 0.5 mV/m, Q = 1.660Bz + 0.119 with a
correlation coefficient of 0.625.
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Fig. 1. (continued).

sin(6/2) and By (or B) by using the ring current injection
rate calculated from the Dst index, which is a measure of
the magnitude of the ring current, and to examine whether
or not the analysis of the injection rate leads to the same
conclusion as that of the AL index (Aoki, 2005). We will
show that the results of the ring current injection rate sup-
port the conclusion of the AL index.

2. Data and Analysis
2.1 Data

We use hourly values of the Dst index and of the solar
wind parameters for the period of 1965-1990. We relate
values of Dst to solar wind parameters with thirty-minute
delays by using averages of consecutive values of Dst. We
introduce this time delay by taking account of the about 25-
min response time of the Dst index to solar wind conditions
(Burton et al., 1975).

According to Burton et al. (1975), the rate of injection
into the ring current, Q, is related to the pressure-corrected
Dst, Dst*, by the following equation:

Q =dDst*/dt + Dst*/t. (1)
Here Dst* is given by
Dst* = Dst — b(Pd)'? + ¢, )

where Pd is the solar wind dynamic pressure, b a measure
of the response to dynamic pressure changes in the solar
wind, ¢ a measure of the quiet day currents, and t the decay
time of the ring current. The values of b, ¢, and T are
0.20 nT (eV-cm™3)~/2, 20 nT, and 2.78 x 10* s = 7.7 hs,
respectively.
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Table 1. Exponents and correlation coefficients (c.c.) for various kinds of solar wind parameters and of their combinations obtained by the regression
analysis of the data for the range of —7 < Bz < —1 nT and V < 600 km/s. In this table, (Bz', V, D), for example, represents the case of the
regression equation of log(—Q) = const. + & log(Bz') + az log(V) + a3 log(D). Errors are the standard errors.

Exponents

Parameters c.c.
o] o) o3
Bz’ 1.049+0.018 0.350
B 0.929+0.017 0.340
Br 0.599+0.013 0.296
sin(0/2) 0.739+0.084 0.058
Vv 1.287+0.035 0.235
My —0.165+0.012 —0.088
qu —0.152+0.016 —0.062
(BZ', V) 1.1824+0.018 1.613+0.032 0.456
(B, sin(6/2)) 1.123£0.018 2.592+0.083 0.389
(Br, sin(6/2)) 0.822+0.014 3.116+0.088 0.367
(M4, sin(0/2)) —0.240+0.013 1.366+0.091 0.132
(M, sin(6/2)) —0.204+0.017 1.018+0.087 0.098
(BZ',V, D) 1.083+0.017 2.161+£0.034 0.375+0.009 0.512
(B, sin(6/2),V) 1.079+0.017 2.685+0.081 1.169+0.032 0.444
(Br,sin(6/2),V) 0.917+£0.013 3.620+0.084 1.625+0.032 0.470
(My,sin(0/2), V) —0.358+0.013 1.884+0.088 1.514+0.035 0.301
(M',,sin(6/2),V) —0.232+0.016 1.243+0.085 1.333+0.035 0.262

*correlation coefficient.

We approximate Eq. (1) by

Q(t) = {Dst*(t + 1 hour) — Dst*(t — 1 hour)}/2

+ Dst*(1)/7.7. 3

We calculate this quantity for the hourly intervals in which
all of the IMF, the solar wind velocity (V'), and the density
(D) are available. If values calculated from Eq. (3) are
positive, we set Q@ = 0. This is because the ring current
is supposed to develop only for negative values of Q. We
also impose the following restriction on the y component
of the solar wind electric field, Ey = —BzV (where Bz is
measured in the GSM coordinates), according to Burton et
al. (1975):

for

Q=0 “

This condition is considered as a cutoff below which the
ring current does not develop. We use all negative values of
Q for the present analysis.

2.2 Procedure of analysis

Procedure of analysis in the present paper is basically the
same as that of Aoki (2005) on the AL index.

