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Influence of magnetic field variations on measurements by magnetometers
using averaging algorithms

O. Denisova, V. Sapunov, and A. Denisov

Quantum Magnetometry Laboratory of Ural State Technical University, Mira str., 19, Ekaterinburg, 620002, Russia

(Received April 30, 2005; Revised July 2, 2005; Accepted August 31, 2005; Online published June 2, 2006)

The article is devoted to features of modulus magnetic field measurements by means of proton magnetometers.
Inertial characteristics of the magnetometers and dynamic errors of variable magnetic field measurements are
discussed. Three basic magnetometers averaging algorithms, processing zero crossing times of free precession,
are compared. Theoretical and some numerical estimations of the algorithms work are presented for the linear,

square and harmonic variations of magnetic field.
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1. Methodical Problems of Variations Measure-
ment by Means of Inertial Device

The magnetic field variation is continuous function of
time. However in practical manner a magnetic field mea-
suring device always has an action time (Ripka, 2001). The
magnetometer can not operate instantly. Short as the mea-
surement time will be it is not zero. So a value measured
by inertial device is some averaging during a measurement
time (Rasson, 1978). There is no problem when magnetic
field is constant, but at a presence of variations during mea-
surement time a dynamic error appears. There are tow ques-
tions:

1. If magnetic field wasn’t constant during measurement,
what value must we accept for a fact?

2. What time moment dose this value correspond to?

To take a simple average over measurement time and
to correspond it with the center of the measurement time
interval is methodical correctly. But averaging algorithms,
used at the nuclear precession magnetometers, not give the
average of the magnetic field value. The calculation of
magnetic field is based on digital processing of the zero
crossing times of a free precession signal to estimate an
average period of the signal.

Basing on gyromagnetic relation:

v=y-B, ey
the modulus of magnetic field B is expressed in terms of
free precession frequency v. In general an average mag-
netic field is not correspond an average period of the sig-
nal. Such nonlinear transfer function of magnetometer
causes a need for theoretical investigations of different al-
gorithms to answer a question about magnetic field value,
which they measure. For three time dependencies of the
magnetic variations (linear, square and harmonic) the ba-
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sic algorithms were considered: Simple Periodometer, Pe-
riodometer with Introcycling Treatment and Least Mean
Square method (Denisov et al., 1999).

2. Base Formulas

As mentioned earlier, modern proton magnetometers use
the zero crossing times to calculate a period of a free pre-
cession. Such possibility is based on gyromagnetic relation
(1). The period of free precession is inversely to a measured
magnetic field (Packard and Varian, 1954).

Figure 1 shows constant magnetic field By and disturbing
field B, which is varying in time. 6 is an angle between the
fields. After polarization the magnetization vector becomes
free precession on a resultant vector of the magnetic fields
with the frequency corresponding to the modulus:

B=\/B§+Bf+2Bo-Bl-c039. )

Actually the relation of disturbing magnetic field to con-
stant one is too small (B; ~ 1 nT, By ~ 50000 nT). Sup-
posing B /By < 1 one can take Taylor of (2) and take result
in the form:

B ~ By (1+cos6 - Bi/Bo+0.5-(sin6 - Bi/Bo)*). (3)

The zero crossing times #; are found from an integral
equation, followed from (1):

i =y / Byt @)
0

A registration and a record of zero crossing times to a
magnetometer buffer enables to employ different digital al-
gorithms to determine the period of free precession and then
the modulus of resulting magnetic field. Three digital algo-
rithms will be under consideration (Denisov et al., 1999):

Periodometer —

T" =y/N, &)
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Fig. 1. Resulting magnetic field.

Periodometer with Introcycling Treatmen (PIT) —

PIT 1 N/3]
B litN— —t),
(N —[N/3D(IN/3]1+ 1) ;( FN-N/3] 1)
(6
Least Mean Square method (LMS) —
6 N
TLMS = ﬁ Z (2[ _ N) f, (7)
i=0

where [..] — integer division, N — a number of last recorded
time of zero crossing.

Based on the algorithm formulas (4-6), simple Peri-
odometer is expected to give methodical correct value of
the magnetic field, as the Periodometer is a simple time
averaging. The Periodometer whit Introcycling Treatment
and Least Mean Square method are more difficult and spe-
cial investigation is required. The dynamic properties of
the algorithms depend on a character of the magnetic field
variations, namely on the time dependence of B;. General
analysis of the algorithms dynamic features is difficult and
will be limited by simple time dependencies.

