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Equatorial electrojet as a diagnostic tool of geomagnetic field models
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The equatorial electrojet (EEJ) is a unique feature of the Earth’s external current systems because it must flow
along the dip equator. This provides us with a tool to determine the nature of the variations imposed by competing
main field models on the equatorial region. First we show that for certain regions a comparison between scalar
geomagnetic measurements that use different models to remove the main field may not be reasonable. Next we
found the intrinsic error in the determination of the possible location of the dip equator was £9.8 km (0.088°)
at 108 km altitude for the models shown here. Using scalar measurements from over 14,000 CHAMP satellite
passes, the latitude of the maximum of the EEJ field at the satellite altitude was determined by subtracting four
different models of the main field. We find that the location can be statistically determined to within +0.5° of the
dip equator (calculated at 108 km altitude) irrespective of longitude, time of the measurement, degree of magnetic
activity, and subtracted model. However, variations of the latitude of the maximum EEJ field with longitude are
sometimes caused by the actual model and are not always a physical phenomenon. By choosing one model, and
assuming it is the best representation of the main field, we have also shown that the accuracy of determination
of the position of the EEJ signal is reduced in the morning and evening hours and that a morning and evening
shift in the location of the EEJ found using ground measurements is also seen here. There exists a clear annual
variation in the position of the EEJ regardless of longitude: it is south of the dip equator in December which is in
agreement with the findings of all previous studies.
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Oersted.

1. Introduction

The reason for embarking upon this study was we noticed
several colleagues comparing magnetic data obtained from
satellite measurements by using different models to remove
the main field. Competing magnetic main field models
adduce no reasons for choosing between them. Therefore
this paper is aimed at users of such models rather than the
modellers.

The Earth’s main magnetic field can be described using
Gauss coefficients derived from a spherical harmonic anal-
ysis (Chapman and Bartels, 1940). For convenience, in this
paper we will separate each model main field into a core
field (harmonics of degrees 1-15, with its secular variation),
and a lithospheric field (degrees above 15). This definition
is based loosely on the power spectrum of the main field
model derived from Magsat data in Langel and Estes (1982)
where the rate of change of the power spectrum changes
abruptly somewhere between degrees 14 and 16. Since the
lithospheric model, MF3 (see Table 1) begins at degree 16,
degree 15 was chosen as the truncation point describing the
core field. Examples of each are given in Fig. 1.

As discussed by Chambodut et al. (2002) the main field
models differ because of different spherical harmonic pa-
rameterisations and differing data selection. The data are
selected from satellite passes flown on the night side of
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the Earth during magnetically quiet periods. This is nec-
essary as each measurement is the summation of all mag-
netic fields from all sources. Using night time reduces the
number of sources by removing the day-time ionospheric
sources and using magnetically quiet times reduces the ef-
fect of disturbance fields. Days deemed magnetically quiet
by modellers differ because of the different definitions of
magnetically quiet days. The definition of “night” is also
dissimilar between the models. Also, some models incor-
porate satellite vector and scalar field measurements, and
ground measurements. The four chosen for this study use
only satellite measurements. Table 1 describes the field
models we use.

This paper contains a comparison of the field models
used, a discussion on the dip equator and how it varies with
height, longitude, time and model. This is followed by a
description of the CHAMP data and the reduction method
implemented. The next section describes the differences in
the position of the EEJ between the chosen models. Then
using one model we show that outliers are not caused by
magnetic activity and we conclude with details regarding
local time and universal time, variation in the position of
the EEJ.

2. Comparison between the Field Models

It is interesting to see how the models compare graphi-
cally. In the literature there are many comparisons of the
coefficients (for example Maus et al., 2002) but to get a feel
for what it means a graph is sometimes better.
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(A) Intensity of the CO2 core field model (gauss coefficients 1-15) at 430 km altitude. (B) Intensity of the MF3 lithospheric model (gauss

Table 1. Description of Field models. For information on the terms in column 2 see the references given in column 1. See http://www.dsri.dk/Oersted/

Field_models/ for the model coefficients.