Figures 1(a) and 1(b) are examples of scatter plots of Q
versus Bz. Data of Fig. 1(a) and those of Fig. 1(b) are for
—7 < Bz < —1nTand V < 600 km/s, and for Bz < 0
nT and all V, respectively. Data of Fig. 1(b) also corre-
spond to the whole data of the present analysis. As is seen
in these figures, O develops to large negative values as Bz
becomes negative. The regression line of Q on Bz, how-
ever, usually does not pass through the origin of the Bz-Q
plane, but tends to cross the Bz-axis in the positive side of
it. To take account of this tendency, we used the regres-
sion coefficients of the regression line, Q = aBz + b, to
obtain the value, Bz —b/a, as the value of the point
at which the regression line crosses the abscissa. We use

Ey < 0.50 mV/m.

Bz’ = Bzy — Bz instead of Bz below. This rescaling from
Bz to BZ' is the same as that for the AL index (Aoki, 2005),
and is considered as a way of describing the fact that the
solar wind-magnetosphere coupling can occur even for the
northward IMF conditions. The restriction on the data se-
lection, —7 < Bz < —1 nT and V < 600 km/s, was
imposed to guarantee that the IMF is directed southward
and thus the ring current injection is likely to occur, and to
avoid extreme solar wind situations for statistically mean-
ingful analyses.

For reference, Fig. 1(c) shows a scatter plot of Q versus
Bz for the data without the condition of (4) and without
setting QO = 0 even if the value of Eq. (3) is positive. Red
points indicate the data for Ey < 0.50 mV/m, and blue
ones the data for Ey > 0.50 mV/m. If we remove the data
of Ey < 0.50 mV/m and those of Q > 0, the remaining
data become the same as those of Fig. 1(b). A red line
gives the regression line for the data of Ey < 0.50 mV/m,
0O = 0.038Bz — 1.313, with a correlation coefficient of
0.029. This very low correlation coefficient implies that
there is almost no correlation between Q and Bz for Ey <
0.5 mV/m.

We performed the regression analysis in the form of
Y = aqpX ‘f‘ for each of the following parameters: Bz, B,
Br, sin(0/2), V, M4, and M/,, where M4 and M, are the
Alfven Mach numbers defined in terms of By and of B, re-
spectively, i.e., My = DY?V /By and M, = D2V /B.
This was done by the standard regression analysis using the
equation logY = logap + «;log X|. We also did the re-
gression analysis in the form ¥ = aoX{' X5 for the follow-
ing two-parameter combinations: (Bz', V), (B, sin(6/2)),
(Br, sin(0/2)), (M4, sin(0/2)), and (M/,, sin(6/2)). Fur-
thermore we did the regression analysis in the form ¥ =
aoX{'X5* X5 for the following three-parameter combina-
tions: (Bz',V, D), (B,sin(0/2),V), (Br,sin(6/2),V),
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Table 2. Exponents and correlation coefficients (c.c.) for BZ’, sin(6/2), (Br, sin(/2)), and (Bz', V, D) for various ranges of Bz and for V < 600

km/s.
Number of BZ sin(9/2) (B, sin(6/2)) (BZ',V,D)
Bz range
data points Bzg o c.c.* o c.c.X oy o) c.c.* o o) o3 c.c.*
[-6, 0] 22135 1.6 1.04+0.02 0.304  0.40£0.09 0.032 0.76+0.02 2.78+0.09 0.323 1.124+0.02 2.174+0.04 0.38+0.01 0.485
[-7, 0] 23188 1.3 1.03+0.02 0.347 0.74£0.08 0.058 0.80+0.01 3.03£0.09 0.363 1.08+0.02 2.17+0.03 0.38+0.01 0.511
[, 0] 25121 0.4 0.91+0.01 0.461  1.72+£0.08 0.129 0.91£0.01 3.55+0.08 0.476 0.89+0.01 2.1440.03 0.37+0.01 0.586
[—6,—1] 21965 1.6 1.07+0.02 0.307  0.40+0.09 0.032 0.784+0.02 2.88+0.09 0.327 1.13£0.02 2.16+0.04 0.384+0.01 0.485
[-7,—1] 23018 1.3 1.05+0.02 0.350  0.74+0.08 0.058 0.824+0.01 3.124+0.09 0.367 1.08+0.02 2.16+0.03 0.38+0.01 0.512
[ ,—=11 24951 0.4 0.93+0.01 0.465  1.73£0.08 0.129 0.93+0.01 3.62+0.08 0.480 0.90£0.01 2.134+0.03 0.374+0.01 0.587
[—6,—-2] 15271 0.7 1.13+0.03 0.306 —0.08+0.12 —0.005 1.05£0.02 4.04+0.14 0.330 1.06+0.03 2.104+0.04 0.37+0.01 0.490
[-7,-2] 16324 0.5 1.114+0.02 0.354  0.29+0.11 0.020 1.09£0.02 4.21+0.13 0.374 1.0440.02 2.094+0.04 0.37+0.01 0.519
[ ,-2] 18257 —0.2 1.00+£0.01 0.488  1.48+0.11 0.097 1.1440.02 4.514+0.11 0.503 0.90+0.01 2.01+0.04 0.354+0.01 0.603

