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In this paper the spatial structure of azimuthally small-scale Alfvén waves in magnetosphere excited by the
impulse source is studied. The source is suddenly switched on at a definite moment and works as e−iω0t during the
finite time interval. The influence of factors which lead to the difference of toroidal and poloidal eigenfrequencies
(like curvature of field lines and finite plasma pressure) is taken into account. Due to these factors, a radial
component of the group velocity of Alfvén wave appears. An important value is the time moment, t0, when a
wave front moving with radial component of wave group velocity from the poloidal surface (a magnetic surface
where the source frequency ω0 coincides with the poloidal frequency) passes the given magnetic shell with the
radial coordinate x . The temporal evolution at all the points, where the front has not come yet, is determined
by the phase mixing of the initial disturbance. At the points through which the wave front has already passed,
the wave field structure almost coincides with the structure of monochromatic wave. The region where the front
propagates is bounded by the interval between the poloidal surface and the toroidal one (that is, the Alfvén
resonance surface). For this reason, outside this region the evolution is always determined by the phase mixing,
which leads to much smaller amplitudes than between poloidal and toroidal surfaces. After the source turned
off, a back wave front is formed, which comes through the given point in direction from the poloidal surface
to the toroidal one. After the back front has come, the monochromatic wave structure disappears and there is
only a weak disturbance, which steadily disappears because of the phase mixing and the final conductivity of
ionosphere.
Key words: Alfvén wave, poloidal mode, impulse excitation.

1. Introduction
Among ultra low-frequency oscillations in the Earth’s

magnetosphere, the azimuthally small-scale Alfvén waves
are distinguished, i.e., the waves with large azimuthal wave
numbers m 
 1 (Takahashi, 1988; Anderson, 1993; Den-
ton et al., 2003). These waves usually have poloidal polar-
ization, i.e. field lines oscillate in the radial direction. The-
oretical studies of such waves are performed on the basis of
magnetosphere models with the field lines curvature, two-
dimensional inhomogeneity of the plasma and the magnetic
field; the plasma finite pressure are taken into account.
The high-m wave sources are supposed to be located

inside the magnetosphere (e.g., Takahashi, 1988; Yumoto,
1988). From the mathematical point of view, there are
the two limiting cases of the source, a monochromatic one
(the spectrum is a delta-function over frequency), and an
impulse one (a delta-function over time), in the spectrum of
which all the frequencies are equally presented.
Before describing the most important results obtained to

date, let us present some definitions. Even in the 1960s
it was found out that the purely radial (poloidal) and az-
imuthal (toroidal) oscillations of field lines were charac-
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terized by slightly different frequencies (Radoski, 1967;
Dungey, 1967), which are designated here as�PN and �TN .
These frequencies are the functions of a radial coordinate,
x , which marks the magnetic shells. If the wave frequency
ω is fixed, we can introduce the notions of poloidal xPN and
toroidal xTN magnetic shells determined as solutions of the
equations ω = �PN (x) and ω = �TN (x), respectively.

The theory of monochromatic waves with m 
 1 is
rather highly developed at present. Leonovich and Mazur
(1993) showed that in a curved magnetic field, the Alfvén
waves, being standing waves along the magnetic field, gen-
erally propagate across magnetic shells. The region of wave
propagation (transparent region) is bounded by the poloidal
and toroidal surfaces. The wave is excited near the poloidal
surface and propagates toward the toroidal surface where it
is totally absorbed due to the dissipation in the ionosphere.
During the propagation, the wave polarization changes from
poloidal to toroidal (Fig. 1(a)). The width of the transparent
region is proportional to the difference between the frequen-
cies of toroidal and poloidal oscillations. The further de-
velopment of the theory introduced into the general picture
such effects as kinetic dispersion (Leonovich and Mazur,
1995a), the finite plasma pressure (Klimushkin, 1998a;
Mager and Klimushkin, 2002; Klimushkin et al., 2004),
bounce-drift instability (Klimushkin, 2000, 2007), and az-
imuthal inhomogeneity of magnetosphere (Klimushkin et
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Fig. 1. The transformation of the poloidal Alfvén wave into the toroidal
one: (a) in space (monochromatic case), (b) in time (impulse-excited
case).

