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Low-frequency variability of a two-layer ocean forced by periodic winds
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To seek the variability of the oceanic subtropical gyre on interannual and longer time scales we have conducted
numerical experiments with a two-layer quasigeostrophic model in a square basin bounded by no-slip walls. We
find that when the amplitude of annually periodic wind forcing is increased, the time series of the total energy
exhibit a transition to chaos in such a manner that the response frequency constitutes a quasi-devil’s staircase
against the forcing amplitude; in particular, the n-cycles appear in descending order of n. The low-frequency
modes may thus be produced by seasonal winds. Since, however, the power of the subharmonics is much weaker
than that with the forcing frequency, their energy would be concealed by noise in the presence of stochastic wind
forcing. The present result is in contrast with the case of the time-independent forcing in which we observe
the intrinsic frequencies probably associated with the wave propagation, frequency locking and a cascade of
period-doubling bifurcations.
Key words: Ocean circulation, dynamics, variability, subharmonics, devil’s staircase, route to chaos.

1. Introduction
This article is intended as a contribution on nonlinear

phenomena of the large-scale oceanic flows. However,
since the regular readers of EPS might be relatively less in-
terested in ocean dynamics, we review first some selected
aspects of nonlinearity pertinent to this subject matter and
then present the motivation of the present study.
1.1 Nonlinear processes in large-scale ocean circula-

tion
A steady state of the subtropical gyre may be described

in the simplest form by the linear theory that consists of a
southward flow in a broad region called the Sverdrup inte-
rior and a frictional western boundary current (WBC) cor-
responding to the Kuroshio and the Gulf Stream; see Hen-
dershott (1987) for a review. The nonlinear effects first con-
sidered in this context are associated with the advection in
the WBC. In the 1960s perturbation analyses with the aid of
numerical solutions confirmed an inertial recirculation and
standing long planetary waves that are attached to the WBC
(cf. Fig. 1); these nonlinear ingredients serve as an addi-
tional dissipation mechanism in the basin-wide balance of
potential vorticity. An attempt was also made to address the
same problem in the opposite direction, by starting with a
purely inertial gyre and then treating friction as a pertur-
bation (Hendershott, 1987). At any rate, the question is
still open as to how such highly inertial boundary layers are
matched with the Sverdrup interior. The nonlinearity in the
WBC has also stimulated the instability theories (e.g. Or-
lanski, 1969) and the separation problems (e.g. Sakamoto
(2002) for a review).

Vortex stretching may be responsible for another type
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of nonlinearity which led to the innovation of the classi-
cal general ocean circulation theory in the 1980s (Pedlosky,
1990). Strong stretching in the real ocean is inferred by
the large displacements of the isopycnal surfaces above the
main thermocline. Such features may be associated with
finite-amplitude planetary waves (Anderson and Killworth,
1979; Willmott, 1985) that may evolve into a planetary
shock front (Dewar, 1991; Sakamoto, 1999). In extreme
cases some isopycnals are exposed to the atmosphere, so
that motions can directly be driven on those isopycnal sur-
faces (Luyten et al., 1983). Even moderate stretching may
create in the Sverdrup interior a region bounded by closed
characteristics in which subsurface motions are induced by
only minute vertical transfers of eddy momentum (Rhines
and Young, 1982). Again, however, we have not completely
settled the question as to whether such subsurface motions
remain uncontaminated by the WBC (Sakamoto, 2001).

Numerical studies of unsteady problems have greatly
widened our perspectives of the oceanic nonlinear pro-
cesses. Since the 1970s, the eddy-resolving calculations
with simple layered ocean models, together with the de-
liberately designed field measurements, have unveiled the
ubiquity of mesoscale eddies in the open oceans and their
roles in controlling the large-scale, long-term mean mo-
tions (Holland and Lin 1975; Holland et al., 1983). In
particular, energy budget analysis, originally developed in
dynamic meteorology (Lorenz, 1955), has been employed
systematically to investigate the degree of barotropic and/or
baroclinic instabilities in various ocean circulation models.
Verifying and seeking better parameterizations of eddy pro-
cesses, e.g. the down-gradient diffusion of potential vortic-
ity, has been one of the important subjects for improving
coarse-grid models (Young, 1987; Gent and McWilliams,
1990).
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Table 1. Some numerical studies of the low-frequency variability of the wind-driven ocean circulation in relation to successive bifurcations.