Model Name Description Date of observation used
CcO2 First official CHAMP magnetic field model. | Aug 2000-Dec 2001
Holme et al. (2003) Used CHAMP, @rsted, and @rsted 2
2001.00 epoch
29 max degree of main field
13 max degree of secular field
2 max degree of external field
6371.2 reference radius
0er08i03-MF3 Combination of MF3 model and @rsted_08i_.03 | MF3:
similar to Maus et al. (2002). Please see the | main field @rsted_08i_03 (N. Olsen) subtracted | CHAMP SCALAR
website below for more information regarding | up to deg 15 9-Aug-2000 to 26-Aug-2003
this model. No publications are currently | # flow model TPXO, magnetic signal predic- | CHAMP VECTOR
available. tion by A. Kuvshinov 16-May-2001 to 26-Aug-2003

nickname of model: MF3 2001.00 epoch

no regularisation up to degree 60

90 max degree of internal field
15 max degree of secular field
0 max degree of external field
6371.20 reference radius [km]

Orsted_08i_03
Olsen

@rsted + CHAMP (F)

2001.00 epoch

nickname of model: oer8 40 max degree of static

quadratic SV, vector data < 60 deg

16 max degree of linear secular variation
2 max degree of external field
6371.20 reference radius [km]

Mar/1999-July/2003

field

Orsted_06a_01
Olsen (2002)
sonal Q
2000.00 epoch

Figure 2(A) shows the difference between the C02 model
and the @rsted_08i_03 model for the core fields. The mod-
els were calculated for altitude 430 km and day 900 from
2000.00. It can be seen that in the equatorial and mid-
latitude regions there are long wavelength features having a
magnitude about 5 nT. Discordant long wavelength features
will be apparent between the reduced satellite data sets be-
cause of long wavelength disparities between the two mod-
els which have been subtracted.

Figure 2(B) shows the difference between the litho-
spheric fields of the two models. There are again differ-
ences of amplitude 5 nT, but now of much shorter wave-
length. This has shown that for certain regions a compar-

robust, 5-sigma outlier removal, att-error, with
obs, polar_downweighted, RC, no fixed sea-

29 max degree of main field
13 max degree of secular field
6371.2 reference radius

29-Jun-2001

ison between data that use different models to remove the
main field may not be reasonable.

To compare only lithospheric models, Fig. 2(C) shows
the difference between the @rsted 08i_ 03 and the MF3
models. They both use the same core field model so the dif-
ference here shows the disparity between the lithospheric
models only. The ordinate range is from 40-140 colati-
tude to highlight the mid-low latitudes. The differences are
of the order 3 nT: considerably less than between the C02
and @rsted_08i_03 model (for the mid latitude range an or-
der of 6 nT for the disparity is shown) suggesting that the
core field determination is very important for determining
the lithospheric field.
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We will see later that these lithospheric disparities are of
the same sort of wavelength as that of the magnetic signa-
ture of the EEJ. The magnetometer does not distinguish
between the two contributions, so at any one longitude the
latitude of the maximum observed “EEJ” field could well
be changed. So any variation of latitudinal position with
longitude could be different when different field models
are subtracted. If a comparison between parameters of the
EEJ were considered when competing lithospheric models
were used to remove the data then false conclusions may be
drawn for certain longitudes. A parameter that is easily de-
terminable using scalar field magnetic data is the location of
the field minimum near the magnetic equator. However, to
determine this all magnetospheric and internal field signa-
tures must be first removed from the signal and an invariant
zero line should be drawn to determine the EEJ location.