al., 1995). It was also shown that a resonator for the Alfvén
wave can exist in the plasmapause and ring current regions
where the mode is a standing wave across the magnetic
surfaces (Vetoulis and Chen, 1996; Leonovich and Mazur,
1995b; Denton and Vetoulis, 1998; Klimushkin, 1998b;
Mager and Klimushkin, 2006).
Let us note that the azimuthal wave number large value

itself is not the sufficient condition for the poloidal polar-
ization of monochromatic Alfvén wave. The much stronger
condition |�TN − �PN |/�TN 
 m−1 must be satisfied,
which implies that many azimuthal wavelengths are ac-
commodated between the toroidal and poloidal surfaces
(Klimushkin et al., 2004). By studying several models
of the magnetosphere differing in the level of disturbance,
Mager and Klimushkin (2002) and Klimushkin et al. (2004)
found that this poloidality criterion can be met for the ob-
served values of m ∼ 50–100 only by taking finite plasma
pressure into account.
Opposite to the monochromatic case are the waves gen-

erated by the sudden impulse, which is the delta-function
of time. In this case, each field line oscillates with its own
frequency (Hasegawa et al., 1983); hence the oscillations
on neighboring magnetic shells rapidly acquire a signif-
icant phase difference (phase mixing), and the wave be-
comes strongly “indented” in radial coordinate with much
smaller amplitude. Thus, the initially poloidally polar-
ized disturbance (sufficiently widely distributed in radial
coordinate) transforms into a toroidally polarized wave
(Fig. 1(b)). Initially, this was found for the case of one-
dimensional inhomogeneous model with straight field lines
(Radoski, 1974; Mann and Wright, 1995; Mann et al.,
1997), but the phase mixing phenomenon was shown to
occur also in a dipole-like models (Leonovich and Mazur,
1998; Antonova et al., 1999; Leonovich, 2000). A new
feature of impulse-generated high-m Alfvén waves in a
curved two-dimensionally inhomogeneous field is a gradual

change of the field line oscillations frequency from the local
poloidal frequency to the local toroidal frequency, found by
Leonovich and Mazur (1998). They gave the following in-
terpretation of this phenomenon: a sudden impulse formally
excites a continuous set of monochromatic waves instanta-
neously on all magnetic shells. On a given magnetic shell,
x , a monochromatic wave is excited, for which this shell is
a poloidal one. Consequently, an oscillation of the poloidal
type with the frequency equal to the poloidal frequency of
this magnetic shell x will be excited. Correspondingly, the
wave’s frequency ω equals the poloidal frequency of this
shell �PN in the beginning, and the wave is poloidally po-
larized. Then, the magnetic surface x is occupied by oscilla-
tions arriving from increasingly distant magnetic shells that
are originated as poloidal ones there; but as they travel to-
wards this given magnetic surface, they transform progres-
sively to toroidal ones. The drift-bounce resonance with
the particles was included in this picture by Klimushkin
and Mager (2004). In the course of the propagation, the
wave loses its energy because of the finite ionospheric con-
ductivity and acquires energy due to the wave-particle reso-
nant interaction. If the corresponding instability is stronger
than the attenuation, then the wave is amplified just after
the oscillations have started. But the drift-bounce instability
growth rate is getting smaller during the wave temporal evo-
lution, and the instability undergoes stabilization when the
wave frequency coincides with the toroidal eigenfrequency.
Of course, both cases, monochromatic and impulse

sources, cannot be considered as quite realistic ones.
The excitation process in magnetosphere should be non-
stationary but have finite time duration. Wright (1992) stud-
ied the oscillations generated by the source of this type. He
showed that the longer the source is in operation, the nar-
rower the localization of the mode across magnetic shells is.
When the duration of the source operation tends to infinity,
the mode is concentrated near the field-line resonance sur-
face, as is the case in conventional theory of monochromatic
oscillations.
We believe, however, that the results (Wright, 1992) can

be directly used only for the azimuthally large-scale oscilla-
tions (m ∼ 1). In this article, we consider the case m 
 1.
The prime aim of the paper is to elucidate how the fine
structure of high-m monochromatic wave ripens from ini-
tial phase-mixing evolution, and how it disappears after the
end of the source operation. Figuratively speaking, we in-
tend to study birth and death of the poloidal Alfvén waves.
All the basic results were obtained analytically using vari-
ous asymptotic methods and illustrated by the graphics ob-
tained numerically.