*correlation coefficient.

(M4, sin(6/2), V), and (M, sin(6/2), V).

We performed the above analyses under various condi-
tions on Bz and V. As the conditions on Bz, we chose
the following nine ranges: [—6, 0] (which means —6 <
Bz < 0 nT; the same format is used throughout this pa-
per), [—7,01], [ , 0] (which means Bz < 0 nT), [-6, —1],
-7, —11,[ , —1],[—6, —2],[—7, —2],and [ , —2]. Asthe
conditions on V', we examined the following three ranges:
V < 600 km/s, V > 600 km/s, and all V. We analyzed all
cases of any combinations of the above Bz and V ranges.
We will compare the exponents and the correlation coeffi-
cients in the next section.

3. Results

Table 1 shows the exponents and the correlation coeffi-
cients for various solar wind parameters and their combi-
nations for the range of —7 < Bz < —1 nTand V <
600 km/s. This range of Bz and V is chosen as a typical
example. From this table, we notice the following points:

1) The combination (Bz', V, D) shows the highest cor-
relation coefficient among the quantities listed in Ta-
ble 1.

The correlation coefficients for My, M g,
(M4, sin(6/2)), and (M/,,sin(0/2)) are very low
compared with that for Bz’, and the correlation coef-
ficients for (M4, sin(6/2), V) and (M, sin(6/2), V)
are clearly low compared with that for (Bz’, V) and
even compared with that for Bz'.

The exponent for Bz’ is about unity in all cases includ-
ing BZ',i.e., Bz', (Bz', V), and (Bz',V, D).

The exponent for sin(6/2) varies over a wide range for
the change in the combination of parameters.

5) The exponent for V varies from about unity to two.

2)

3)

4)

The above features were confirmed to be true for other
ranges of Bz and V.

Table 2 shows the examples of the analysis for various
kinds of solar wind parameters and their combinations: the
exponents and the correlation coefficients for various ranges
of Bz and for V < 600 km/s. From this table, we notice the
following facts:

1) The exponent for Bz’ is about unity. This character
remains valid for the change in the range of Bz.

The exponent for sin(6/2) shows large variability for
the change in the range of Bz.

Concerning the combination (Bz’, V, D), the expo-
nents for Bz, V, and D show almost no variability
for the change in the range of Bz; the exponents for
Bz’ are about unity, those for V are about two, and
those for D are about 0.38. It is worth pointing out
that these values are very close to the values obtained
by Maezawa and Murayama (1986), who showed that
the best exponents for Bs (the southward component
of the IMF), V, and D are 1.09, 2.06, and 0.38, respec-
tively, through the analysis of selected storm events.

2)

3)

We would like to point out one fact. From the present anal-
ysis described in the preceding section, we never obtained
B2 sin*(6/2) or B2 sin*(#/2), which is the IMF dependence
expected from the ¢ parameter. This result is the same as
that obtained by Aoki (2005) on the AL index. Thus we
can conclude that the IMF dependence of the ¢ parameter
is never established empirically by the analyses of AL or of

0.

4. Discussion
4.1 On the validity of the & parameter and of the Va-
syliunas et al. general formula

In this subsection we discuss the validity of the & param-
eter and of the Vasyliunas et al. (1982) general formula on
the basis of the results of the preceding section.