3. Comparison between the Dip Equators

Using ground measurements Fambitakoye and Mayaud
(1976/2) were able to show that the position of the after-
noon and morning EEJ were 40 km more northward than
those at midday: 40 km is approximately 0.34° latitude at
the Earth’s surface. Therefore a resolution of 0.1° for de-
termining the position of the EEJ is sought in the satellite
data. Here the dip equator is calculated as the zero point
of the Z component of the main field model of angular de-
grees 1-14 (including secular terms). The altitudes are de-
termined from the reference sphere used by the models of
radius 6371.2 km (the mean radius of the Earth). The dip
equators for the @rsted_08i_03 and the MF3 models are the
same because they use the same main field model. How-
ever, Fig. 3 is a contour plot showing the variation with
longitude and altitude of the difference between the loca-
tion of the dip equators given by the C02 models and the
@rsted_08i_03 models for day 1398 after 2000.00. At the
approximate altitude of the @rsted satellite (800 km), is be-
tween +0.01°.

The difference increases as altitude decreases, being
in the range +£0.01° at 800 km (approximate altitude of
@rsted), £0.015° at 400 km (CHAMP), +0.025° at 108 km
(EEJ), and £0.027° at the surface. It is clear from compar-
ing the model dip equators that when two models are used
the maximum intrinsic error imposed upon the data set is
+0.027° (£3.0 km). This shows that both the C02 and the
@rsted_08i_03 main field models can be used to determine
the dip equator to within the required resolution.

The latitude of the dip equator varies with altitude. Using
the Grsted_08i_03 model to show our point, the dip equator
was calculated for various altitudes. Shown in Fig. 4 are the
differences in latitude between the dip equator calculated
at altitude 104 km (the minimum possible altitude of the
peak current density of the EEJ, determined by rocket mea-
surements from various sources presented in Onwumechilli,
1997, Chapter 2) for day 360.0 from 2000.0, and the dip
equator calculated at various altitudes for the same time.
The light grey and dark grey lines show the differences for
altitudes 110 km and 120 km for the same day, respectively.
The maximum absolute deviation from zero is 0.02° (2.2
km at altitude 110 km) and 0.06° (6.8 km at altitude 120
km) near the 330 longitude zone for each altitude. If the
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Fig. 2. (A) Differences between the intensities of C02 and @rsted_08i_03
core field models at 430 km altitude. (B) Differences between the in-
tensities of lithospheric parts of the CO2 and the @rsted_08i_03 mod-
els at 430 km altitude. (C) Differences between the intensities of
Drsted_08i_03 and MF3 lithospheric field models at 430 km altitude.

maximum current density of the EEJ was located at 120
km and 104 km was chosen as the invariant dip equator the
maximum possible location error imposed by the choice of
altitude is ~0.06°. The black line shows the residuals for
altitude 430 km; the approximate altitude of the CHAMP
satellite. There is an appreciable difference in the position
of the dip equator between altitudes 300 km apart. Since the
peak electrojet current usually forms close to 108 km alti-
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Fig. 3. Polar plot showing the differences between the position of the dip equator for the C02 models and the @rsted_08i-03 models with altitude.

82 L ~ ‘ J
0.4t ¢ ]
0.3 i 1
0.21 \} R 1 i
0.6 I o\ \ 1
3 —0T1f b
i
S 02t
© 05 ~
061
0.7
-08
-09r1
Ej ; : : : : :
"0 50 100 150 200 250 300 350
longitude

Fig. 4. The differences in latitude between the dip equator, calculated
at altitude 104 km; and the dip equator for 110 km (light grey line),
and 120 km (dark grey line) and 430 km (black line) on the same day
(360 days after 2000.0). The black dashed line shows the differences
for altitude 430 km and day 1461 after 2000.0.

tude (see reviews) this altitude was chosen for the invariant
altitude of the model dip equator.

The latitude of the dip equator is also varies with time.
Using ground based measurements from the Indian Penin-
sular, Deka et al. (2005), and using satellite based measure-
ments, Jadhav et al. (2002), showed that the geomagnetic
secular variation influences the position of the dip equator
by as much as 1 degree per decade. The main field models
we use include secular variation terms (see Table 1). The
black line in Fig. 4 is for altitude 430 km but day 1461:
three years later than the calculation at the same altitude.
The graph shows appreciable changes in the modelled dip
latitude, up to 0.5 degrees in places. Hence, secular varia-
tion must be taken into account when dealing with 4 years
of measurements. We have done this, but any error in the

secular variation will contribute to the model determination
error. We estimate that the maximum possible difference
in the latitude of the dip equator coming from the models
and/or assuming an incorrect altitude, of at most 16 km, for
the EEJ is 9.8 km (0.088°at 108 km latitude). This is well
within the required 0.1° resolution.