2. Radial Structure of theMonochromatic Alfvén
Wave

Within the approximation of ideal plasma conductivity,
the longitudinal component of the wave’s electric field is
zero, i.e. the electric field is a two-dimensional one; it lies
on surfaces orthogonal to field lines. As any arbitrary vector
field, �E⊥ can split into the sum of potential and vortical
components:

�E = −∇⊥� + ∇⊥ × �e||�,
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where �e|| is a unit vector in the direction of the equilibrium
magnetic field. In a homogeneous plasma, the “potentials”
� and � describe the electric field of the Alfvén wave
and fast magnetosound, respectively (Klimushkin, 1994;
Glassmeier, 1995). These MHD modes are described by
a system of coupled equations

L̂ A � + L̂c � = 0

L̂ F � + L̂+
c � = 0,

where L̂ A and L̂ F are differential operators for Alfvén and
fast modes, respectively, and operators L̂+

c and L̂c describe
the coupling of these modes (see details in Klimushkin,
1994). The problem is somewhat alleviated in the casem 

1 when this system can be brought to a single differential
equation describing the Alfvén mode only:

L̂ A � = 0

(Leonovich and Mazur, 1993). But this equation still con-
tains interrelated problems of determining the longitudinal
and transverse structures of the wave. Nonetheless, Ve-
toulis and Chen (1996), Leonovich and Mazur (1997), and
Klimushkin et al. (2004) found that the radial structure of
the wave can be qualitatively described by an ordinary dif-
ferential equation containing derivatives with respect to the
coordinate x only, the unit vector of which is directed across
magnetic shells:

∂

∂x

[
x − xTN + ia

(
δ − γ

xTN − x


N

)]
∂ �(x, ω)

∂x

−K 2

[
x − xPN + ia

(
δ − γ

xTN − x


N

)]
�(x, ω)

= q(ω), (1)

where xTN and xPN are the coordinates of toroidal and
poloidal surfaces (see Introduction), 
N = xTN − xPN is
a distance between them, δ is a decrement of the mode
damping due to the finite resistance of the ionosphere, the
quantity aδ ≡ |d�TN/dx |−1δ determines the typical radial
scale associated with the damping (Southwood and Hughes,
1983), γ is an instability growth rate, caused by the reso-
nant wave-particle interaction, the quantity K ≡ m/L de-
termines the azimuthal component of wave vector (m is the
azimuthal wave number and L is the McIlvein parameter),
q is the oscillations source value. It is supposed in Eq. (1)
that the functions �PN (x) and �TN (x) are monotonic. Both
values xTN and xPN are functions of the frequency ω.

This equation describes all the basic features of the struc-
ture of Alfvén waves in a dipole-like magnetosphere: log-
arithmic behavior near the surface of field-line resonance
(toroidal surface); the structure of Alfvén wave as an Airy
function in the region of mode poloidality (Leonovich and
Mazur, 1993; Vetoulis and Chen, 1996); propagation of the
wave across the magnetic shells caused by the curved field
lines (Leonovich and Mazur, 1993, 1997; Klimushkin et al.,
2004). The field lines curvature is taken into account by the
finite quantity 
N . Indeed, in the magnetosphere model
with straight field lines the toroidal and poloidal frequen-
cies coincide, i.e. xTN = xPN .

Let the functions �TN (x) and �PN (x) be linear (mono-
tonically decreasing) with the similar incline:

�TN (x) = �0

(
1 − x

l

)
, �PN (x) = �0

(
1 − x + 
N

l

)
.

Then the location of the toroidal surface is determined as
xTN = l(�0−ω)/�0, and the distance between the toroidal
and poloidal surfaces 
N = xTN − xPN does not depend on
the frequency. For the sake of definiteness, we will suppose

N > 0, though with the finite pressure the opposite situa-
tion is possible (Klimushkin et al., 2004). Under these sup-
positions, the solution of Eq. (1), bounded when |x | → ∞,
can be written in an integral form (Leonovich and Mazur,
1999)

�(x, ω) = iq(ω)

K

∫ ∞

0
dk F(k), (2)

where

F(k) = exp [i K
N h(k) + g(k)]√
k2 + K 2

,

g(k) = −akδ + Kaγ arctan
k

K
,

h(k) = k

K

x − xTN

N

+ arctan
k

K
.

