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Rocket observation of energetic electrons in the low-altitude auroral
ionosphere during the DELTA campaign
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This paper reports on properties of energetic electrons observed by the Auroral Particle Detector (APD) on
board the sounding rocket S-310-35, which was launched from Andgya Rocket Range, Norway, at 0033:00
UT on 13 December 2004 during the DELTA campaign. The APD was designed to measure energy spectra of
energetic electrons in the range of 3.5 to 65 keV every 10 ms using avalanche photodiodes. The measurement
was done at altitudes of 90-140 km (apogee height of the rocket flight), which corresponded to the collisional
interaction region of precipitating electrons with the atmospheric constituents. The overall profile of energetic
electron precipitations was consistent with auroral images taken from the ground. The downward fluxes almost
always exceeded those of upward electrons, and the ratio of downward to upward fluxes increased with energy
and also with altitude. This is reasonably understood in terms of the effect of collisions between the energetic
electrons and the atmospheric constituents. An interesting feature in energy spectra of precipitating electrons
is the existence of non-thermal electrons at higher energies, regardless of inside or outside of auroral arcs. In
order to predict the incident downward spectra at the top of the atmosphere, we have applied an analytic method
of Luhmann (1976) to evaluate the collisional effect on the electron spectra. As a result, most of the observed
energy spectra of precipitating electrons are well expressed by kappa distributions with the thermal energy of
a few hundreds of eV and kappa of 5-8, while the spectrum inside a strong arc is better fitted by the sum of a
Maxwellian distribution on the lower energy side and a power law at higher energies. To the authors’ knowledge,
this is the first direct and reliable measurement of energy spectra of electrons in the 10-keV energy range in the

auroral ionosphere.
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1. Introduction

It is generally accepted that the energy spectra of elec-
trons causing discrete arcs can be expressed by accelerated
Maxwellian distributions, while those for diffuse aurora are
simple Maxwellian distributions. Actually, however, a de-
viation from the Maxwellian distribution (either accelerated
or non-accelerated) more or less exists at higher energies
(for example, see figure 2 of Morooka et al., 2002), though
not fully studied. Characteristic features of the energy spec-
tra of auroral electrons are considered to provide informa-
tion on the source distribution functions in the plasma sheet.

On the other hand, Christon et al. (1988) reported that
energy spectra of electrons in the plasma sheet can be well
described by kappa distribution functions, of which the
lower-energy and higher-energy parts are represented by
Maxwellian (thermal) and power-law (non-thermal) distri-
butions, respectively. Hoshino et al. (2001) showed the ex-
istence of suprathermal electrons, though the energy range
was limited to below 40 keV, in association with magnetic
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reconnection. Mozer et al. (2002) also showed the enhance-
ment of electrons of a few hundred keV near the magnetic
diffusion region. Although only a limited number of studies
have been made, electron measurements covering the ther-
mal to non-thermal energy range are considered to provide
an important clue in investigations on the heating and ac-
celeration processes of electrons in the plasma sheet. The
thermal to non-thermal transition energy exists at several
keV to several tens of keV.

The purpose of the present paper is to examine the en-
ergy spectra of electrons precipitating into the auroral iono-
sphere in this transition energy range, based on the rocket
observation which was carried out during the DELTA cam-
paign (Kurihara et al., 2006). The main objective of the
DELTA campaign is to study dynamics of the low-altitude
thermosphere during the energy input due to auroral parti-
cle precipitations. During this campaign, a sounding rocket,
S-310-35, was launched from Andgya Rocket Range, Nor-
way (69.17 N, 16.01 E in geodetic; 67.24 N, 113.29 E in
geomagnetic), at 0033:00 UT on December 13, 2004. The
Auroral Particle Detector (APD) was installed on board the
S-310-35 in order to measure energy spectra of precipitating
electrons in the energy range of 3.5 to 65 keV every 10 ms
and to provide information on the energy input to the upper
atmosphere. The other onboard instruments measured vi-
brational and rotational temperatures of nitrogen molecules,
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auroral 557.7 nm intensity, and electron density and tem-
perature. In parallel with the sounding rocket experiment,
ground-based observations were made: Fabry-Pérot inter-
ferometer in Skibotn and Kiruna for measuring the neutral
wind, and EISCAT radar in Tromsg, Kiruna, and Sodankyld
for measuring the ion drift and temperature as well as the
electron temperature and density (representative examples).