First, we consider the ¢ parameter. As mentioned in
the last part of the preceding section, we never obtained
B?sin*(0/2) or B% sin*(6/2) by the logarithmic analysis
with restrictions on the values of Bz. Here, we check this
result by the linear analysis with restrictions on the values
of 6, not on the values of Bz. We imposed restrictions on 6
by90 —10p <6 <90+ 10p° (p =1,2,---,9), and for
each range of 6 we performed the linear regression analysis
of Q on V!B™ sin"(0/2)  =0,1;m=0,2;n=1,2,4),
on V!B;"sin"(0/2)  =0,1;m =0,2;n = 1,2,4), and
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Fig. 2. (a) Correlation coefficients (c.c.) of Q with Bzc (solid circles),

with B2 sin*(0 /2) (crosses), and with B% sin*(0 /2) (open circles) for
the ranges of 90 — 10p < 6 <90+ 10p°, (p = 1,2, ---,9) and for
the range of V' < 600 km/s. Values of the abscissa are the values of p.
(b) Correlation coefficients (c.c.) of Q with V2Bzc (solid circles), with
V B2 sin4(«9/2) (crosses), and with VB% sin* (6/2) (open circles) for the
ranges of 90 — 10p <6 <90+ 10p°, (p = 1,2, ---, 9) and for the
range of V' < 600 km/s.

on V/Bze (I =0, 2), where Bzc is defined by

Bzc =0.8 - Bz
Bzc =0

Bz <0.8nT
Bz > 0.8 nT.

for
for

Here, 0.8 is the average of the values of Bz, in Table 2. We
did this analysis for the following three ranges of V: V <
600 km/s, V > 600 km/s, and all V. Figures 2(a) and 2(b)
show the comparison among B?sin*(6/2), B2 sin*(6/2),
and Bzc, and that among vV B? sin4(0/2), VB% sin4(0/2),
and BzcV?, respectively, for the range of V < 600
km/s. From these figures, general superiority of Bz over
B?sin*(9/2) and over B2 sin*(9/2) is evident. Other re-
sults (not shown) also support the conclusion that Bz is bet-
ter than the combination of B (or Br) and sin(6/2).

Next, we consider the general formula of Vasyliu-
nas et al. (1982). This formula is derived on the as-
sumption that the IMF dependence of the coupling func-
tion arises from the Alfven Mach number and sin(6/2).
However, as was pointed out in the preceding section,
Ma, My, (My,sin(6/2)), and (M, sin(6/2)) have much
smaller correlation coefficients with Q than Bz, and
(M4, sin(6/2), V) and (M’,, sin(6/2), V) also have clearly
smaller correlation coefficients than (Bz’, V). These facts
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Fig. 3.  Dependence of Qzy = (Q/(Bz'V*'%)) x 100, where
V* = V/400, on By for different ranges of yx for the data of

—7 < Bz < —1nTand V < 600 km/s. Error bars indicate the standard
€eITors.

imply that the Alfven Mach number does not play any im-
portant role in the ring current injection and hence in the en-
ergy coupling between the solar wind and the Earth’s mag-
netosphere. (See Appendix for more detailed discussion.)

Lastly, we discuss the idea that the IMF dependence of
the coupling function can be described by the combination
of sin(6/2) and B (or Br). Aoki (2005) pointed out that
this idea has a difficulty in expressing the combined effect
of the IMF By component and the dipole tilt angle () on
the AL index. The reason is as follows: AL develops more
efficiently for positive By than for negative By when y is
negative, and vice versa when x is positive (Aoki, 1977;
Murayama et al., 1980). Below we refer to this effect as
the By-x effect. This effect is obviously asymmetric with
respect to the sign of By. Each of the quantities of B, Br,
and sin(6/2), however, is symmetric with respect to it, so it
is impossible to describe the B, -x effect by the combination
of sin(6/2) and B (or Br).

Here, we would like to check whether or not Q has the
By-y effect. Figure 3 shows the By dependence of Qzv =
Q/(Bz'V*16) x 100, Q corrected for the effect of Bz and
of V*(= V/400), for the data of —7 < Bz < —1 nT
and V < 600 km/s separately for different ranges of .
From this figure, we notice that Qzv tends to develop as the
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Table 3. Linear correlation coefficients (c.c.) between solar wind parameters for various ranges of Bz and for V < 600 km/s. In this table, (D, V'), for
example, represents the case for the linear regression analysis between D and V. The same data as those in Table 2 are used for each range of Bz.