Study Model Gyre Basin size Boundary Forcing Control parameter

EW (km)× NS (km) condition

CGIL01 barotropic double 2560×2560 free-slip steady forcing magnitude{
VSCD02

SD02
barotropic QG double 1000×1000

no-slip+
free-slip† steady eddy viscosity

JJG95 1.5-layer SW double 1000×2000 no-slip steady forcing magnitude

MH96 1.5-layer QG double 3600×2800 free-slip steady forcing magnitude∗

P02 1.5-layer QG double 3600×2800 free-slip steady biharmonic viscosity

ND01 2-layer SW double 1000×2000 no-slip steady forcing magnitude

DK97

{
1.5-layer QG

2-layer QG
double 1000×1000

no-slip+
free-slip† steady eddy viscosity

BM99

{
1.5-layer QG

2-layer QG
double 3840×3840 no-slip steady eddy viscosity

M00

{
barotropic

2-layer QG
double 1024×2048 no-slip steady eddy viscosity

GFS02 2-mode QG double 1280×2560 partial-slip steady

{
forcing magnitude

deformation radius

KSPB95 barotropic single 2000×2000
no-slip+
free-slip‡ steady eddy viscosity

MB97 barotropic single 1024×512 no-slip steady eddy viscosity

BM97 1.5-layer QG single 800×400 no-slip steady

{
eddy viscosity

deformation radius

BM98 2-layer QG single 800×400 no-slip steady eddy viscosity

S04 2-layer QG single 1000×1000 no-slip steady forcing magnitude

This study 2-layer QG single 1000×1000 no-slip periodic forcing magnitude

CGIL01: Chang et al. (2001), VSCD02: van der Vaart et al. (2002), SD02: Simonnet and Dijkstra (2002), JJG95: Jiang et al. (1995), MH96: McCalpin
and Haidvogel (1996), P02: Primeau (2002), ND01: Nauw and Dijkstra (2001), DK97: Dijkstra and Katsman (1997), BM99: Berloff amd McWilliams
(1999), M00: Meacham (2000), GFS02: Ghil et al. (2002), KSPB95: Kamenkovich et al. (1995), MB97: Meacham and Berloff (1997), BM97: Berloff
and Meacham (1997), BM98: Berloff and Meacham (1998), S04: Sakamoto (2004). † Free-slip at the eastern and western boundaries and no-slip at
the northern and southern boundaries. ‡ No-slip at the eastern and western boundaries and free-slip at the northern and southern boundaries. *Together
with the degree of asymmetry in the horizonal distribution of wind forcing.

1.2 Toward an understanding of the ocean climate
Although observational evidence is far from convincing,

there has been a growing recognition that the temperate to
mid-latitude North Pacific Ocean reveals the low-frequency
variability in the sea-surface temperatures, large-scale flow
patterns, and so forth, over a wide range of time scales
(Miller et al., 1994; Trenberth and Hurrell, 1994). It is
also known that the Kuroshio off Japan and its extension
show interannual and decadal variations in its path, velocity
and volume transport (Qiu and Joyce, 1992; Deser, 1999;
Qiu, 2003). Since the oceanic motion above the main ther-
mocline is mainly wind-driven, it is natural to raise the
question as to how such low-frequency signals are pro-
duced in those regions where seasonal winds are predomi-
nant. To address such problems, extensive modeling efforts
have been made from different points of view (Sura et al.,
2000). Among the models proposed as a potential mech-
anism of the low-frequency variability are thermal forcing
(Auad, 2003; Thompson and Ladd, 2004), stochastic wind
forcing (Qiu, 2003; Hasselmann, 1976; Frankignoul et al.,
1997; Cessi and Louazel, 2001) and the feedback to the at-
mosphere and vice versa (Pierce et al., 2001; Schneider et
al., 2002).