The apogee height of the rocket was 140 km, there-
fore the altitude range where the measurement was per-
formed corresponded to the collisional interaction region
of precipitating electrons with the atmospheric constituents.
This effect needs to be taken into account in order to pre-
dict the incident precipitating flux at the top of the at-
mosphere. Different methods and algorithms to solve the
electron transport equation in the upper atmosphere have
been reported: such as Monte Carlo simulations (Berger et
al., 1970; Solomon, 1993, 2001), two-stream calculations
(Banks and Nagy, 1970; Nagy and Banks, 1970; Banks
et al., 1974; Stamnes, 1980, 1981), and angular depen-
dent or multi-stream calculations (Strickland er al., 1976;
Stamnes, 1980; Porter et al., 1987; Lummerzheim et al.,
1989). Results of these electron transport calculations have
been applied to estimate auroral optical emissions and/or
energy spectra of upward electrons above the atmosphere
(Lummerzheim et al., 1989). Luhmann et al. (1976) also
described a crude method for predicting variations of the
energy spectrum of >1 keV auroral electrons during pre-
cipitations into a plane parallel atmosphere with a uniform
magnetic field. We apply this method for the prediction
of incident energy spectra of electrons, since the electron
transport through the atmosphere can be solved analytically
with reasonable assumptions.

The following section describes the instrumentation of
the APD on board the S-310-35 rocket. Section 3 describes
the auroral condition and the observational result of the
APD during the rocket flight, while in Section 4, the energy
spectra at the top of the atmosphere are discussed, with
Section 5 summarizing this paper.

2. Instrument Description

The Auroral Particle Detector (APD) on board the sound-
ing rocket S-310-35 was designed to measure energy spec-
tra of electrons ranging from 3.5 keV to 65 keV every
10.24 ms. A key technology in this instrument is to adopt
avalanche photodiodes as electron detectors. The avalanche
photodiode is a kind of p-n junction semiconductor that
has an internal gain due to the avalanche amplification of
electrons and holes in the strong electric field within its de-
pletion region. Compared with conventional solid-state de-
tectors (SSDs) which are widely used for measurements of
high-energy particles, it can drastically improve the energy
resolution in a 10-keV energy range and decrease the lower
energy limit of detectable electrons down to several keV
(Ogasawara et al., 2005, 2006).

Four avalanche photodiodes were installed in this instru-
ment, as shown in Fig. 1. The output charge pulse from
each avalanche photodiode is converted to the voltage pulse
by a preamplifier, followed by a shaping amplifier and A/D
conversion for pulse height analysis. The data accumulated
for 10.24 ms were transmitted to the ground through the
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Fig. 1. Schematic diagram of the Auroral Particle Detector onboard the

S-310-35 rocket. The system consists of the two parts: the sensor part
(APD-S) and the electronics subsystem (APD-E). Sample trajectories
of incoming electrons are also shown in the APD-S.
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Fig. 2. Calculated transmission curves for four detectors. Calculated
values (solid lines) were smoothed with the dashed curves. Vertical
lines in the panel of Detector 2 and Detector 3 indicate separations of
energy channels.

PCM telemetry. In order to reject incoming photons, trajec-
tories of incident electrons were deflected using a homoge-
nous magnetic field supplied by a permanent magnet. Since
electron trajectories are different depending on their ener-
gies, four avalanche photodiodes respectively cover their
OWn energy ranges.

Figure 2 shows calculated transmission efficiencies for
four detectors, in which the peak for each detector is nor-
malized by a smoothed curve. There is an energy gap (5.2—
6.9 keV) between Detector 1 and Detector 2 due to charac-
teristics of the magnetic field and the detector layout. The
avalanche photodiode itself also has the capability to re-
solve the energy of incident electrons. Consequently, the
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Fig. 3. In the left panel, the altitude profile of the S-310-35 rocket is shown. The APD measurement was performed during a thick solid curve. Marks
of A—F show points of the energy spectra discussed in this paper. The right panel shows an auroral image in 557.7 nm taken from Kilpisjadrvi at 100

s after the launch. The position of the rocket is shown by a red square.

