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The contribution of sprites to the global atmospheric electric circuit
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The global static electric field in the global atmospheric electric circuit resulting from mesospheric sprite
discharges is inferred from a coupled model for the global static and dynamic electric fields derived from
Maxwell’s equations. It is found that the global atmospheric electric field from individual sprites is <∼ 44 mV/m,
which can be measured with conventional ULF/ELF radio wave antennas at frequencies <∼ 4 Hz.
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1. Introduction
Sprites are transient luminous events in the mesosphere

(Lyons, 1996; Sentman et al., 1995; Boeck et al., 1995;
Franz et al., 1990), which constitute a new element in the
global atmospheric electric circuit (Su et al., 2003; Sato and
Fukunishi, 2003; Pasko et al., 2002; Rycroft et al., 2000).
The impact of sprites on the global circuit has not yet been
quantified, even though the quasi-static (DC) atmospheric
electric field plays an important role in the global climate
system (Carslaw et al., 2002, and references therein). The
global DC atmospheric electric field ∼ 150 V/m is mainly
maintained by thunderstorm electric fields (Bering et al.,
1998; Hays and Roble, 1979; Roble and Hays, 1979). These
electric fields exhibit a∼20% diurnal variation with Univer-
sal Time, which is denoted the Carnegie curve (Füllekrug
et al., 1999; Holzer and Deal, 1956; Torreson et al.,
1946; Hoffmann, 1923). The contribution of sprites to the
global DC atmospheric electric field may be similar to the
contribution from particularly intense lightning discharges,
∼5–120 mV/m (Füllekrug, 2004). The main difficulty in
measuring the contribution of sprites to the global DC at-
mospheric electric field is the inadequate sensitivity of or-
dinary electric field mills, >∼ 1 V/m, such that other mea-
surement technologies need to be considered. This study
proposes a new methodology to infer the global DC at-
mospheric electric field of individual sprites from conven-
tional global dynamic (AC) electric field measurements in
the Ultra-Low and Extremely-Low Frequency (ULF/ELF)
range made with radio wave antennas.

2. A Coupled Model for the Global DC and AC
Electric Field

The global DC atmospheric electric field is derived from
a solution of Maxwell’s equations in a spherical geometry
(Uman, 1974). For any charge Q in the atmosphere, specif-
ically a sprite, the resulting global DC atmospheric electric
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field Ez points towards the centre of the Earth

Ez = Q

4πε0a2
, (1)

where a = 6371 km is the Earth’s equivolumetric radius
and ε0 is the electric permittivity. In this approach, the Earth
and the ionosphere are considered to be concentric spherical
shells. If a charge is deposited on the Earth’s surface (e.g.,
by a lightning discharge) or delivered to the ionosphere
(e.g., by a sprite), the potential difference between the Earth
and the ionosphere (Ve − Vi ) changes and the electric field
adjusts to the new charge configuration according to Eq. (1).
The sprite charge is created instantaneously through quasi-
static heating of the mesosphere by the causative lighting
discharge. The charge is subsequently delivered to the iono-
sphere such that no mesospheric charge configuration prior
to the sprite needs to be considered. The global AC electric
field is derived from a solution of Maxwell’s equations in
a spherical geometry (Sentman, 1996, Bliokh et al., 1980,
p. 8–19), but it requires a conductivity model of the iono-
sphere (Füllekrug, 2005; Füllekrug et al., 2002; Füllekrug,
2000; Sentman, 1990). The description of the global AC
electric field with a weighted sum of spherical harmonic
functions results in the short pulse approximation of the
normal mode expansion with frequency dependent iono-
spheric heights

EAC(ω, ϑ) = Ql

4πε0a2h1(ω)

∞∑
n=0

(2n + 1) ωPn(cosϑ)

(ω − ωn)(ω + ω∗
n)

.