In the following discussions the model dip equator is de-
termined as the point where the Z component of the model
using gauss coefficients 1-14 (including secular terms 1-
14) is zero at 108 km altitude. Because the secular term is
included, the model dip equator was calculated for each in-
dividual satellite pass. The time used for each pass was the
time when the satellite passed over the geographic equator.
It takes the satellite approximately 30 minutes to pass from
40° to 150° latitude. It was assumed that during this short
period the secular variation was unchanging. For the lon-
gitude region near 300°, where the difference between geo-
graphic and geomagnetic equators is largest, the very small
shift in the time between the two equator crossings does not
affect the results.

4. Choice of Data

The CHAMP satellite flies in a near circular orbit so
approximately every 93.5 minutes the satellite crosses the
equator at longitudes about —24° apart. This configuration
means that the satellite will cover the whole globe longitudi-
nally every 24 hours but remain at the same local time (give
or take a few minutes). The precession rate is such that for
local times between 0900 and 1600 the satellite will contin-
uously measure for 77 days then break for either 37 days
(descending mode) or 71 days (ascending mode). Thus, for
four years data the local times 0900-1600 are measurable
for all seasons.

Figure 5 shows the scalar field, at satellite altitude, along
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Fig. 5. The scalar field measured along a satellite pass after the core and lithospheric fields have been removed (solid lines). LW signature (dotted lines).
The residual, after removal of the LW component (dashed line). Three models are represented; @rsted_08i_03 (light grey), C02 (black) and MF3
(dark grey). The position of the minimum for each model (vertical dashed lines). MF3 and @rsted_08i_03 overlap. Maximum difference between all

three locations is shown.

a satellite track after the main and lithospheric fields have
been removed using a field model (solid lines). Three mod-
els were used; @rsted_08i_03 (light grey), C02 (black) and
MF3 (dark grey). The long wavelength daytime magnetic
field variation at mid and equatorial latitudes is mainly
composed of effects from magnetospheric currents and the
smaller, long wavelength part of the daily Sq variation.
A method of subtracting the long wavelength component
(LW) is described in Martinec and McCreadie (2004). This
approximates the local LW part by a set of orthogonal Leg-
endre polynomials (only polynomial degrees O through 2
are used here) for that part of the track that does not include
the auroral regions. It was not deemed wise to separate the
EEJ signature from the filter region as described by Maus
et al. (2002) because there is debate surrounding the role of
the EEJ in the Sq current system (Stening, 1995) and not
enough is known about the return currents to determine the
exact location of their cut off points. The computed LW sig-
nature is shown for each model in Fig. 5 (dotted lines). The
differences between the LW components for each model are
not large. The track, after removal of the LW component, is
shown by the dashed line.

The EEJ signature from CHAMP scalar measurements is
defined in McCreadie (2004) as, “one minimum lies within
2 degrees of the quasi-dip equator and one maximum oc-
curs directly either side. These maximums must lie be-
tween £10° of the quasi-dip equator. The resulting am-
plitude must be the maximum amplitude in the pass of this
configuration.” In this pass the EEJ signature is clearly vis-
ible between 85 and 110 geocentric colatitudes.

The algorithm used for finding the EEJ first determines
the rough position of all maxima and minima within +30°
dip latitude (at satellite altitude). The mean for 2° latitude
bins is calculated and the gradient between each mean value
is determined and when the sign of the gradient changes be-
tween consecutive means a maximum or minimum is noted.
Exact geocentric locations of each maximum or minimum
is then found by finding the lowest (highest) value of each
minimum (maximum) within £3° of rough minimum (max-
imum) location. The classification criteria described in Mc-
Creadie (2004) are then used to determine the type of sig-
nal encountered by the satellite for this pass. Only passes

deemed EEJ type passes are used in this present study.