Table 1. Energy channels of the APD onboard S-310-35. Center energies
are calculated taking into account the response curves as shown in
Fig. 2. Note that there are overlapping energies between neighbor
channels due to the limitted energy resolution of the APD.

Detector Center energy Energy range
No. keV keV

1 4.3 3.5-5.2

2 8.5 6.9-9.7

2 10.4 8.9-12.0

2 13.3 11.1-15.8
3 18.8 14.7-24

3 28.6 21-36

4 45.1 25-65

whole energy range is divided into seven energy channels
(Table 1).

The total energy geometrical factor of the spectrometer is
calculated to be 6.9 x 1073 cm? str keV. The field of view
covers 22° for the azimuthal angle and 8° for the elevation
angle (i.e. pitch angle resolution of this instrument), whose
center is directed perpendicularly to the rocket spin axis.
The angle between the geomagnetic field and the rocket
spin axis during the flight was about 20°, and thus this
instrument covered pitch angles of 70-110°.

3. Observation
3.1 Overview

The S-310-35 sounding rocket was launched to the north-
ward from Andgya Rocket Range, Norway (69.17 N, 16.01
E in geodetic; 67.24 N, 113.29 E in geomagnetic), at
0033:00 UT on December 13, 2004, into the auroral precipi-
tation region. The left-hand panel in Fig. 3 shows an altitude
profile of the rocket trajectory with time. The apogee of the
rocket flight was 140 km at 184 s from the launch, while
the total flight time was 350 s. The APD electron measure-
ment was carried out at altitudes of 90—-140 km, as shown
by a thick curve. Throughout the flight, the background
noise was negligibly small, as had been intended in the in-
strument design. Marks of A through F represent times for
detailed investigation of the energy spectra. The right-hand
panel in Fig. 3 shows an auroral image of 557.7 nm taken
from Kilpisjarvi (69.0 N, 20.9 E) at 100 s (0034:40 UT)
from the launch. Two major arcs can be seen around the

rocket (marked by the red square), projected at an altitude
of 100 km along the geomagnetic field lines. These two
arcs are passed through by the rocket, as shown by arrows
in the figure. The second arc looks brighter than the first
one. Two arcs crossed by the sounding rockets are schemat-
ically shown in the left panel from 100 s to 140 s. After the
two arcs were passed through the rocket trajectory, no dis-
crete arc was found near the rocket. All images taken from
Kilpisjéarvi during the flight are shown in figure 1 of Kuri-
hara et al. (2006).

Figure 4 shows an energy-time spectrogram of all mea-
sured electrons with pitch angles of 70-85° and 95-85° dur-
ing the whole flight. Data of the pitch angle range of 85-95°
are omitted to remove artificial noises possibly due to NTV
(Nitrogen Temperature Instrument) (Kurihara et al., 2006).
Each spectrum is averaged over one spin period (~0.9 s).
Intense precipitations can be seen between 98 s and 139 s.
After this time, the electron flux became weaker. In more
detail, the region where intense fluxes are seen is largely
divided into two parts (between 98 s and 115 s, 125 s and
139 s), though the flux intensity fluctuates with time. The
latter enhancement of the electron flux seems more intense.
These features are quite consistent with those of the auro-
ral arcs passing through the rocket in the images taken from
Kilpisjérvi.

Figure 5 shows profiles of downward and upward elec-
tron fluxes at four lower-energy channels. The red and blue
solid lines show electron fluxes of the downward (70-85°)
and upward (95-110°) pitch angles, respectively. First of
all, the difference in the precipitating fluxes between the
first and second arcs is clearly seen, and the fluxes corre-
sponding to the second arc are almost tenfold larger than
those of the first arc. The maximum flux at the lowest en-
ergy channel reached close to 10% (cm? s str keV)~! during
the strong precipitation. Simultaneously, some fine struc-
tures are also seen during this time period, probably cor-
responding to temporal and/or spatial variations of auroral
arcs. Thereafter, in the weaker precipitation, the differential
fluxes stayed in the range of 10°-10° (cm? s str keV)™! on
the average. It is also clearly seen that the downward fluxes
exceeded the upward ones almost throughout the flight.
This fact indicates that the observed electron fluxes remain
anisotropic in spite of frequent collisions in the dense atmo-
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Fig. 4. Energy-time spectrogram of electrons during the flight of S-310-35 averaged over one spin period (~0.9 s). The color bar gives differential
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Fig. 5. Temporal profile of differential fluxes at four energy channels
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sphere even at these low altitudes. The more frequent the
collisions become, the more isotropic the electron distribu-
tion would be under a condition of the homogeneous mag-
netic field from 90 to 140 km. Figure 6 shows ratios of the
downward to upward electron fluxes at the selected lower-
energy channels. The ratio becomes larger with increasing
energies, and in the lowest energy range (3.5-5.2 keV), it is
highest near the apex (180 s), while the altitude variations at
other higher energies are smaller. These characteristics are
reasonably understood, considering the energy dependence
of the effect of the atmospheric absorption; higher-energy
electrons can penetrate into the lower-altitude atmosphere
with less energy loss.