Note that the functions F , h, g also depend on x and ω as
on parameters.
The poloidality condition (|�TN − �PN |/�TN 
 m−1)

mentioned in Introduction as applied to Eq. (1) can be writ-
ten in a form K
N 
 1 (Klimushkin et al., 2004). If this
condition is satisfied (which is possible only ifm 
 1), then
the integral can be estimated with the method of stationary
phase. Omitting intermediate algebraic manipulations, let
us show the final expression:

�(x, t) = f (x) exp

[
iφ(x) + �(x) − iπ

4

]
, (3)

where is designated

f (x) = iq
√

π

K 3/2(xTN − x)1/4(x − xPN )1/4
(4)

φ(x) =
∫ x

xPN

kx (x
′) dx ′ (5)

= −K
√

(x − xPN )(xTN − x)

+K
N arctan

√
x − xPN
xTN − x

, (6)

�(x) = −aδ

√
x − xPN
xTN − x

+ Kaγ arctan

√
x − xPN
xTN − x

. (7)

This asymptotics is valid at a quite large distance from the
poloidal and toroidal surfaces; to determine the asymptotics
near xPN and xTN , see Leonovich and Mazur (1999).

Expression (3) describes the wave propagating across the
magnetic shells. Radial component of the wave vector is

kx = K

√
x − xPN (ω)

xTN (ω) − x
.
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The mode is localized between the surfaces xTN and xPN ;
we will also call this interval a transparent region because
the wave vector radial component squared is positive there.
During the propagation, the wave polarization is changed
from poloidal to toroidal, as was first found by Leonovich
and Mazur (1993). The wave loses energy because of the
interaction with the ionosphere and acquires energy because
of the interaction with the energetic particles (factor � in the
exponent). On the order of magnitude, the wave amplitude
is |�| ∼ qK−1(K
N )−1/2.

The dependence kx over ω means the appearance of the
radial component of the group velocity:

ux =
(

∂kx
∂ω

)−1

.

It is important to notice that ux appeared in MHD regime
due to field line curvature (Leonovich and Mazur, 1993),
as distinct from the homogeneous plasma case, where the
group velocity of Alfvén wave was directed parallel to the
ambient magnetic field. Let us determine the time of packet
travel from the poloidal surface to the shell with the radial
coordinate x :

t0(x, ω) =
∫ x

xPN

dx ′

ux
= τ

√
x − xPN
xTN − x

(8)

where

τ = Kl

�0
.

Asymptotics outside of the transparent region is

�(x, t) = iq

K 2[(x − xPN ) + ia(δ − γ )]
. (9)

In the case of the zero field line curvature (
N =
0), solution (2) describes the localized toroidal resonance
(Leonovich and Mazur, 1997).

3. The Switching on the Source
Let us consider the oscillations excited by the source with

the frequency spectrum q(ω). Using the Fourier-transform,
we obtain from (2) the space-temporal structure of the wave
field:

�(x, t) = i

2πK

∫ ∞

−∞
dω e−iωt q(ω)

∫ ∞

0
dk F(k). (10)

Later on, using the terms toroidal and poloidal surface,
we will determine their position at a frequency ω0, i.e.
xTN , PN ≡ xTN , PN (ω0).
In this article, the quasi-monochromatic source with a

frequencyω0 is considered, switched on the moment of time
t = 0 and switched off after the time interval T :

q(t) = q0 e
−iω0t �(t)�(T − t), (11)

the spectrum of which is

q(ω) = q0

∫ T

0
ei(ω−ω0)t dt (12)

or

q(ω) = q0
ei(ω−ω0)T − 1

i(ω − ω0)
. (13)

Since we wish to study a passage to the monochromatic
regime, we will suppose the period of time T to be rather
large, so as ω0T 
 1.

Taking Eq. (12) into formula (10), we obtain:

�(x, t) = iq0
K

∫ ∞

0
dk F(k)

·
∫ T

0
dt ′ exp(−iω0t

′)δ
[
t ′ −

(
t − kl

�0

)]
,

or

�(x, t) = iq0
K

exp(−iω0t)

t�0/ l∫
0

dk F(k) (14)

when 0 < t < T and

�(x, t) = iq0
K

exp(−iω0t)

t�0/ l∫
(t−T )�0/ l

dk F(k) (15)

with t > T .
Let us consider the process of the switching on the source

(t < T ). We will introduce a new variable

η = t/τ.