Figure 5 shows that the range of the position of the ob-
served EEJ signature between the three models for this track
is 0.644°. However, remember that the corresponding scat-
ter in determining the dip equator is only 0.088°, so this
cannot be the cause. The side lobes between 80° and 90°
colatitude and 105° and 120° also show disparity between
the models suggesting a lithospheric under/over misrepre-
sentation.

5. The Models and the EEJ Position

Figure 6 is a plot of our estimate of the position of the
EEJ for each satellite pass where an EEJ signature was
found in the CHAMP Overhauser magnetometer observa-
tions from August 2000 until December 26, 2004. The cal-
culation was made for each of the four models shown in
Table 1. The black line on each graph shows the mean posi-
tion calculated over two degrees of longitude. The variance
of the points about the mean is shown in the bottom graph of
each plate. The variance is greatest near 300° longitude for
all models. This is the region of the South Atlantic anomaly
where the core field is low (see Fig. 1) and the secular vari-
ation is most rapid (see Fig. 4). This suggests that the core
field modelling of this region may need more work.

A problem with any model is deciding what is real and
what is not. To illustrate this, cast your eye to the arrows
on each graph. The arrows are in the same position rela-
tive to each axis [10.0 longitude, 1.0 latitude]. The same
initial data set has been used to obtain each graph: only
the subtracted model is different. With the two models of
higher orders (@rsted_08i_03 and MF3), therefore shorter
wavelengths, an increase in the number of points which lie
away from the dip equator and a shift in the longitudinal
position of the points which lie away from the dip equator
compared to the other two models (@rsted_06a_01 and C02)
is apparent. This area over Africa contains a large known
lithospheric anomaly (see Fig. 1(B)). Clearly, this region
requires closer attention. At present there is no way to tell
which model is representing the African equatorial litho-
spheric anomaly best at the dip equator.

The red dots represent a longitude zone where the lat-
itudinal position of the mean differs greatly from model
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Fig. 6. Latitude deviation of the EEJ, from the dip equator (grey, blue and
red dots) calculated for each model at 108 km altitude. The abscissae
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about the means. The arrow and oval are located at the same position
on each graph. The blue and red dots highlight areas of discrepancy
between the different models. The total number of points (#), sum of
the absolute value of mean (¥ M) and the sum of the variances (XV)
are shown for each graph.

to model. The two lower order models (CO2 and
(Orsted_06a_01) place the mean position north of the dip
equator whilst the @rsted_08i-03 model positions the equa-
tor just south of the dip equator and the MF3 model posi-

tions the equator both north and south for this zone. Which
model shows the true position? A further illustration is
shown with the longitude zone colored blue. Here the op-
posite is seen where for the higher order models the mean
position is north of the dip equator, the CO2 model is just
north and the @rsted_06a_01 is south of the dip equator. We
saw that the difference between the model dip equators is at
most 0.025°. Therefore, the cause of this apparent shift in
position must be the differences in the modeled lithospheric
fields. It is true that at these longitudes differences in the
lithospheric fields which have a similar structure to the EEJ
are apparent (see Fig. 2(C)).

Major disparities covering a small area of longitude are
highlighted with black ovals. The variance for each area is
similar suggesting that this area, even though the variance
is high, is modelled similarly.

Also included on each graph is the number of passes
deemed EEJ out of a possible 14081 passes (number af-
ter the hash). One would think it would be the same for
each model. However, if a lithospheric anomaly is underes-
timated or overestimated and is of a similar structure and
smaller or similar wavelength and amplitude as the EEJ
signature at satellite altitude then an EEJ signal will be
found using the method used here even if there was none.
Conversely, if a lithospheric field anomaly is not mapped
(African zone) the data are again affected.