Figure 7 shows energy spectra averaged over ten spin pe-
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Fig. 6. Ratios of the downward to upward fluxes in four energy ranges (see
the caption in Fig. 5). A horizontal dashed line in each panel represents
the geometric mean of the ratio.

riods at the observation points from A to F, where solid and
dashed curves show energy spectra of the downward (70-
85°) and the upward (95-110°) pitch angles, respectively.
Thin dotted lines denote one count levels (the lowest level
for detection) during the integrated time. Here, A (104—
113 s, 113 km) and C (130-139 s, 129 km) represent the
points inside the two auroral arcs: A indicates the first arc
and C indicates the second one. B (113-122 s, 119 km) is
chosen as a point between the two arcs. D, E, and F repre-
sent the weak precipitation region far away from the arcs: D
(174-182 s, 140 km) corresponds to the apex of the flight,
and E (234-243 s, 126 km) and F (252-260 s, 116 km) are
chosen from the downleg of the rocket. The fluxes around
the auroral arcs (A to C) are significantly more intense than
those away from the arcs (D to F). It is evident that the
downward fluxes always exceed the upward ones. The ef-
fect of the atmospheric absorption is more significant as the
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Fig. 7. Observed downward (solid) and upward (dashed) electrons averaged over ten spin periods. Thin dotted lines corresponding to ‘1 count’ indicate

the one count level during the integrated period.

altitude decreases. It is also seen in all of the cases that the
energy spectra show the existence of non-thermal electrons
at energies higher than 10 keV. As mentioned before, the
energy spectra of precipitating electrons have the informa-
tion on their original spectra in the source region and the
effect of the atmospheric absorption. Further discussion on
the energy spectra is given in the next section.

4. Discussion
4.1 Energy spectra of the downward electrons
Because the observation was done in the ionospheric
E-region, collisional interactions between the precipitating
electrons and the atmospheric constituents were quite fre-
quent. MacDonald and Walt (1961) derived a transport for-
mula from the time independent Fokker-Planck equation
that describes the transport of a uniform primary electron
beam of infinite extent in a plane scattering medium and a
diverging magnetic dipolar field. The Fokker-Planck equa-
tion is derived from the Boltzmann equation and their result
is expressed in the form:

of . v 0
Mv8x+2(Re+r)(1 “)au
10 [(Ax)d 1 9 [(AE
:58_[< u>_f]___[< >f](1)
% At Ou pdE | At

Two approximations are then made in Eq. (1). Firstly, pitch
angle scatterings of the primary electrons (the first term on

the right hand) are neglected. Especially in the case of pre-
cipitating electrons of >1 keV, collisions in the atmosphere
are due mainly to ionizations of the atmospheric atoms or
molecules. The ionization causes little scattering in pitch
angles of the incident electrons, and hence the pitch angle
scattering can be reasonably neglected. Secondly, a geo-
magnetic mirror force (the second term on the left hand) is
neglected, because the magnetic field is almost constant in
the altitude range under consideration (90-300 km). These
assumptions can simplify the electron transport equation
into the first-order partial differential equation as follows;

of 10 [(AE)
“”a—x—‘;a—g[m f]’