Since the 1990s, a modern dynamical systems approach
has been applied to the multiple equilibria and variability

Table 2. Model parameters.

Parameter Value

L 1000 km

H1 1000 m

H2 3000 m

f0 7.3 × 10−5 s−1

β 2 × 10−11 m−1s−1

ρ0 1000 kg m−3

g′ 0.02 m s−2

AH 150 m2 s−1

of the large-scale wind-driven ocean circulation to explore
the possibilities of describing the natural ocean climate by
accessible models (Dijkstra, 2000). Along the same lines
of research, we have shed light on transitions between dif-
ferent dynamic states of an oceanic gyre in order to esti-
mate the extent to which those long-term variations are at-
tributable to the internal nonlinear processes. Some previ-
ous studies are summarized in Table 1. Here, attention is fo-
cused on those studies using either the shallow-water (SW)
or the quasigeostrophic (QG) layered model within a rectan-
gular basin, rather than more elaborate models (e.g. Dijkstra
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and Weijer, 2005). These layered models are much simpler
than the existing influential ocean climate models but may
nevertheless be so complicated that the behavior of the out-
put signals would be very different from that of some well-
known low-dimensional dynamical systems. The double-
gyre experiments in the table include the counter-rotating
subtropical and subpolar gyres separated by a free east-
ward jet which is absent from the single-gyre experiments.
We note that in most cases the basin is much smaller than
the world oceans, primarily because of the limited com-
putational resources. In many of the previous studies the
boundary condition is either free-slip or no-slip; the differ-
ence might be crucial in determining the behavior of the
model ocean. The present study is a direct continuation of
Sakamoto’s (2004) single-gyre experiment by replacing the
steady forcing with periodically changing forcing.

2. Model
In this study the stratified ocean is represented by a two-

layer incompressible fluid with mean thickness H1 and H2

and constant density ρ1 and ρ2, where the subscript 1 and 2

Fig. 1. Annual-mean streamfunctions ψ1 (top) and ψ2 (bottom) at year
801 for τ0 = 0.079 N m−2. Contour intervals are 2000 m2 s−1 for ψ1
and 100 m2 s−1 for ψ2. Both the abscissa and the ordinate are scaled by
1000 km. Regions where the streamfunction takes on negative values
are shaded.

 

 

 

 

 

 

 

 

Fig. 2. Instantaneous streamfunctions ψ1 (top) and ψ2 (bottom) at year 801 for τ0 = 0.079 N m−2, drawn at an interval of 3 months. Contour intervals
are 2000 m2 s−1 for ψ1 and 500 m2 s−1 for ψ2. Regions where the streamfunction takes on negative values are shaded.

denote the upper and lower layers, respectively. The ocean
is located on a β-plane 0 ≤ x ≤ L , 0 ≤ y ≤ L , where
x and y are the eastward and northward coordinates, re-
spectively. The surface and the bottom of the ocean are
assumed to be flat. To further simplify the mathematical
model, we assume the QG approximation (e.g. Pedlosky,
1987) in which 2-D flow in each layer is nondivergent to
leading order, so that we can define the velocity stream-
function for each layer, ψ1 and ψ2, at all times. We thus
consider a set of potential vorticity equations of the form

dq1

dt
= AH∇4ψ1 + 1

ρ0 H1
W, (1)

dq2

dt
= AH∇4ψ2, (2)

q1 = ∇2ψ1 + f 2
0

g′ H1
(ψ2 − ψ1) + βy, (3)

q2 = ∇2ψ2 − f 2
0

g′ H2
(ψ2 − ψ1) + βy, (4)