How are the data affected? When locating the position
of the EEJ we are finding the position of the minimum
of an inverted bell shape, with respect to a horizontally
aligned axis in the North-South plane (X-axis). Moving the
X-axis bodily up or down (say by adding a homogenous
lithospheric anomaly) will have no effect on the position of
the EEJ. However, if the X-axis is tilted (say by an anomaly
that is asymmetric) the position of the EEJ will be affected.
This suggests that the absolute value of the perturbing field
is not relevant but the gradient of the perturbation near the
EEJ is (Frank Lowes, communication during the referee
process).

To estimate the effect let’s approximate the observed EEJ
field as

E = —C cosmf (D)

Where 0 is latitude (or distance from a nominal Z = 0
latitude) in radians, and the amplitude of the EEJ is C = 2
nT, and m = 18 (10° width), and E is the scalar field.
Adding a local perturbation of

P =A— B6, 2)

where B is the North-South gradient in nT/radians. So what
is observed is

F=E+P=-—Ccosmb + A — Bf. 3)

The position of the observed EEJ will be located at the point
where dF /d® = 0 (the minimum scalar field). This gives,

“

But the displacement 6 is very small, so we can approximate
sinm6 by mé giving,

dF/df = Cmsinm6 — B = 0.

B = Cm26. &)
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Fig. 7. Frequency versus position of the EEJ plots for various degrees of magnetic activity determined from K p and Dst indices. The total number of

points (#) is shown for each plot.

Figure 6 shows displacements of up to 0.5 degrees; this
gives B = 0.1 nT/degree. Figure 2(B) shows crustal field
differences of amplitude up to about 2 nT, having wave-
lengths of about 20 degrees. A sine wave of amplitude S,
wavelength A°, has a gradient ranging from zero to 2w S/A,
so the difference field of Fig. 2(B) will have gradients up to
about 0.6 nT/degree in some places; hence the shift in the
mean position of the EEJ between the models in Fig. 6.
Using the definition, “the position of the EEJ lies on the
dip equator”, as the criterion for choosing the best model

is then it is clear that the MF3 and @rsted_08i_03 models
do best at most longitudes. For a quantitative estimate for
the whole globe the sum of all the mean positions and the
sum of the variances will give a measure of the relative
“goodness” of each model. On each graph in Fig. 6 the sum
of the absolute mean position is the number after the ¥ M
and the sum of all variances is given after the ¥ V. These
show that higher order models fit the request because their
sums are the lowest; the MF3 outperforming the others.
Thus, the MF3 was chosen for the following analysis.
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Fig. 8. The diagrams show contour plots for various quantities, based on data which has been binned over 1 hour of the day in local time (ordinate) and
2 months (abscissa) in the year. The numbers at the bin points are the number of data contributing to that bin. (A) The mean deviation position of the
EEJ from the dip equator, (B) Variance of the mean in (A), (C) Mean Dst and (D) Mean K p NB: K p value is multiplied by 10.

6. Outliers: Caused by Magnetic Activity?

For the 11330 EEJ signatures determined from the
@rsted_08i_MF3 model, 83.4% lie within 0.5° of the dip
equator, 13.7% lie between 0.5 and 1.0, and 2.9% lie out-
side the range of 1.0°. These percentages are averages over
all states of the magnetosphere and ionosphere. Figure 7
shows frequency of occurrence of a particular deviation of
the EEJ from the dip equator for various degrees of mag-
netic activity determined from Kp and Dst indices. The
minor fluctuations in the Gaussian distribution for the high
activity bins may just be due to lack of data. During high
magnetic activity the location of the EEJ is just as likely to
be 0°. The conclusion drawn is magnetic activity is not the
reason for the outliers (tracks with EEJ location greater than
1 degree).