(@)

where f = f(u,r, E) is the number of electrons per unit
volume, unit pitch angle, and unit energy, p is cosine of
the pitch angle, v is the electron velocity corresponding to
its energy, r is the vertical position from the surface of the
earth, and p is the mass density of the atmosphere. The
symbol x is called atmospheric depth in the unit of g/cm?,
as defined by

x(r) = / p(r)dr. 3
Here, r, represents the top of the atmosphere, where effects
of the atmospheric loss are negligible. We have applied the
NRL MSIS-E-00 atmospheric model for the mass density
in Eq. (3). If the particle range in the atmosphere is given
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by an analytic form in Rees (1963), Eq. (2) is solved in
the way of Luhman (1976). If the differential flux at the
top of the atmosphere (defined here as 300 km from the
ground) is defined as Jy(E) (electrons/cm? s str keV), the
electron distribution f (i, x, E) at the atmospheric depth x
is written in the form (MacDonald and Walt, 1961),

27/ ENOTS
S, x, E) = o (E) Jo (§), €]
where £ is defined in the form,
1 /x 1/1.75
S(Mv-X’E): |:Z <;+AE175>:| . (5)

The constant A is defined in Rees (1963) as A = 4.57 x
107°. Figure 8 shows the energy at the altitude of 300 km
versus several altitudes calculated by Eq. (5). It is seen that
an altitude range from 100 km to 140 km has a significant
effect on the energy of precipitating electrons under 10 keV
in terms of the energy loss by collisions with atmospheric
atoms. The derivation of Eq. (4) is given in the Appendix.
The distribution f can be converted to the flux J with
adjusting its unit to (electrons/cm? s str keV),

_ v
S 2wt (w)”

(6)

where #(u) is the proportion of the solid angle that is oc-
cupied by the unit angle around u to the whole downward
hemisphere (2rr). Then, we can fit J to the measured spec-
trum with parameters of Jy, which stands for the incident

100

10

Energy [keV] at 300km

100
Energy [keV] at Lower Altitudes

Fig. 8. Relation of energies of precipitating electrons between 300 km
and lower altitudes calculated by Eq. (5) for the pitch angle of 78°.
The altitude of 300 km is assumed to be the top of the atmosphere.
The atmospheric depth is calculated from the atmospheric model NRL
MSIS-E-00.
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spectrum of the precipitating electrons at the top of the at-
mosphere.

We have applied three types of distribution functions in
order to fit the observational data: Maxwellian, kappa, and
power law distribution. The Maxwellian distribution is ex-
pressed by the following form,

E
Jo x E -exp (—E—>
T

The kappa distribution exhibits a long tail which strongly
deviates from a Maxwellian distribution (thermal) at higher
energies. The tail is asymptotically modeled by the power

(M

law distribution (non-thermal) with its power of k. The
kappa distribution is expressed in the form,
E —(k+1)
Joo<E‘<1+—> . )
kE T

For higher energy electrons (typically over 10 keV), a
power law distribution is sometimes applicable, as defined
in the form,

Jox E77, (€))

where y denotes the power of the spectrum.

In Fig. 9, the observed downward spectrum for case
A (104-113 s) is fitted by both the Maxwellian distribu-
tion and the kappa distribution for comparison. The solid
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Fig. 9. Result of fitting by a kappa distribution (red) and a Maxwellian
distribution (blue). The solid curves show the fitted spectra to the
observed one, and the dashed curves show the anticipated flux at the
top of the atmosphere. The difference between the solid and dashed
curves was due to the atmospheric absorption. The calculated flux at
300 km may not be meaningful at the energy range to the left of the
dashed line (see text).
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Fig. 10. Fitted energy spectra of downward electrons close to the arcs. The solid curves show the observed data, while the dashed curves are the assumed
spectra at the top of the atmosphere (300 km). The gray part of the dashed curve may not be meaningful. The border of the gray part corresponds to

9.8keVin A, 7.8 keV in B and 6.2 keV in C (see Fig. 8).

curves show the fitted spectra to the observed data, while
the dashed curves show the assumed spectra at the top of the
atmosphere (altitude of 300 km). The blue and red curves
show the Maxwellian and kappa distributions, respectively.
The Maxwellian distribution with a thermal energy of 1.5
keV is well fitted in the lower energy part (<15 keV), but
in the higher energy part, drops down steeper than the ob-
served spectrum. Instead, the ‘non-thermal’ tail is well fit-
ted by the kappa distribution function, which can also be
fitted to the energy distribution in the whole energy range.
In this case, the thermal energy of the kappa distribution is
270 eV and the derived « is 8.7. The difference in the flux
between 300 km and the observational altitude becomes
less as the energy increases. This is reasonably understood
in terms of the atmospheric absorption depending on the
electron energy. Precipitating electrons lose their energies
through the ionization of the atmospheric constituents dur-
ing the transport from the top of the atmosphere to the ob-
servation point. According to the energy-loss calculation
taking account of the pitch angles of 78°, the measured low-
est energy of 4.3 keV at the observation point corresponds
to 9.8 keV (vertical dashed line) at 300 km (see Fig. 8).
Therefore, the calculation of the fitted spectrum at an alti-
tude of 300 km may not be meaningful below this energy
(dashed line).
4.2 Around the arcs