(2)
In this approach, the electric field spectrum EAC(ω, ϑ) is
related to the intensity of the sprite, the geometric spreading
of the radio wave and the ionospheric transfer function. The
intensity of the sprite is characterised by the charge moment
change Ql (Cummer and Füllekrug, 2001; Füllekrug et al.,
2001; Pasko et al., 1998; Cummer et al., 1998), which de-
scribes the amount of charge Q flowing within the body of
a sprite of length l/2, and therefore includes the image cur-
rent in the conductive ionosphere. The geometric spread-
ing of the radio wave is described by the Legendre poly-
nomials Pn(cosϑ) of degree n (an integer) at an angular
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distance ϑ from the sprite on a spheroidal Earth with radius
a. The ionospheric transfer function is characterised by the
frequency dependent conduction boundary h1(ω) ≈ 50 km,
where the displacement and conduction currents become
equal, and the complex modal frequency

ωn =
√
n(n + 1)

c

a

√
h1(ω)

h2(ω)

[
1 − i

π

4

(
s1

h1(ω)
+ s2

h2(ω)

)]
(3)

(Füllekrug, 2000; Sentman, 1990; Greifinger and Greifin-
ger, 1978), where h2(ω) ≈ 100 km is the ionospheric height
where the radio waves are reflected, s1 ≈ s2 ≈ 2.5 km are
scale heights, which determine the exponential increase of
the ionospheric conductivity in the atmosphere, ω∗

n is the
complex conjugate of ωn , and c ≈ 3 · 108 m/s is the speed
of light.
The global AC electric field can be expressed in terms of

the global DC atmospheric electric field

EAC(ω, ϑ) = EDC
l

h1(ω)

∞∑
n=0

(2n + 1) ω

(ω − ωn)(ω + ω∗
n)

Pn(cosϑ)

(4)
by use of Eqs. (1) and (2). The uniform global AC electric
field spectrum (Sentman, 1996, Eq. (38)) is calculated for
a sprite with a charge moment change of Ql = 1 kC·km,
e.g., a vertical charge transport of Q = 20 C in a sprite of
l/2 = 25 km vertical extent (say 60–85 km), by integration
along all source-receiver distances with the Gauss quadra-
ture formula (Kautzleben, 1965, p. 21–24). The resulting
electric field spectrum exhibits a surprising increase at fre-
quencies <∼ 4 Hz, which indicates a quasi-static component
of the AC electric field (Fig. 1). This static term re-
sults from the Legendre polynomial P0 of degree n = 0
in Eq. (4) (P0 ≡ 1 for all source reciever distances ϑ),
which corresponds to a constant electric field all around
the globe. This peculiar property can readily be verified
by calculating the global AC electric field spectrum with-
out the Legendre polynomial P0, i.e., extending the summa-
tion from n = 1 . . . ∞ (Fig. 1). The resulting electric field
spectrum now exhibits a decrease at frequencies <∼ 4 Hz.
It therefore seems possible to infer the global DC atmo-
spheric electric field from an ultra-low frequency approx-
imation of the global AC atmospheric electric field (Wait,
1962, p. 165). The straightforward analytic calculation of
the asymptotic expansion of Eq. (2) for ω → 0 requires the
treatment of the frequency dependence of the ionospheric
heights h1(ω) and h2(ω) (Füllekrug, 2000) in the normal
mode frequency ωn (Eq. (3)), which is beyond the scope of
this paper. Since neighbouring modal frequencies exhibit
little interference with each other, we calculate the asymp-
totic expansion from the mode n = 0, where the Legendre
polynomial P0 and the complex modal frequency ω0 = 0
become the dominant terms such that Eq. (4) reduces to a
basic scaling law

EDC = ω
h1(ω)

l
EAC(ω, ϑ) (5)

for ultra-low frequencies <∼ 4 Hz, i.e., ω � ω1. In this way,
the models for the global AC and DC electric fields are cou-
pled. The major scientific advance of the new AC/DC elec-
tric field model is that it is now possible to infer the global

DC atmospheric field of sprites from conventional AC elec-
tric field measurements by use of the scaling law. Figure 1
illustrates the convergence of the approximated DC atmo-
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Fig. 1. The uniform AC electric field spectrum of a sprite discharge with
a charge moment change of Ql = 1 kC·km exhibits an increase at fre-
quencies <∼ 4 Hz (solid line) which results from the ultra-low frequency
approximation of Eq. (4) with the quasi-static P0 ≡ 1 term. The uniform
AC electric field spectrum calculated without the quasi-static P0 term
does not show this peculiar increase (dashed line). The approximated
DC atmospheric electric field EDC (Eq. (5)) converges at ultra-low fre-
quencies <∼ 4 Hz to a constant electric field value of Ez = 4.4 mV/m
(dashed-dotted line), which is the exact value of the DC atmospheric
electric field (dotted line) inferred from Eq. (1). The inset figure shows
in more detail the frequency dependent deviation of the approximated
DC atmospheric electric field value from the exact value (solid line)
at frequencies of 2.1 Hz (dashed line), 3.6 Hz (dashed-dotted line) and
5.0 Hz (dotted line).