Further, we will suppose T → ∞.
3.1 Initial stage of evolution
Integral (14) can be estimated by the integration by parts.

In this case, the major input into the integral is made by
the vicinities of the limits of integration. This asymptotic
method cannot be applied if the wave phase has the extreme
inside the integrating region. In our case, this is the time
instant t0, determined by Eq. (8). When t � t0, we have:

�(x, t) = q0
K 2

⎧⎨
⎩ exp [−i�(x, t) + g(η)]√

1 + η2
[
(x − xTN ) + 
N

(1+η2)2

]
+ iaδ − iaγ

(1+η2)2

− exp (−iω0t)

x − xPN + ia(δ − γ )

}
, (16)

where

�(t, x) = �TN (x)t − K
N arctan
t

τ
.

In expression (16), the value � gives a quantity

�(t, x) ≡ ∂�

∂t
,

which can be called “the local instantaneous frequency” of
the wave. This quantity is changed from �PN up to �TN .
This phenomenon is related to the field line curvature and
was first described by Leonovich and Mazur (1998).
The role of the instant wave vector is given by the quan-

tity

k̃x (t, x) ≡ ∂ �

∂x
.

When t 
 τ , this value increases in time as |k̃x | =
|d�TN/dx |t . Accordingly, the radial wavelength decreases,
which is clearly seen from Fig. 2. It indicates also that
the oscillations change their polarization in time from the
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Fig. 2. The spatial structure of the wave field immediately after the source
has turned on at two instants of time (t2 > t1). The vertical shaded strip
is a transparent region.

poloidal to the toroidal. On the order of the magnitude,
the time of the polarization change from the poloidal to the
toroidal one is τ .
At the initial stage of evolution, the order-of-magnitude

estimate of the wave amplitude is |�| ∼ qK−1(K
N )−1.
If K
N 
 1, it is much smaller than the amplitude of the
monochromatic wave: the wave is only growing.
The denominator of the first term of Eq. (16) is responsi-

ble for the temporal change of the wave amplitude. It is easy
to see that this value is decreasing, i.e. the wave amplitude
increases, as is seen from Fig. 3 obtained by the numerical
integrating of Eq. (14). Let us note that in the absence of the
field line curvature (
N = 0), the amplitude of this term is
decreasing because of the factor [1+ (t/τ)2]−1/2 in the first
term, which is associated with the phase mixing of the ini-
tial disturbance. Here is expressed the significant difference
of the waves in the magnetosphere model with the curved
field lines from the case of straight lines.
The amplitude also increases due to the instabil-

ity, which is gradually stabilized with time, because
aγ K arctan (t/τ) → aγ Kπ/2, as also took place in the
work by Klimushkin and Mager (2004). The wave atten-
uation is associated with the term δ. This factor is related
to the energy loss because of the finite conductivity of the
ionosphere.
Now, let us consider the very start of the source opera-

tion, when t � τ , considering also aδ and aγ to be neg-
ligibly small as compared with 
N . Expression (16) then
becomes

�(x, t) = q0
K 2[x − xPN (ω0)]

[
e−i�PN (x)t − e−iω0t

]
. (17)

This formula describes beating with the leading frequency
(�PN +ω0)/2 and the modulation frequency (�PN −ω0)/2.
The oscillation with the frequency �PN accounts for the
evolution of initial field disturbance, which had appeared
at the start of the source operation. Oscillation with a fre-
quency ω0 is conditioned by the continuous operation of a
source.
If the denominator of Eq. (16) is turned into zero, the

method of integration by parts cannot be used for the
asymptotic estimation of the integral. It is easy to see that

Fig. 3. The temporal behavior of the wave field in a given point of space
immediately after the source has turned on (before a wave front arrival).

the turning to zero is performed at the moment of time t0
defined by Eq. (8). We will formally consider the asymp-
totic (16) when t0 − t � τ in the region quite distant from
the poloidal surface, so that we can neglect the second term
of (16):

�(x, t) = q0τ
√




2K 2

exp
[−iω0t + iφ(ω0, x) − iα

2 (t − t0)2
]

(t0 − t)(x − xPN )1/2(xTN − x)
,

(18)
where

α = τ 2
N

K
[x − xPN (ω0)]