Figure 10 summarizes the fitting results of energy spectra
observed close to the arcs (A, B, C). The vertical axes
show differential fluxes of the downward electrons, and the
horizontal axes show the electron energy. The spectra were
averaged over ten spin periods to obtain sufficient counting
statistics in higher energy channels. The dashed curves
show the anticipated spectra at the top of the atmosphere,
while the solid lines are the fitted spectra at the altitude of
the observation. The gray part of each fitted spectrum for
the top of the atmosphere may not be meaningful because

of the atmospheric energy loss, as explained before. As
was discussed in the former section, the kappa distribution
function (E;r = 270 eV and ¥« = 8.7) is drawn in case
A. In case B, between two arcs, the thermal energy of the
kappa distribution is 660 eV and « is 8.3. The flux in B was
relatively lower than those inside the auroral arcs (A and
C). In case C, the kappa distribution could not be well fitted
because of an abrupt bending in the observed spectrum
around 20 keV, and a two-component distribution function
is more applicable. For this case, the sum of a Maxwellian
distribution (Eq. (7)) and a power law distribution (Eq. (9))
is chosen instead. The thermal energy of the Maxwellian is
fitted to 1.4 keV. The spectrum above the energy of 20 keV
is well fitted by the power law, whose power is 4.3.

The distribution functions of electrons above the discrete
aurora are generally fitted by the accelerated Maxwellian
distributions, suggesting the existence of a parallel elec-
tric field in a higher-altitude acceleration region. In the
present observation, we have fitted non-accelerated distri-
butions (Kappa or Maxwellian) to the observed spectra, but
there is a possibility of the parallel acceleration below sev-
eral keV. However, it is difficult to determine the parallel
acceleration potential uniquely, because the measured en-
ergy range is higher than usual acceleration energies (< sev-
eral keV), and any acceleration energy near and below the
measured energy range could be fitted to the observed spec-
trum. Moreover, the atmospheric loss significantly deforms
the distribution function at energies lower than several keV
(see Fig. 8), therefore the peak would become obscure at
the rocket altitude.

4.3 Far from the arcs

Figure 11 shows the electron spectra observed far away
from the arcs, which were also averaged over ten spins. As
discussed earlier, the precipitation became relatively weak
in this region. Similar to the cases around the arcs, non-
thermal tails in the energy spectra are clearly seen, so that
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Fig. 11. Fitted energy spectra of downward electrons far away from the arcs, in the same format as Fig. 10. The border of the gray part corresponds to

54keVinD, 6.6 keV in E and 8.6 keV in F (see Fig. 8).

the kappa distribution functions are valid in the whole en-
ergy range. In case D, the thermal energy of the kappa dis-
tribution is 720 eV and « is 6.0. This case was observed
near the apex, and the effect of the atmospheric absorption
would be the smallest. In case E, the thermal energy of the
kappa distribution is 100 eV and « is 5.0. In case F, the
thermal energy of the kappa distribution is 410 eV and « is
6.4. The value of « is a little smaller in D, E, and F than in
the cases A and B. Note, however, that the parameters in D,
E, and F are quite similar to those of the plasma sheet elec-
trons reported by Christon et al. (1988), and it is reasonable
since the magnetic field lines of the nightside auroral region
are linked to the plasma sheet.