where qi is the potential vorticity, ∇2 denotes the horizontal
Laplacian operator, d/dt ≡ ∂t − ψiy∂x + ψi x∂y (i = 1
or 2) is the material derivative, and subscripts x , y and t
denote partial differentiation. The meaning of the physical
parameters is as follows: f0 is the Coriolis parameter at the
central latitude, β is the meridional gradient of the Coriolis
parameter at the same latitude, g′ = g(ρ2 − ρ1)/ρ0 is the
reduced gravity with g the acceleration due to gravity and
ρ0 the mean density. The values of these parameters were
fixed at values typical of the subtropical gyre as shown
in Table 2. The dissipation terms adopted here originate
from horizontal diffusion of the momentum rather than of
the potential vorticity. The value of the horizontal eddy
viscosity AH is chosen to be 150 m2 s−1. The last term on
the right-hand side of (1) represents external forcing where

W = −τ0
π

L
sin

πy

L

(
cos

2π t

T
+ 1

)
(5)
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Fig. 3. Eddy components of ψ1 (top) and ψ2 (bottom) with respect to the 4-month running mean for τ0 = 0.079 N m−2, drawn at an interval of 1
month. Contour intervals are 1000 m2 s−1 for ψ1 and 250 m2 s−1 for ψ2. Regions where the streamfunction takes on negative values are shaded.

 

 

 

 

 

  

 

 
 

 

 
 

 

 

 

 

Fig. 4. Examples of power spectrum of the total energy E , showing (a) no peak except at the forcing frequency 1 cpy, (b) a 1/7 subharmonic, (c) a 1/4
subharmonic, (d) a period-doubling peak at 1/8 cpy which originates from the 1/4 subharmonic, (e) a 1/3 subharmonic, (f) a secondary 1/9 subharmonic
which originates from the 1/3 subharmonic, (g) a broad peak around 1/3 cpy, and (h) a continuous spectrum.

is the curl of the wind stress having a period of T = 1 year,
which corresponds here to 360 days; the maximum wind
strength is 2τ0 in January and 0 in July. This forcing sup-
plies negative vorticity directly into the upper layer over the
whole basin, creating a single anticyclonic mean circulation
similar to the subtropical gyre as seen later. The amplitude
τ0 is the single control parameter in the present study.

We impose on all side boundaries the no-slip boundary
condition

∂ψ1

∂x
= ∂ψ2

∂x
= 0 at x = 0, L , (6)

∂ψ1

∂y
= ∂ψ2

∂y
= 0 at y = 0, L , (7)
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Fig. 5. Prime response frequency in the power spectrum of the total energy E against the forcing magnitude τ0. Open circles denote sharp peaks
with subharmonic or other rational frequencies, crosses denote the progeny of these subharmonics, and dots denote broad peaks. The shaded region
corresponds to continuous spectra. (a) Overall view. (b, c) Enlarged view.

and the kinematic (no-normal-flow) boundary condition

ψ1 = ψ2 = 0 at x = 0, L and y = 0, L . (8)

Some authors, following McWilliams (1977) and Flierl
(1977), prefer to impose the condition that each ψi is a
function of time at the boundaries with a global condition∫ L

0

∫ L
0 ψi dx dy = 0 rather than (8) (although such manip-

ulations lead to spurious energy fluxes across the bound-
aries), and it was shown that the properties of mode waves
are very different when this boundary condition is used (La-
Casce, 2000). We note, however, that in the present model
the total volume of each layer is conserved to leading order,
because the displacement of the interface has already be-
come asymptotically zero in the QG limit. At any rate, the
same kinematic condition (8) is used here as in Sakamoto
(2004), and an exploration of the effects of different bound-
ary conditions is outside the scope of the present study.

3. Experiment
We integrated (1)–(4) numerically on a regular grid with

a resolution of 25 km in both x and y directions and a time
step of 30 min. The centered finite-difference schemes were
used in both space and time. The Poisson equations for the
streamfunctions were solved by the SOR method. The ini-
tial condition was assumed to be the state at rest for all val-
ues of τ0; the issue of hysteresis was not investigated. The

Euler-backward iteration (Haltiner and Williams, 1980) was
taken every 20 time steps to damp computational modes.
The impact of the latter operation on the overall evolution
of our model ocean is unknown but the same procedure was
applied throughout the experiment.