Number of
Bz range (D, Bz) (D, B) (D, Br) (D, sin(6/2)) (D, V)
data points
[—6, 0] 22135 —0.155 0.249 0.218 —0.037 —0.353
[-7, 0] 23188 —0.171 0.262 0.229 —0.026 —0.349
[, 0] 25121 —0.250 0.316 0.283 0.017 —0.325
[—6, —1] 21965 —0.149 0.248 0.215 —0.042 —0.351
[—7,—1] 23018 —0.167 0.261 0.227 —0.031 —0.346
[ ,-1] 24951 —0.246 0.314 0.281 0.013 —0.321
[—6, -2] 15271 —0.086 0.229 0.185 —0.099 —0.331
[—7,-2] 16324 —0.110 0.242 0.197 —0.088 —0.326
[ ,-2] 18257 —0.215 0.300 0.257 —0.039 —0.293

absolute values of By increase in every range of x, and that
it also tends to develop more efficiently for positive By than
for negative By when y is negative, and vice versa when x
is positive. Thus Q has the By-y effect.

The cause of the By-x effect is an open question. One
possibility is as follows: As pointed out by Murayama et
al. (1980) and by Nakai (1987), we may expect that the
location of reconnection at the dayside magnetopause shifts
to the pre-noon or post-noon side depending on the sign
of the By component of the IMF, and also moves to the
summer hemisphere side in association with the variation
of x. According to the By-y effects of AL and of Q,
the period in which AL and Q develop more efficiently is
the time when reconnection occurs on the dawn side of the
magnetopause. So we can understand the By-y effects of
AL and of Q by assuming that reconnection on the dawn
side of the magnetopause works more efficiently than that
on the dusk side for some reason.

From the above considerations, we conclude that the ¢
parameter and the Vasyliunas et al. (1982) general formula
are less appropriate than a function of Bz, and that the
energy coupling function between the solar wind and the
Earth’s magnetosphere is described better by Bz than by
the combination of B (or Br) and sin(6/2). It is worth
mentioning that the above results and conclusions are the
same as those obtained by Aoki (2005) through the analysis
of the AL index. On the basis of the above results, with
attention to the fact that the effect of By is small compared
with that of Bz (cf. Figs. 1 and 3), we suggest that the
coupling function, P, is approximated by

P = f(By, x)Bz*VFD?,

where o« ~ 1, 8 ~ 2,y ~ 0.4, and f(By, x) is a function
for expressing the effects of By and of .
4.2 Influence of the intercorrelations among solar
wind parameters
In this subsection we discuss the influence of the inter-
correlations among solar wind parameters on the results.
The intercorrelations among Bz, B, Br, sin(6/2), and V
were examined by Aoki (2005), and they are not very dif-
ferent from the intercorrelations for the data of the present

analysis (not shown). Aoki (2005) did not discuss inter-
correlations including the solar wind density because the
dependence of the AL index on the density is weak. The
solar wind density, however, has a stronger influence on
Q (cf. Table 1) than on AL, so we examine its intercor-
relations here. Table 3 shows the linear correlation coeffi-
cients for the combinations of (D, Bz), (D, B), (D, By),
(D, sin(6/2)), and (D, V) for different ranges of Bz and
for V. < 600 km/s. As is seen in this table, the solar
wind density has weak correlations with Bz, B, By, and
V. Among them the intercorrelation between D and V is
relatively high (about an anticorrelation between V and D,
see, e.g., Neugebaur and Snyder, 1966).

The influence of the intercorrelation between D and V
and of the strong D dependence of Q can be seen in
a rather large difference in the exponent for V between
(Bz',V) and (Bz',V, D). The exponent for V for the
case of (Bz',V, D), 2.16, is larger than that for the case
of (Bz', V), 1.61 (cf. Table 1); the difference is 0.55. Thus
to get the accurate exponent for V' we should include the
influence of the solar wind density. This value of about two
of the exponent for V' supports the quadratic dependence
on V (Murayama and Hakamada, 1975; Maezawa and Mu-
rayama, 1986), but does not support the linear dependence
on V, which is expected from the ¢ parameter.