5. Concluding Remarks

The Auroral Particle Detector was installed on the sound-
ing rocket S-310-35 launched from Andgya in Norway on
December 13, 2004, and successfully measured auroral
electrons of 3.5-65 keV. A key technology in this instru-
ment is to adopt avalanche photodiodes as the electron de-
tectors. Compared to conventional SSDs, the utilization
of avalanche photodiodes (APDs) can drastically improve
the energy resolution in a 10-keV energy range and de-
crease the lower energy limit of detectable electrons down
to several keV. Moreover, the reliability of the detection
efficiency in this energy range is significantly improved.
This experiment is the world’s first trial of applying the
APDs to the measurement of low-energy electrons in space,
and the results have adequately demonstrated the effective-
ness of the APDs. The measurement was made at the alti-
tude of 90-140 km, where collisions between the precipi-
tating electrons and the atmospheric constituents occur fre-
quently. The effect of the atmospheric absorption is evident
in the ratio of the upward to the downward fluxes. There
were strong precipitations from 100-104 s from the launch,
which agreed well with the ground-based auroral observa-
tions. The energy spectra of the downward electrons are dis-

cussed, considering the effect of the atmospheric absorption
with the method of Luhmann (1976). Around auroral arcs,
non-thermal tail features in the electron spectra were found,
and the kappa distribution functions are well fitted to the
spectra. The two-component distribution function (the sum
of a Maxwellian distribution and a power law) was identi-
fied in one case (C in Fig. 10). In cases far from the arc,
non-thermal tails are also evident and the distribution func-
tions are well fitted by kappa distributions (k = 5 ~ 8).
The kappa distribution is consistent with the spectra of the
plasma sheet electrons reported in Christon et al. (1988).
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Appendix. Derivation of Eq. (4)

Equation (2) is derived from Eq. (1) with two assump-
tions: the magnetic converging term is neglected, and pitch
angle scattering is neglected (i.e. i maintains constant).
Then, in Eq. (2), the Fokker-Planck coefficient (AE)/At
can be expressed in terms of the stopping power dE/ds
along the electron trajectory s (g/cm?),

(AE) dE
= vo—o. A.l
At P ds (A-D
If G is defined as
dE
G=v—f, (A.2)
ds

Then, Eq. (2) is equivalent to a simple first-order partial
differential equation:
oG

dE 0G
n o _
0x

- = A3
ds 0F (A3)
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[ is constant by the assumption mentioned above, so the
characteristic curve of Eq. (A.3) is derived as
dx dE

—_— = (A4)
W (dE/ds)

which can be integrated using a constant of integration C,

X / dE c
w o J dE/ds)
Considering that G is an arbitrary constant from the charac-

teristic curve, a general solution for Eq. (A.3) is then given
by

(A5)

G =9¢(C),

where ¢ is an arbitrary function. From the definition by
Eq. (A.2), f can be obtained:

(A.6)

dE
flu,x, E) =¢(C)/ (”K) (A7)
The energy spectra at the top of the atmosphere (x = 0)
is given by Jo(E) in electrons/(cm? s str keV). Assuming
an isotropic distribution over the downward hemisphere, f
and Jj are related by

! 2
0
that gives a boundary condition. The integral in the second
term of the left part in Eq. (A.5) resembles the well-known
definition of the range integral for charged particles in mat-
ter:
/0 dE
£, (dE/ds)

where R(E)) is the range of a particle of initial energy Ej.
Rees (1963) expressed an analytic form of the empirical re-
lationship between the range of electrons in the atmosphere
and the initial energy:

= R(Eo), (A9)

R(E¢) = AE}™ gem™, (A.10)

where A = 4.57x107°,

expressed by
0
dE
[ s = AE
£, (dE/ds)

With substituting Eq. (A.11) into Eq. (A.5), a new variable
& that equals to the energy E at the top of the atmosphere
(x = 0) can be defined in terms of C

Using Eq. (A.10), the integral is

175 (A.11)

1/1.75
§(p,x, E) = [—C] , (A.12)

A

which gives the Eq. (5). The variable £ can be used to
express ¢ (C).

dE
¢(C) = 2ﬂg(§)fo(5)~ (A.13)
Then, the solution for f is given in the form
2rndE/d
Flx, By = ZAEIEE) (A.14)

vdE /ds(E)
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which satisfies the boundary condition of Eq. (A.8). The
function d E /ds is obtained by differentiating both sides of
Eq. (A.5) with respect to E. In this case where the definition
in Eq. (A.11) is employed, dE /ds is given as

-0.75
Y

1.75A°

where the variable y denotes an arbitrary energy.
Thus, substituting Eq. (A.15) into Eq. (A.14) gives

Eq. (4).

dE
%(y) =- (A.15)
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