To verify regime shifts in the dynamical state of our
model ocean when τ0 is changed, we recorded for each
value of τ0 the time series of the basin-averaged potential
and kinetic energy defined, respectively, by

P = ρ0 f 2
0

2g′ 〈(ψ2 − ψ1)
2〉, (9)

K = ρ0

2

2∑
i=1

Hi 〈∇ψi · ∇ψi 〉, (10)

where the angle brackets denote spatial averaging over the
basin. We expect that the topological and dynamic prop-
erties of our model ocean may be reproduced by using any
set of relevant components of the system (e.g. Crutchfield et
al., 1986). At the same time, however, care must be taken
when we attempt to construct a low-dimensional attractor
for a spatially extended system with many degrees of free-
dom (Grassberger, 1986; Procaccia, 1988). Since we can-
not make a detailed spatiotemporal analysis because of the
lack of available computational resources, we have chosen
the global Eulerian quantities. The time series data were
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Fig. 6. The same as Fig. 5 but for the case when the wind forcing is time-independent. Open circles denote the maximum peak. The shaded region
corresponds to continuous spectra. Adapted from Sakamoto (2004).

Fourier transformed to produce power spectral densities.
The length of the sequence is 218, corresponding to about
728 years, so that the frequency resolution is 0.00137 cpy
(cycles per year), capable of resolving decadal variations.
We have verified that transients had died away within tens
of years, and therefore an 800-year integration is sufficient
for the trajectories to converge to an attractor.

Before proceeding, some flow patterns are presented to
check the performance of our numerical ocean. Figure 1
shows annual-mean flow fields at some year for τ0 =
0.079 N m−2. As mentioned in the Introduction, the time-
averaged flow in the upper layer consists of the Sverdrup
interior which responds almost linearly to the wind forc-
ing, the viscous-inertial western boundary current and the
inertial recirculation located in the northwest. On the other
hand, the motion in the lower layer is confined near the
western boundary, counter-rotating about the central lati-
tude, but much weaker than the upper-layer flow as in the
real ocean. Figure 2 shows a seasonal change of the stream-
functions. In the upper layer the inertial recirculation sur-
vives even in summer when the wind is very weak, confirm-
ing its strong nonlinearity. The gyre in the lower layer be-
comes cyclonic in spring and in summer because the baro-
clinic adjustment is slower than the change in the wind forc-
ing.

To make eddy activities visible, we divide the flow field

ψ into the mean component ψ̄ and the eddy component ψ ′

as

ψ̄(t) = 1

�

∫ t+�/2

t−�/2
ψ(t ′) dt ′, (11)

ψ ′(t) = ψ(t) − ψ̄(t). (12)

Hence, in discrete cases ψ̄ is a running mean over a time
interval � which should be chosen so as not to smooth out
the mean seasonal variation. Figure 3 shows ψ ′

1 and ψ ′
2

with � = 4 months. We see that the horizontal scale of
these eddies is larger than the baroclinic deformation ra-
dius [g′ H1 H2/(H1 + H2)]1/2/ f0 (= 53 km here), and that
they propagate westward, as in the case of time-independent
wind forcing (e.g. Holland, 1978). In the upper layer,
active eddies are dominant around the inertial recircula-
tion, whereas in the lower layer, elongated eddies reach the
southern half of the basin although their intensity is much
weaker.

We have observed numerical oscillations in the southwest
quadrant when either τ0 becomes very large or AH is re-
duced (not shown). However, we have verified that no such
disturbances are generated with the values of these parame-
ters adopted in the present numerical experiments. We also
confirm in Figs. 1–3 that in treating such highly nonlinear
oceanic motions, grid resolution seems not to be severely
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       = 0.0805

Fig. 7. Poincaré sections (P, K ) at phase March 1 for various values of τ0, showing the transition from a 4-cycle to a 3-cycle. The number of returns is
760. In (a) and (g) the dots are exaggerated for clarity.

restricted by the viscous scale (here, the width of the Munk
layer) (AH/β)1/3 and the inertial scale (U/β)1/2 where U is
a velocity scale of the boundary current.