4.3 Influence of the assumptions for calculating the
ring current injection rate

We have analyzed Q derived with some assumptions de-
scribed in Section 2.1. In this subsection we discuss the
influence of some of those assumptions on the results.

First, we consider the influence of the condition on EYy,
Eq. (4). In order to evaluate this influence, we calculated
a new injection rate without this condition, and performed
the same analysis as that in the above. Elimination of
the condition of Eq. (4) yielded increase in the number of
data points in the small negative Bz ranges, but almost no
change in the number of data points in the large negative
Bz ranges. Through the analysis of this injection rate, we
have confirmed that all of the features listed in Section 3
are generally valid, although there are some small changes
in exponents and in correlation coefficients. We also have
confirmed the existence of the By-y effect.
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Second, a number of researchers suggested that the decay
time is not a constant but has dependence on a parameter:
its dependence on the value of Dst (Feldstein et al., 1984;
Gonzalez et al., 1989), and on Ey (Fenrich and Luhmann,
1998; O’Brien and McPherron, 2000). We discuss these
possibilities here. We investigated the following three decay
times suggested by Gonzalez et al. (1989), by Fenrich and
Luhmann (1998), and by O’Brien and McPherron (2000):

T = 4hs for —50nT < Dst
=0.5hs for — 120 < Dst < —50nT
=0.25hs for Dst < —120nT,

TrL = 4 hs for Ey >4 mV/m
= 7.7 hs for Ey <4 mV/m,

Tom = 2.4exp{9.7/(4.7 + Ey)} hs.

We have performed the same analysis as that in the above,
and confirmed the validity of all of the features listed in
Section 3 and the existence of the By-x effect for each
of the injection rates derived by using 7, trr, and Ty,
except for the fact that the exponent for V for the injection
rate of ts varies between two and four, being larger than
those for the injection rates of other t’s.

Here, we would like to point out two facts concerning 7:
(1) the value of 74 is rather small compared with those of
other 7’s, and (2) the injection rate of 7 has a clearly lower
linear correlation coefficient with Bz than those of other s
and than that of T = 7.7 hs. Detailed comparison is beyond
the scope of the present paper, and should be discussed in a
separate paper.

4.4 On the method of analysis of the present study

4.4.1 On the method of the regression analysis in a
logarithmic form In the present study we have examined
the dependence of Q on the solar wind parameters, mainly
on the IMF, by using the regression analysis in a logarithmic
form. In this subsection we discuss the characters of this
method and compare them with those of previous studies.

Regression analysis in a logarithmic form has a feature
that it can generally deal with every exponent (which is
equal to the regression coefficient in this analysis) of pa-
rameters of interest, and that it can give the most probable
value of each exponent. Coupling functions proposed so far
are usually expressed as the products of powers of some so-
lar wind parameters, and there are some controversies about
values of exponents (e.g., V versus V2). Our method easily
judges the appropriateness of those values of exponents.

Wu and Lundsted (1997a, b) investigated the influence
of the solar wind parameters on the Ds¢ index by using the
neural network method. They showed that the two basic
combinations giving accurate prediction are (Bz, V, D) and
(Bs,V, D), and that ¢ is less appropriate. These results
are consistent with ours. In the neural network method,
however, an exponent of each parameter should be given
before performing the analysis, and so it is not very easy to
say what is the most appropriate value of the exponent for
the solar wind parameter of interest.

We have investigated the IMF dependence of Q without
considering detailed dependence of Q on V and on D. This
treatment is guaranteed by the fact that the IMF-related pa-
rameters (i.e., Bz, B, Br, and sin(6/2)) have almost no
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correlations with V' (Aoki, 2005). This treatment is dif-
ferent from that of studies in which an exact form of the
coupling function including all of the parameters which are
assumed to have influence is given first and the validity of
this function is examined. Examples of those studies are
O’Brien and McPherron (2000) and Temerin and Li (2002).
Their purpose is to find out a suitable function that describes
the whole time evolution (i.e., the development and the de-
cay) of Dst, but our objective is to seek suitable parameters
for describing the IMF dependence of the coupling function
when the injection occurs, i.e., when Q < 0.