−1/2 [xTN (ω0) − x]−3/2 , (19)

and φ was determined by Eq. (7). In yielding (18), we also
neglected the attenuation and the instability.
In the next paragraph, we will consider the evolution

when t � t0 in details.
3.2 Wave front arrival
The meaning of the value t0 is already known for us: for

this time the wave front moving with the radial group veloc-
ity arrives at the point with coordinate x from the poloidal
surface. It is important to mention that this front if propa-
gating only within the transparent region, since outside of
this region t20 < 0. Hence, outside the transparent region,
the evolution is always determined by the phase mixing.
To explore the situation when t � t0, we will come back

to Eq. (10). The integral over dk will be estimated by the
stationary phase method, as in Section 2; thus, here we have
Eq. (3). In the expression for q(ω) (12), we will change the
integration variable t for t ′. Putting all this into (10), we
obtain:

�(x, t) = iq0
2πK

∫ ∞

−∞
dt ′q(t ′)

∫ ∞

−∞
dω e−iω(t−t ′)+iφ f e�.

(20)
Because the spectral density of the source is localized

near the frequency ω0 in the T → ∞ case, the major input
into the integral is made by the vicinity of this point. To
begin, we will decompose the phase φ(x, ω) near the point
ω0 into power series (ω − ω0) up to a linear term:

φ(ω, x) = φ(ω0, x) + ∂φ

∂ω

∣∣∣∣
ω0

· (ω − ω0). (21)
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Fig. 4. The wave front movement: wave amplitude |�(x)| at three time
instants. The amplitude of the monochromatic wave is also shown.

Note that ∂φ(ω0, x)/∂ω = t0. Substituting (21) into (20),
we obtain after some manipulations:

� = q0 f0(x)�[t−t0(x)]�[T−t+t0(x)] e
−iω0t+iφ0(x)+�0(x).

(22)
Here the index “0” marks the function taken in the point
ω = ω0; for example, φ0(x) ≡ φ(ω0, x). The expression
under the exponent sign coincides with the same one in
formula (3). Two Heaviside step functions in (22) describe
the leading and back fronts coming through the point x in
the transparent region at the moment of time t0(x). As we
can see, behind the front, the wave structure is the same as
in the monochromatic case: we can say that the front carries
the monochromatic regime. In approximation (21), before
the front the amplitude is equal to zero; it corresponds to
the smallness of the wave amplitude at the initial stage
of evolution as compared with the monochromatic wave
amplitude.
The more accurate description of the wave front is given

by taking into account the next term in the series expansion
φ(x, ω):

φ(ω, x) = φ0 + φ′
0(ω − ω0) + φ′′

0

2
(ω − ω0)

2, (23)

where

φ′′
0 ≡ ∂2φ(x, ω)

∂ω2

∣∣∣∣
ω0

= α.

Here the value α was determined by Eq. (19). After we
substitute (23) into (20) and keep in consideration that limit
T → ∞, we obtain the expression

�(x, t) = iq0
2πK

√
2π f0(x)

[
1 − i

2
+ C(z1) − i S(z1)

]
·e−iω0t+iφ0(x)+�0(x). (24)

Here the C and S are the Fresnel functions of the argument
z1 = (t − t0)/

√
πφ′′

0 .
Equation (24) describes the wave front (Fig. 4), which

does not have such a clear border as the front described by
the Heaviside function (22). Thus, in approximation (23)
we obtained the smearing of the wave packet.
When z1 → −∞, the asymptotic of (24) coincides with

(18), that is the approximated solutions at the initial stage

of evolution and at the stage of the wave packet arrival are
matched with each other.
3.3 Transition to the monochromatic regime
When t 
 t0 we will use the representation

�(x, t) = − iq0
K

e−iω0t
∫ ∞

0
dk F(k) + �̃, (25)

where

�̃ = iq0
K

e−iω0t
∫ ∞

t�0
l

dkF(k).