7. Time of day and season

There are known seasonal and daily variations in the
amplitude of the EEJ (see for example the reviews, On-
wumechilli (1997), Forbes (1981) and the series Fam-
bitakoye et al., 1976/(1-4)). Is the position of the EEJ
also likely to deviate from the dip equator at a specified
time of day or a specified season? Figure 8(A) shows the
mean position of the EEJ signature for the specified local
time (centred on the hour) and time of year split into two-
month segments. There is a clear annual variation in the
position of the EEJ: its position is more southern in Decem-
ber/January and zero or slightly more northern in June/July
months. Fewer deviations from zero occur at local times
1200-1400 for the June/July months. This is also shown by

Liihr et al., 2004. Their figure 4 shows the distribution of
current density (calculated from CHAMP scalar measure-
ments for passes with Kp < 2) with northern hemisphere
seasons (winter being December/January). The variation of
current density is greatest in December/January. Their fig-
ure 5, bottom, shows the distribution of peak current density
with distance from the dip equator. When the current den-
sity is maximised the position of the peak current density is
clearly more southern.

What is more interesting is the variance about the mean
shown in Fig. 8(B). The variance is greater in the June/July
months than in December/January months. As expected,
because the EEJ is smaller in amplitude in the morning and
afternoon hours, thus more susceptible to outside influences
(see the reviews cited above) the determination of the posi-
tion of the EEJ should be more variable than during midday
hours. This susceptibility to outside influences is also ap-
parent in the severe reduction in the number of passes which
contain an EEJ signal in the morning and evening hours.

Figure 8(D) shows the distribution with Kp. As noted
before there does not appear to be any correlation with
Kp. Figure 8(C) shows the Dst distribution. This shows
a weak correlation between mean Dst and the mean po-
sition. When the mean Dst is more positive (few or no
large storms) there is a greater tendency for the EEJ to be
located in the north. What could this mean? It is sug-
gested that the ring current has an annual variation (Malin
and Isikara, 1976; Butcher and Schlapp, 1992; Stening and
Winch, 1987; McCreadie, 1998). Perhaps removal of the
ring current field (the major component of the LW filter)
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here has not been performed correctly. McCreadie (1998)
and Butcher and Schlapp (1992) noted that the annual varia-
tion was composed of two terms; one highly correlated with
ring current motion and another term that is very highly cor-
related with the amplitude and phase of the annual variation
of the H component of the equatorial station, Huancayo.
The source of this component has yet to be determined.
However, the cause of this term may be the reason for the
annual variation in the position of the EEJ.

8. Conclusions

Differences between different main field models show for
certain regions a long wavelength signature with amplitude
close to 5 nT in the core field component. This suggests
that for certain regions a direct comparison between scalar
geomagnetic measurements that use different models to re-
move the main field may not be reasonable. We also show
that some lithospheric anomalies on and near the dip equa-
tor have a latitudinal form similar to that of the EEJ.

A comparison of the dip equators from two core field
models suggests that the intrinsic error in the determination
of the dip equator latitude from a model, including secular
variation terms, is about 0.027° (£3 km). Using one of the
models to determine the possible latitudinal error involved
in determination of the variation with altitude of the EEJ
we found 0.06° (6.8 km) for a 16 km altitude underesti-
mation. Thus, the maximum possible error in the location
of the EEJ imposed by using the models and/or assuming an
incorrect altitude, of at most 16 km, for the EEJ is £9.8 km
(0.088° at 108 km latitude). This is well within the required
0.1° resolution for comparisons with ground measurements.

Using geomagnetic scalar measurements from the
CHAMP satellite, the location of the EEJ signature was de-
termined after subtracting four main field models. We find
that the location can be statistically determined to within
£0.5° of the dip equator irrespective of longitude, time of
the measurement, and degree of magnetic activity, for any
model. However, for certain longitudes the deviation of
the EEJ from the dip equator is as much as 0.8°. These
deviations happen in areas with large lithospheric anoma-
lies on or near the dip equator suggesting that the longitu-
dinal variations in the position of the EEJ are sometimes
caused by the actual model and are not always a physical
phenomenon.

By choosing one model, and assuming it is the best rep-
resentation of the main field, we have also shown that deter-
mination of the EEJ is reduced in the morning and evening
hours and that a morning and evening shift in the location of
the EEJ found using ground data is also seen in the satellite
measurements. There exists a clear annual variation in the
position of the EEJ regardless of longitude; it being south
of the dip equator in December which is in agreement with
the findings of all previous studies without exception.
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