Lastly, we discuss the requirement that the coupling func-
tion have the dimension of power (Perreault and Akasofu,
1978; Vasyliunas et al., 1982). It is not necessarily clear
that the result of the regression analysis in a logarithmic
form meets this requirement. Here, it is worth noting the
following two points: First, QO physically reflects the to-
tal kinetic energy of the ring current particles through the
Dessler-Parker-Sckopke relation (Dessler and Parker, 1959;
Sckopke, 1966). However, O does not have the dimen-
sion of power because of its definition of Eq. (1). Sec-
ond, what the dimension of Q is is a separate problem from
what are parameters controlling Q. If the intensification of
the ring current is a result of the solar wind-magnetosphere
coupling, QO should show dependence on the same param-
eters as those controlling the coupling. Vasyliunas et al.
(1982) assumed that the coupling depends on the Alfven
Mach number and on the clock angle. If this assumption is
correct, O should also depend on those parameters irrespec-
tive of the dimension of Q. (A similar argument can also be
applied to the AL index.) The present study addresses the
problem of the validity of this assumption, and the regres-
sion analysis can give a clear answer to this problem.

4.4.2 Time resolution of the data In the present
study we have used hourly values of Q, and often com-
pared the results of Q with those of hourly values of AL
(Aoki, 2005). In this subsection we discuss the influence of
the time resolution of the data on the result and the physical
meaning of the comparison between the results of Q and
those of AL.

Studies of the coupling function by using the AE, AL,
and Dst indices have a long history. Typical analyses of AE
or of AL were performed by using 1-min values (e.g., Baker
et al., 1983), and 3-h values of the indices (e.g., Maezawa,
1979). Irrespective of the time resolutions of the data, these
studies gave similar dependence on solar wind parameters,
at least on the IMF and on V. Typical analyses on Dst were
done by using 2.5-min values (e.g., Burton et al., 1975) and
1-h values of the index (e.g., Gonzaletz et al., 1989). These
studies on Dst led to similar dependence on the IMF and
on V to each other. Furthermore, Maezawa and Murayama
(1986) showed that the analysis of 3-h values of AL and
that of 1-h values of Dst yielded similar dependence on the
IMF and on V. These similarities suggest that analyses of
AL and of Dst lead to almost the same coupling function
as long as the time resolution of the indices is between 1
minute and about three hours and that the two indices reflect
consequences of the same mechanism of the solar wind-
magnetosphere coupling. However, an analysis similar to
the present study with high time resolution data has never
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been performed before, so it should be done in a future

study to check the above idea.

4.5 Previous studies on the Vasyliunas et al. formula
and the ¢ parameter

In this subsection we discuss some of previous investiga-
tions that dealt with the Vasyliunas et al. general formula
and €.

Murayama (1986) analytically derived an equation for Q
in the form of Bs*V# DY, and compared its exponents with
those expected from the Vasyliunas et al. formula. From
this comparison he concluded that the values of exponents
of his equation are inconsistent with those of the formula.
He further suggested that this inconsistency is avoided by
introducing an additional multiplicative factor depending
on BsV . This procedure, however, is inappropriate because
of the following reason: If the Vasyliunas et al. formula is
truly a general formula, it should reproduce any dependence
observed in the coupling mechanism as a special case with-
out introducing an additional factor.

Bargatze et al. (1986) analyzed the solar wind parameter
dependence of the AL index, and showed that AL is ex-
pressed by D'/°V#/3B sin*(9/2), whose exponents are con-
sistent with the Vasyliunas et al. formula. Their V*/3 de-
pendence, however, is weaker than the results of Maezawa
and Murayama (1986) and of Aoki (2005), who showed that
the exponent for V is close to two. Bargatze et al. further
showed in their Fig. 4(b) that the sin* (6/2) dependence is a
good approximation. Close inspection of this figure, how-
ever, indicates that in the large values of 6 (i.e., negative Bz
ranges), U (0) cos 6, which corresponds to Bz, agrees bet-
ter with the data than sin*(6/2). The sin*(9/2) dependence
agrees better with the data than U (0) cos 6 in the small 6
ranges, where the physical meaning of AL is unclear (Allen
and Kroehl 1975; Kamide and Akasofu, 1983).

Recently, Koskinen and Tanskanen (2002) thoroughly re-
viewed the basic ideas on ¢, and pointed out some unclear
physical foundations on them.