4. Results
Figure 4 shows the power spectrum of the total energy

E = P + K . When the wind amplitude is sufficiently weak
there are no eddies, so that we see only one peak at the forc-
ing frequency of 1 cpy (Fig. 4(a)). The model gyre is thus
totally governed by the environmental periodicity. For the
stronger winds, various subharmonics appear; Fig. 4(b), (c)
and (e) shows 7-, 4- and 3-cycles, respectively. Figure 4(d)
and (f) exemplifies secondary bifurcation of the prime sub-
harmonics that produces period-doubled or period-tripled
components. The bottom panels correspond to aperiodic
states with different spectral features. In Fig. 4(g) the peak
is still distinguishable but broadens, whereas in Fig. 4(h) the
spectrum in the low-frequency band (<1 cpy) is noisy with-
out any distinct peaks. It should be noted that the subhar-
monic peaks are much weaker than the primary peak at the
forcing frequency, implying that the low-frequency signals
would not be observed in calculations with a sufficiently
strong stochastic component in the wind forcing.

Figure 5 summarizes the distribution of the response fre-
quency against the forcing magnitude τ0 obtained from the
power spectrum of E . For subharmonic responses, only the
prime frequency is plotted with open circles and its integral

multiples are omitted. Small dots denote broad peaks that
are representative of chaotic behavior, and crosses stand for
secondary subharmonics mentioned above. We note that the
domain of the abscissa includes typical strengths of the real
subtropical winds. The result should be compared with the
case when the wind forcing is time-independent. The latter
is shown in Fig. 6, which is a reproduction of figure 1 of
Sakamoto (2004). Comparison between both cases will be
made in the next section.

In Fig. 5 we observe only a basic period-1 oscillation for
τ0 < 0.0657 N m−2 and discern the first low-frequency
components with 0.0233 cpy at τ0 = 0.0657 N m−2 and
0.0316 cpy at τ0 = 0.0658 N m−2. The response frequency
then increases with τ0, but not uniformly. Various periodic
n-cycles appear in descending order of n from at least pe-
riod 12 up to period 3. We also see other rational frequen-
cies such as 2/19 cpy in much narrower subintervals. Tran-
sitions between the neighboring cycles take place through
a short interval of quasiperiodic or chaotic regime, so the
overall configuration resembles a devil’s staircase (e.g. De-
vaney, 1989). However, this counterpart of the mathemat-
ical object is incomplete in the sense that there is a sud-
den decline around τ0 = 0.0821 N m−2. We do not find
a 2-cycle throughout the present calculations. Instead, the
3-cycle directly changes to the continuous spectrum. It is
unknown whether a 2-cycle cannot exist in this system or
whether it is simply too unstable to appear.
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Fig. 8. The same as Fig. 7 but for larger values of τ0, showing the transition of a 3-cycle.

To obtain some insight into the regime shifts from a topo-
logical point of view, Fig. 7 plots (P, K ) at phase March 1
for various values of τ0. The sequence of panels shows the
transition from a 4-cycle to a 3-cycle. During the transition,
the equilibrium points are connected smoothly, confirming
quasiperiodic or chaotic behavior (Fig. 7(c)–(h)). It seems
that the two sets of fixed points are exchanged through
stretching and folding, characteristic of strange attractors.
A similar process was observed in the transitions between
the higher-order subharmonics. However, the destabiliza-
tion of a 3-cycle seems very different, as shown in Fig. 8.
As τ0 is increased, the 3-cycle collapses abruptly (Fig. 8(b)).
The points then converge not into a 2-cycle but into islands
around the fixed points of the original 3-cycle (Fig. 8(c)–
(e)); each island looks like a chaotic attractor, although no
dimensional analysis has been made here. As τ0 is increased
further, the islands grow (Fig. 8(f), (g)), overlap to each
other and eventually merge into a single scattered attractor
(Fig. 8(h), (i)). Such a dispersed distribution was not seen
between the other cycles.