3. Linear Magnetic Field Changing
Let the disturbing field modulus to be line function of the
time:

Bi(t) =k-t, ()

where k is a speed of the field changing. In that case the
integral Eq. (4) is in a form:

Toi = t; + (kcos/By)t?/2 + (ksin6/Bo)*t? /6.  (9)

Solving the Eq. (9) for ti by the method of successive
approximations supposing B;/By < 1, the expression for
time zero crossing is:

ti =Toi (1 —ar - Toi +ay - (Toi)?) , (10)

where a; = (k- cos0/By)/2, a» = (k - cosG/B())2/2 —
(k - sinf/By)?/6 and Ty is the period of free precession
corresponding to By.

The expression (10) for the zero crossing times allows us
to calculate theoretical value of measured magnetic field for
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any digital algorithm processing the times (5)—(7). Taking
into account gyromagnetic relation between the frequency
and the magnetic field (1) the algorithms give the following
results:

Periodometer —
BY = By (1 + Tpa) — Tpar), (11)
Periodometer with Introcycling Treatmen —
B* = By (1 + Tyya1 — 8T, a2/9) (12)
Least Mean Square method —
B"™S = By (1 + Tar — 9T,}a>/10), (13)

where T,, = ty is the measurement time.

Analysis of the formulas (11)—(13) shows that at the first
order of expansion in terms of small ratio B,/B all algo-
rithms give the same results. They all measure time average
value of the magnetic field and at the case of line magnetic
field changing do not have methodical error. The variations
along the constant field make the greatest contribution to
the measured magnetic field value. At perpendicular orien-
tation of the fields @; = 0 and the algorithms give different
magnetic field values but the difference really is small (for
speed of variations 1 nT/s and measurement time 1 s the
difference is the order of 10~° nT). This methodical error is
out of the magnetometer sensitivity.

4. Square Magnetic Field Changing

For magnetic field changing as parabola
B, = kt?, (14)

the Eq. (4) takes in a form:
Toi = t; + (kcosO/Bo)t? /3 + (ksin6/By)*t’ /10, (15)

Expanding the Eq. (15) in a power series of B;/Bj and
using successive approximations method the solution is:

t = Toi (1 — (Toi)2ar + (Toi)*az) , (16)

where a; = (k-cos@/By)/3, a, = (k-cos 9/30)2/10 — (k-
sin@/By)?/3.
Now substituting expression for zero crossing times (16)
into algorithms formulas (5)—(7) we take correspondingly:
Periodometer —

B" =By (1+ T a — Tya), A7)
Periodometer with Introcycling Treatmen —
B = By (1 + 8T, a1 /9 — 166T,1a>/243) , (18)
Least Mean Square method —
B™S = By (1+9T2a; /10 — 5Tpay/7).  (19)

We can see that at the parabolic changing of magnetic
field the algorithms have differences even as in first approx-
imation (Fig. 2). The simple Periodometer gives simple av-
eraging again and the maximal measured value at the par-
allel orientation of the fields is 0.33 nT. The Periodome-
ter with Introcycling Treatment has transfer constant ap-
proximately equal to 0.29 nT and the Least Mean Square
method’s constant is 0.3 nT.
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Fig. 2. Angular dependence of the measured field.

The difference in measurement results of the algorithms
is equal to 10%. For measurement time 1 s and the field
changing over the time 1 nT the methodical error approx-
imately is 0.03 nT, it is sizeable for magnetometers with
sensitivity up to 0.01 nT.

The comparing of the algorithms allows us to conclude
that equal magnetometers with different built in digital al-
gorithms will measure different value of the magnetic field
under conditions of square time variations of the field. It
depends not on the accuracy of the calculations but on the
averaging characters of the calculation methods. However
at non-disturbing magnetic situation at the absence of quick
variations the difference is not essential.

5. Harmonic Magnetic Field Variations
Suppose disturbing magnetic field changes harmonically:
By = ksin(Q2t + @), (20)
where k is an amplitude, €2 is a frequency and ¢ is a phase
of harmonic.

The Eq. (4) for zero crossing times is more difficult than
for previous tow cases:

. 2k cos6 .
Toi = t; + ——— sin (2t;/2) sin (2¢; /2 + ¢)
By2
4 (Ksind T, L sin (9r,) cos (@1 + 20)
i — < SI i i .
2B, Q ¢

2y

Solving the Eq. (21), the zero crossing times are expected
as:

ti =Toi(1 —ay)
da;, . . da; .
ey sin (x;/2)sin (x; /2 +¢) |1 — Esm(x,- + @)

+% sin (x;) cos (x; + 2¢) , (22)

where a; = (k - cos6/By)/2, ay = (k - sin9/80)2/4,
x; = QTi.

Putting (22) into algorithms formulas we are taking the
measured magnetic field values under conditions of linear
approximation:
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Fig. 3. Transient function of the algorithms.
Periodometer —

B’ = B, [1 + 4% Gin (xn /2) sin (e /2 + qa):| . 23)
XN
Periodometer with Introcycling Treatmen —

BT = 30[1 +36 sin(xy/3)
AN

x sin(xy /6) sin(xy /2 + ¢)], (24)

Least Mean Square method —

2
BIMS — 30[1 — 24a—21(cos(xN /2) — = sin(xy /2))
XN XN

x sin(xy /2 + 90)}, (25)
where xy = QT,,.