The first term in Eq. (25) describes the monochromatic
wave. Thus, after the wave front has passed, we have
a superposition of the monochromatic wave and the non-
stationary disturbance described by the second item (25),
�̃. Through integration by parts we get its estimate:

�̃(x, t) = q0
K 2

exp(−iω0t)

·exp [i K (x − xTN )η + i K
N arctan η − aK δη + aKγ arctan η]


N (1 + η2)−1/2 + (x − xTN )(1 + η2)1/2

If the inequality t 
 τ is also true, then the non-
stationary addition to the monochromatic solution has a
form

�̃(x, t) = − q0
K 2[x − xTN (ω0)]

t

τ
exp

[
−i�TN t − aδK

t

τ

+i K
N
t

τ
aγ K

π

2

]
. (26)

On this order of magnitude, the amplitude of this addition
is |�| ∼ q0K−1(K
N )−1. Because K
N 
 1, then it
is much smaller than the amplitude of the monochromatic
wave. Moreover, mode (26) is attenuating as (t/τ)e−aδKt/τ .
As we can see, even in the case of a very small dissipation,
the non-steady disturbance is damping because of the phase
mixing.
Notice also that the instability has been stabilized:

bounce-drift resonance is not amplifying the wave, the in-
stability has already increased the amplitude aγ K (π/2)
times. The same situation took place in the case of the zero-
duration impulse source (Klimushkin and Mager, 2004).
Thus, after the front has passed, the oscillation becomes

the monochromatic wave with a small non-stationary addi-
tion with decreasing amplitude.
3.4 Near the resonance surfaces
In the vicinity of the poloidal surface, the considerations

of the three previous subsections fail because, firstly, solu-
tion (16) has a singularity at x = xPN (ω0), and, secondary,
the time of impulse coming is formally equal to zero. The
first circumstance means that immediately after the source
has been switched on, the poloidal frequency plays the role
of the resonance eigenfrequency.
First, we will consider the evolution near the poloidal

surface right after the source has turned on. After evaluation
of indeterminate form at x = xPN (ω0) in Eq. (17), we have:

�(x, t) = iq0
K

exp(−iω0t)
t

τ
. (27)

In this case, the wave amplitude is linearly increasing in
time, which is typical for the switching on the source with a
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frequency equal to the eigenfrequency, well known from the
general oscillations theory. In that theory, the stabilization
due to the non-linear members of the Hamiltonian is taken
into account. But in our case the secular increase takes place
only during the limited time interval t � τ and it does not
lead to the infinite amplitude.
It is quite complicated to explore the evolution at t 
 τ

in the vicinity of the poloidal surface because t0 = 0 there
and it is impossible to use the considerations of Subsec-
tion 3.2. However, we can use the fact that at x � xPN
the major part of integral (2) is accumulated at k � K
(Leonovich and Mazur, 1999). Then, integral (14) can be
represented as

�(x, t) = iq0
K 2

exp(−iω0t)

t�0/ l∫
0

dk

· exp
[
ik(x − xPN ) − i

K
N

3

k3

K 3
+ g(k)

]

and calculated numerically. The structure of the wave field
at several sequential instants t is presented in Fig. 5. We
can see here the gradual transmission from the “resonance”
structure to the monochromatic wave.
As for the toroidal surface, here the time of monochro-

matic structure establishing t0 is infinite. Consequently,
with any suppositions about the work duration of the source
T , this structure cannot be established there.

4. Wave Field Evolution after the End of the
Source Operation

Let us consider the case t > T , when the field is repre-
sented by integral (15). It can be rewritten as

t�0/ l∫
(t−T )�0/ l

F(k)dk =
∞∫
0

F(k)dk −
t ′�0/ l∫
0

F(k)dk

−
∞∫

(T+t ′)�0/ l

F(k)dk,

where t ′ = t − T > 0. We will assume that the time of
the source operation is long enough, so after the source has
turned off the wave field is only a little different from the
monochromatic wave field. Thus, the lower and upper lim-
its in the third integral are almost equal (T/τ → ∞), and
we can neglect this integral. The first integral describes the
monochromatic wave. The second integral is mathemati-
cally equal to integral (14), which describes the start of os-
cillations. Thus, the task has reduced to the one solved in
the previous paragraph. The sequence of events after the
switching off repeats that had happened after the switching
on in the inverse order: first, a comparatively small term is
removed from the monochromatic wave field (when t ′ � τ

the term has a character of beating, and then the term is
increasing with the back front approaching), then through
this point comes the wave front, “absorbing” the monochro-
matic wave and leaving only a small remainder, which is
decreasing because of the phase mixing and the dissipation

Fig. 5. The spatial structure in the vicinity of the poloidal surface at three
instants of time.

on the ionosphere. Let us show the expression for the field
at this last stage of evolution (when t ′ 
 τ ):

�(x, t) � τ

t ′
q0

K 2(x − xTN )
e−i�TN (x)t ′−Kaδ t ′

τ .