0 2 4 6 8 10 12 14 16 18 20
0 
  
  
  
  

5 
  
  
  
  

10
  
  
  
  

15
  
  
  
  

20

[ d ] = Mm

[ E
D

C
 ] 

=
 m

V
/m

8 8.5 9 9.5 10
20

10

0

10

20

[ d ] = Mm

[ E
D

C
/E

z−
1 

] =
 %

Fig. 2. The approximated DC atmospheric electric field EDC of a sprite
discharge with a charge moment change of Ql = 1 kC·km (Eq. (5))
exhibits a distinct source-receiver distance dependence at frequencies
of 0.1 Hz (solid line), 2.1 Hz (dashed line), 3.6 Hz (dashed-dotted line)
and 5.0 Hz (dotted line). The approximated DC atmospheric electric
field is very close to the exact value Ez = 4.4 mV/m inferred from
Eq. (1) at distances from 8–10 Mm. The inset figure shows in more
detail the accuracy of the approximated DC atmospheric electric field
relative to the exact value at frequencies of 0.1 Hz (solid line), 2.1 Hz
(dashed line), 3.6 Hz (dashed-dotted line) and 5.0 Hz (dotted line).
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spheric electric field EDC (Eq. (5)) toward the exact value of
the global DC atmospheric electric field of Ez = 4.4 mV/m
(Eq. (1)) at ultra-low frequencies <∼ 4 Hz for a sprite dis-
charge with a charge moment change Ql = 1 kC·km. The
ratio of the conduction boundary h1(ω) ≈ 50 km and the
vertical extent of the sprite l/2 = 25 km cancel such that
the scaling law in Eq. (5) may be more roughly approxi-
mated with EDC ≈ ω EAC(ω, ϑ).

3. The Accuracy of the Coupled AC/DC Electric
Field Model

The accuracy of the coupled global AC/DC electric field
model is frequency dependent (Fig. 1) as a result of the fre-
quency dependent conduction boundary h1(ω). The relative
deviation of the approximated global DC atmospheric elec-
tric field (Eq. (5)) from the exact value (Eq. (1)) is ∼1% at
2.1 Hz, ∼10% at 3.6 Hz, and ∼50% at 5.0 Hz (Fig. 1, inset
fig.). A deviation of 50% may seem to be large, but it is
comparable to the uncertainty of the vertical extent of the
sprite l/2, which exhibits a similar variability. In addition,
the quoted accuracies are calculated from the uniform elec-
tric field spectrum, i.e., the integration of individual electric
field spectra over all source-receiver distances. For an indi-
vidual sprite event, the electric field spectrum needs to be
calculated for one individual source-receiver distance. The
source-receiver distance dependence of the approximated
global DC atmospheric electric field is displayed in Fig. 2.
At distances from 8–10 Mm, the approximated DC atmo-
spheric electric fields are very close to the exact value of
the DC atmospheric electric field Ez = 4.4 mV/m inferred
from Eq. (1) for a vertical charge transport of Q = 20 C
within a sprite of l/2 = 25 km vertical extent. The inset fig-
ure in Fig. 2 shows in more detail the relative error of the ap-
proximation which is <1% at 0.1 Hz for all source-receiver
distances, <5% at 2.1 Hz from 8–10 Mm, <10% at 3.6 Hz
from 8–10 Mm and <20% at 5.0 Hz from 8.5–9.5 Mm. It
is evident from these results that the accuracy of the ap-
proximation decreases with increasing frequency (compare
to Fig. 1, inset fig.). However, this effect can be compen-
sated for by choosing a suitable location for the ULF/ELF
radio wave antenna, at 8–10 Mm from the sprites.

4. Summary
The global DC atmospheric electric field of sprites can

be determined from calibrated AC atmospheric electric
field measurements at frequencies <∼ 4 Hz with an error
<∼ 10% at source-receiver distances from 8–10 Mm. The
largest charge moment changes observed on planet Earth
are ∼ 10 kC·km (Füllekrug and Constable, 2000). This ob-
servation places an upper bound on the DC atmospheric
electric field resulting from an individual sprite <∼ 44 mV/m,
or ∼ 3 · 10−4Ez , where Ez ≈ 150 V/m is the total global
DC atmospheric electric field.
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