The digital algorithms work like a filter, suppressing and
passing frequencies selectively. The transient function of
the algorithms depends not only on the frequency of dis-
turbing field harmonic but on its phase too. On Fig. 3 the
transient functions of the digital processing methods are
presented and the phase of input harmonic is chosen to max-
imize the gain.

In the first, the essential decay of harmonic amplitude
caused by the magnetometers inertial characteristics is ob-
served since as low frequencies as 0.1/7,,.

In the second, all algorithms pass low frequencies up to
1/T,, and suppress high frequencies. The transfer functions
have a quasiperiodic character. The frequencies divisible
by K /T, are suppressed, where coefficient K is different
for each algorithm. It is clear what for simple Periodometer
K =1, because the average for sinusoid exactly packing in
the measurement time is null. For PIT K = 1.5, for LMS
method K = 1.43.

Thus there are situations for some harmonics when iden-
tical magnetometers with different built-in algorithms will
measure different values. For example for sinusoidal mag-
netic field of 0.5/7,, frequency and 1 nT amplitude, Peri-
odometer shows 0.65 nT amplitude, PIT gives 0.8 nT, LMS
gives 0.78 nT (Fig. 3). The methodical error at the pres-
ence of sinusoid variation of 1 nT amounts to 0.15 nT. It is
exceeds the magnetometer sensitivity.
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Table 1. Time dependence of coefficient C under 50 Hz disturbances.
T —0.5s —1s —15s —2s
cr 1.3 x 1072 6.4 x 1073 4.2 x 1073 3.2 x 1073
crr 7.3 x 1074 1.8 x 107 8.1 x 1073 4.6 x 1073
CcMs 49 x 107* 1.2 x 107* 5.4 x 1073 3.04 x 1073
1 = ya ray ral = . . . .
ﬂ Algorithm: PIT Thus there is an essential influence of variable fields of
~~ Measurement time: 1 s 50 + 60 Hz, especially for fast measurements (1 s cycle
- Measurement frequency: 0.5 Hz . . . .
< - Variation frequeney: 0.527 Hz time, 0.5 s measurement time), which are perspective for
& ™ Yanation odonmton: pargilal modern observatories. It is interesting, that for the update
S ~, - 5 » . . . . . . .
i \\‘ ———Measured variation signal processing algorithms the influence of the industrial
Lo AN N disturbances is less than for simple Periodometer.
i‘_..‘: %
e 6. Conclusions
< The different integrating characteristics of the algorithms
~l_ can leads to methodical and dynamic errors at the measur-
ing magnetic variations. Under normal observatory condi-
1 . )
0 2 4 6 8 10 12 14 16 18 2 thl’.IS the errors are not essentlal,. on the. con.trary at a mag-
Time, s netic storm or at a presence of industrial disturbances the

Fig. 4. The effect of frequency substitution.

It should be mentioned that processing algorithm causes
not only amplitude distortions in to harmonic but it causes
the frequency substitution of one. The effect of frequency
substitution shown on Fig. 4 is explained by Nyquist sam-
pling theorem (Nyquist, 1928).

It is possible to use filtration features of the algorithms
for noise control. For example, to exclude magnetic distur-
bances induced by power-line noise of 50 Hz and 60 Hz for
measurement by simple Periodometer, it is necessary to set
a magnetometer measurement time divisible by 100 ms, for
PIT by 150 ms, for LMS by 143 ms. In this case ampli-
tudes 50 Hz and 60 Hz harmonics are suppressed. In other
cases at short measurement times the harmonics can give
the significant contribution. For frequencies much greater
than 1/T,, the approximation formula for a maximal contri-
bution of harmonics is

AB=~k-C, (26)
where C* = 2/(1,,Q) for simple Periodometer, CP'T =
18/(1,,2)? for PIT, C™"™S = 12/(t,,Q2)? for LMS and 7, is
the nearest time to 7,, at which the disturbances influence
is maximal. Numerical estimations of the factor C are
represented in the Table 1.

errors are sizeable. The nonlinear magnetic field variations
lead to great errors, essentially depending on the type of
processing algorithm.

In spite of that fact that the simple Periodometer is me-
thodically correct algorithm, it has great dynamic error in
comparing with the modern algorithms such as Periodome-
ter with Introcycling Treatment and Least Mean Square
method. Besides that at the short measurement times the
50 =+ 60 Hz disturbances have a greater effect on a Peri-
odometer result than on modern algorithms one. The ways
of algorithmic noise control by means of a choice of mea-
surement time are proposed.
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