5. Discussion
From the present experiment we have found that the un-

steady circulation tends to be synchronized with the forc-
ing frequency to produce the subharmonics and that the
response frequency changes with the forcing amplitude in
a manner similar to a devil’s staircase. This is in con-
trast with the cases of time-independent wind forcing (Ta-

ble 1), in which intrinsic low-frequency signals are ob-
served. It is known, although there is no general consensus,
that those frequencies may be attributed to the propagat-
ing plane Rossby waves or to the Rossby basin-modes. In
fact, the primary frequency 11.2 cpy at τ0 = 0.046 N m−2

(Fig. 6) is very close to the eigenfrequency of the gravest
barotropic basin mode, and the frequencies 2.4-cpy and 2.2-
cpy at τ0 > 0.09 N m−2 are in good agreement with those
of the higher-order barotropic or baroclinic modes (Ped-
losky, 1987; Dijkstra, 2000). Such intrinsic modes do not
appear in Fig. 5, indicating that they are overwhelmed by
the modes which are tightly trapped by the periodic forc-
ing. At present we are uncertain whether the entrainment is
dominant over the intrinsic modes irrespective of the basin
size. We should also confirm the dependence of the struc-
ture of the Arnold tongues on the eddy viscosity as well as
the grid size.

The route to chaos with increasing τ0 is also changed
dramatically with or without the periodic forcing. In the
case of the time-independent wind forcing (Fig. 6) the low-
frequency variations are produced when τ0 becomes larger.
More specifically, the primary mode becomes unstable, pro-
ducing an interannual fluctuation, followed by frequency
locking and successive period-doubling bifurcations that ul-
timately lead to the continuous spectrum. These proper-
ties are quite different from the appearance of the climbing
devil’s staircase in Fig. 5. We speculate that in the period-
ically forced ocean there is a conflict between the subhar-
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monic resonances and the Feigenbaum cascades associated
with the instabilities of the large-scale waves. To estimate
the relative importance of these competing tendencies we
need to investigate our model ocean further by changing,
among others, the forcing frequency as a second control pa-
rameter before we enter into stochastic forcing.

Finally, the main result is summarized in terms of the
ocean climate. The occurrence of the n-cycles indicates
that in our idealized ocean driven by the prevailing sea-
sonal winds the subtropical gyre may experience interan-
nual and decadal variations which are produced internally
by the entrainment and the nonlinear processes. By con-
trast, it seems plausible that additional external mecha-
nisms, such as stochastic forcing and ocean-atmosphere
coupling, should be taken into account to explain interan-
nual variations whose time scale is not commensurable with
annual period. Although there is a tremendous gap between
our model ocean and the real ocean, we take a step forward
to suggest the role played by the nonlinearity in selecting
the low-frequency variations in the North Pacific under the
seasonal winds. We note that variations having time scales
around 3–4 years, which in our model ocean seem stable in
a wide range of wind amplitudes, are not at all special in
the atmosphere and the ocean; see, for example, the path
variation of the Kuroshio in the North Pacific subtropical
gyre.

6. Conclusion
Using a two-layer quasigeostrophic model, a numerical

study is made of an oceanic single-gyre circulation within
a relatively small basin, forced by annually periodic winds.
As the forcing amplitude is increased, various subharmon-
ics appear in the time series of the total energy (and other
local variables). The response frequency of these periodic
regimes, together with much narrower quasiperiodic and
chaotic regimes, constitutes a quasi-devil’s staircase. Thus,
our idealistic ocean, viewed as a nonlinear dynamical sys-
tem, acts as a frequency divider. An immediate implication
is that large-scale motions having interannual and decadal
time scales may be produced by internal nonlinear pro-
cesses even under the predominant seasonal winds.
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