The evolution of the wave is accompanied by the increase
of the derivative function � with respect to the radial co-
ordinate. It means that the wave gains the toroidal polar-
ization. It is also refers to the vicinity of the poloidal sur-
face, where it had the poloidal polarization at the stage of
monochromatic wave. The characteristic time of polariza-
tion change is t ′ ∼ τ . Thus, we can say that the wave dies
being the toroidal one.

5. Comparison with the Case of the Zero or Small
Curvature

If the source is the delta-function of time, then the differ-
ences in the evolution of the wave field in the 
N = 0 case
(no curvature) and in the K
N 
 1 case (curvature is es-
sential) are comparatively small, which is obvious from the
comparison of the results of the papers of Leonovich and
Mazur (1998), Antonova et al. (1999), and Klimushkin and
Mager (2004) on the one hand, and, for example, Radoski
(1974), Mann and Wright (1995), and Mann et al. (1997)
on the other. In our case, when the source has the finite du-
ration, the situation is different markedly from the case of
straight field lines, when 
N = 0.

To see it, put 
N = 0 into Eq. (16). At times t 
 τ

the amplitude of the first term is decreasing as t−1 even
even for negligible small dissipation (δ = 0). It means
that just after the source has turned on, the field starts to
decrease due to the phase mixing, except for the vicinity of
the toroidal resonance surface, where the Alfvén resonance
gradually grows; see Wright (1992). In our case (K
N �
1), instead, the amplitude increases because the wave front
is approaching. This phenomenon is associated with the
curvature.
In our work, we have considered the case of large az-

imuthal wave numbers, when K
N 
 1. It is instructive
also to consider the case K
N ∼ 1, when m is not so large,
and the curvature is still important. In this case, it is easy
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Fig. 6. The evolution of the wave field in the case K
N = 6.

to take integral (14) numerically. The results are shown in
Fig. 6. As it is seen, the initial stage of evolution is not
differing much from the case K
N 
 1. But then the flu-
ent increase of the wave amplitude is formed aloof from the
toroidal surface. Oscillation structure, typical for the case
K
N 
 1, is not appeared.

6. Conclusion
In this paper, we have considered the generation of the

high-m poloidal Alfvén waves by non-stationary source
with finite time duration. We intended to explore how
monochromatic poloidal waves appear from initial phase-
mixing evolution, and how these disappears after the end of
the source operation. We took into account the factors that
cause the polarization splitting of the spectrum, like field
lines curvature and finite plasma pressure.
We gained the following picture (Fig. 7). Immediately af-

ter the source has turned on, the wave front appears to move
in the radial direction from the poloidal to toroidal surface.
At the points where the front has not come yet, the evo-
lution of the wave field is determined by the phase-mixing
phenomenon. After the front has passed the given point, the
wave amplitude is abruptly increased and the wave structure
appears practically similar with the monochromatic one.
Outside the transparent region the wave front does not prop-
agate, thus the amplitude is gradually decreased due to the
phase mixing there, and localization across L-shells is ap-
pearing. After the source has turned off, from the poloidal
surface there starts moving the back front, which takes away
with it the monochromatic wave, leaving a small reminder,
which is damping because of the phase mixing and dissipa-
tion on the ionosphere.
This picture is markedly different from the m ∼ 1 case

studied by Wright (1992), where there was no analogy of
the wave front, and the field starts to decrease just after the
source has turned on due to the phase mixing, except for the
vicinity of the toroidal surface, where the Alfvén resonance
gradually grows.
The wave grows due to the instability when it has

poloidal polarization and stops growth when it acquires the
toroidal polarization. The increase of amplitude of oscil-
lations with m 
 1 over time has been observed (Fenrich
and Samson, 1997) using the SuperDARN HF radar chain.

Fig. 7. Spatio-temporal structure of the wave during the time of the source
operation: I, V: Phase mixing (out of the transparent region); II: Almost
established monochromatic wave; III: The wave front is passing; IV:
Phase mixing (the wave front has not passed yet).

Though the authors explained the enhancement of high-m
waves in terms of the drift-bounce instability, we have to
note that the instability can be imitated by the growth of the
wave amplitude when the leading front arrives.
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