5. Conclusions

We have examined the IMF dependence of the ring cur-
rent injection rate calculated from the Dst index by com-
paring the influence of Bz with that of the combination of
sin(f/2) and B (or B7). Main results are as follows: (1)
The exponent for Bz shows higher consistency than that for
sin(6/2). Higher consistency is seen in (a) smaller variabil-
ity in the exponent for Bz for the change in the range of
Bz, and in (b) much larger variability in the exponent for
sin(6/2) for the change in the combination of parameters.
(2) We never obtain B2 sin(6/2) or B2 sin*(9/2), which is
the IMF dependence expected from the ¢ parameter. (3) The
ring current injection rate shows a very low correlation with
the Alfven Mach number. (4) The ring current injection rate
has the By-y effect, which is an effect asymmetric with re-
spect to the sign of By. From the above results we conclude
that the & parameter and the Vasyliunas et al. (1982) general
formula are less appropriate than a function of Bz, and that
the IMF dependence of the energy coupling function is de-
scribed better by Bz than by the combination of sin(6/2)
and B (or By). The above results and conclusions are the
same as those obtained by Aoki (2005) through the analysis
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of the AL index. On the basis of the above considerations,
we suggest that the coupling function is approximated by

P = f(By, x)BZ*VFD",

wherea ~ 1, 8 ~ 2,y ~ 0.4, and f(By, x) is a function
for expressing the effects of By and of .
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Appendix.

In this appendix, we supplement the discussion in Sec-
tion 4.1 on the Vasyliunas et al. general formula and on the
idea that the coupling function is described by the combina-
tion of (B(r), sin(8/2), V, D) with more detailed analysis.

Table Al(a) shows correlation coefficients for M, and
for the combination including M4 for various ranges of
Bz and for V. < 600 km/s. When we compare the cor-
relation coefficients with those for (Bz’, V, D) in Table 2,
we see that (M), (Mg, sin(6/2)), and (M4, sin(@/2), V)
have much lower correlations than (Bz’, V, D). However,
the combination (My, sin(6/2), V, D) suddenly shows
great improvement in correlation coefficients compared
with (Mg, sin(6/2), V), and the correlation coefficients of
(Mg, sin(6/2), V, D) are a little higher, by 0.07 at the
maximum value, than those of (Bz’,V, D). (The corre-
lation coefficients of (M/,, sin(0/2), V, D) are lower than
(Bz',V, D), as seen in Table A1(b).)

Here we consider the reason for the higher correlation
of (Mg, sin(6/2), V, D) than (BZ',V, D). It is worth not-
ing the following three points: First, in the regression
analysis, the result of (My, sin(6/2), V, D) is equivalent
to that of (Br,sin(6/2), V, D) in the sense that for ev-
ery range of Bz, exponents for (M4, sin(6/2), V, D) can
be derived from exponents for (Br,sin(6/2), V, D), and
vice versa. This is easily confirmed by Tables Al(a)
and A1(b) and simple calculations. Second, the assump-
tion that (Mg, sin(6/2), V, D) works in the solar wind-
magnetosphere coupling is not equivalent to the idea that
(Br,sin(0/2), V, D) works. The latter includes the for-
mer, but the reverse is not true. Third, there is no rea-
son that we should include D in the regression analy-
sis when we want to judge whether or not the combi-
nation (My, sin(6/2)) works in the coupling. From the
above three points, we cannot interpret that the high cor-
relation of (My, sin(6/2), V, D) represents the effective-
ness of (My, sin(6/2)) in the coupling, but should con-
sider that (Br, sin(68/2), V, D) has a little better correla-
tion than (Bz’, V, D). The reasons for the higher correla-
tion of (Br, sin(6/2), V, D) are probably considered as fol-
lows: The effect of By shown in Fig. 3 can be included in
Bt and improve the correlation. Larger number of param-
eters in the combination (Br, sin(6/2), V, D), 4, than that
of (Bz', V, D), 3, might produce higher correlations. In any
case, it should be pointed out again that the idea of describ-
ing the coupling by (Br, sin(6/2), V, D) has a difficulty in
expressing the By-y effect, as mentioned in Section 4.1.
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