
RESEARCH NEWS Earth Planets Space, 59, i–xii, 2007

Evolution of the concept of Sudden Storm Commencements
and their operative identification
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In this paper, we review the evolution of both, the concept and the operative methods of detection of Storm
Commencements (SC’s) and we introduce suggestions for future improvements. Finally, a more precise definition
of the events with consequences in terminology and detection is proposed.
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1. Introduction
After continuous records of magnetic variations became

available, abrupt enhancements were sometimes observed
at the beginning of episodes of magnetic activity. These
events were originally classified as part of the disturbance
and only noted as the beginning of the storm period. Only
in later works, were these impulses studied separately and
named “sudden storm commencements” (SSCs). However,
some authors had the intuition that storminess, although
very often being concurrent, was not constitutive of the SSC
phenomena and used the term sudden commencement(s)
(SC(s)) to name them, consequently emphasising that the
suddenness in the change was the main substantial charac-
teristic. Throughout history both names have been used.
Detection and classification of SSC events evolved with

the concurrent efforts of the observers (including instru-
mentation advancements) and the modellers. The observers
provided lists of events to the modellers. As the knowledge
of the physical mechanisms which produced the SCs grew
the criteria to detect and classify events refined, and the new
lists of events provided by the observers influenced the the-
oretical studies based on these data so both the detection
and the modelling advanced side by side.
The increasing interest in the study of these events can be

traced through the publications that concentrate on the es-
tablishment of several committees by the International As-
sociation of Geomagnetism and Aeronomy (IAGA) to this
aim and finally ending with the creation of the International
Service of Rapid Magnetic Variations (SRMV) to which
the elaboration of official lists of events and promoting the
knowledge of them was commissioned (Curto et al., 2007).
The development of satellite observations revealed that

a sudden increase of dynamic pressure associated with the
interplanetary shock or discontinuity is the origin of SCs.
It also revealed that magnetic storms generally occur when
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the interplanetary magnetic field (IMF) is southward (neg-
ative Bz). Since an interplanetary shock or discontinuity
is frequently accompanied by a southward pointing IMF it
therefore follows that the incidence of SCs and geomagnetic
storms occurring together will also be frequent. The avail-
ability of comprehensive models which are able to explain
geomagnetic storms and SCs main morphological features
can be considered milestones.
The term Sudden Impulse (SI) is used for a sudden H -

component increase without a following magnetic storm.
SIs, were first regarded as magnetic disturbances with a dif-
ferent nature from SSCs. However, SIs have been proved to
be caused by the same physical mechanisms as SSCs (dy-
namic pressure increase) and should be classified comple-
mentary to SSCs.

2. Observational Aspects of SSC
2.1 Morphology
Generally the magnetic signature of an SSC on magne-

tograms resembles what is known to mathematicians as a
step function. However, the amplitude of such a variation
and the particular shape of the variation depend on the loca-
tion (local time and latitude) of each magnetic observatory.
Specifically, peaks (negative or positive) may appear before
the leading edge of the perturbation at mid latitudes, but a
definite two pulse structure dominates over the step wise
variation at high latitudes (Araki, 1994).
Moreover, many other magnetic variations with morphol-

ogy similar to an SC occur very often and can mislead
the observers. There are many variations of the geomag-
netic field (sudden changes with increments and decrements
of the horizontal component simultaneous in the world)
which are not directly related to SSC and SI (20% of every
1 hour period and 90% of all days near sunspot maximum)
(Nishida and Jacobs, 1962).
Romañà, head of the SRMV for many years, insisted on

the importance of a clear definition of the morphology of the
reported phenomena to avoid the risk of making statistics
inhomogeneous, and as a consequence, not very useful. To
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illustrate the basic traces, he chose paradigmatic cases and
produced an Atlas of rapid magnetic variations (Romañà,
1959) which was designed to guide observers in their task
of detection.
2.2 SSC definition
Given the variety of interpretations of an SSC, Romañà

considered it necessary to provide a clear definition of an
SSC commensurate to the level of knowledge at that time.
After the Brussels IAGA Meeting (1955), he sent a circular
to all collaborating observatories, with new instructions on
the phenomena to be reported. SSC (and SSC∗) phenom-
ena were defined as a sudden impulse followed by increased
activity with storm characteristics for a sufficiently long pe-
riod of storminess. SSC∗ is preceded by a sudden move-
ment contrary to the principal (regardless of the direction of
the principle). In the Madrid IAGA Assembly (1969) the
minimum duration of the storm was assessed in the sense:
“SSC [sic] are considered the sudden commencements fol-
lowed by a magnetic storm or by an increase of activity last-
ing at least one hour”.
Later, Mayaud (1973) presented a list of 100 years of

SSC events selected with a different criterion from that nor-
mally used until then. The main difference had to do with
the change of the concept of magnetic activity following the
sudden impulse. According to the author, the key to deter-
mine the existence of a SSC was the “change of rhythm” of
the magnetic activity after the sudden impulse. That would
show the increasing of this activity, independently of its am-
plitude. The definition was adopted during the IUGG Gen-
eral Assembly of Grenoble (1975). However, this defini-
tion, still now in use, is vague and potentially misleading.
As claimed by Cardús in several communications to IAGA
meetings, the ambiguity of the SSC denomination has its
origin in the actual rules for their classification. Moreover,
a lot of people involved in magnetic storm studies use these
lists to identify storms but some of these events—now so
called SSC—only have a weak associated disturbance.
At the IAGA Toulouse Assembly (2005), Curto proposed

a change in the classification following the terminology
used in many works (Joselyn and Tsurutani, 1990). Ac-
cording to this system, the sudden increase of the magnetic
field should be designed by the general term SC, which can
be named as SSC if it is followed by a magnetic storm or
as a SI if it is not. Now it is widely recognized that SC
(SSC and SI) are produced by a sudden increase of the solar
wind dynamic pressure and that magnetic storms after SCs
are caused by the high possibility of the southward inter-
planetary magnetic field in either the turbulent sheath fields
behind the shock, in the smooth magnetic cloud fields be-
hind the sheath, or in both (Tsurutani et al., 1988). The
two phenomena, SCs and magnetic storms, have different
physical mechanisms and one can happen without the other.
Although the scientific foundation of the proposal was gen-
erally accepted, it was decided to postpone the proposal to
the next IAGA General Assembly held in Perugia (2007)
where it was voted upon and definitely accepted.
2.3 Lists
The availability of lists of classified events were neces-

sary to undertake studies on this subject. Former studies
started with particular lists elaborated with their own cri-

teria: Moos (1910) at Bombay, with data of the period
1846–1905; Rodés (1932), with 213 cases at Ebro; McNish
(1934), with 151 cases at Watheroo; and Newton (1948),
with 681 cases at Greenwich. Newton (1948) missed the
identification of many events, especially in the morning
hours, because he used only a collection of subauroral ob-
servatories and ignored determinations from low-latitude
observatories. Watson and McIntosh (1950) elaborated a
list of 340 sudden commencements observed at Lerwick to
find proportions of SC with a preliminary positive impulse,
Sc(+), and SC with a primary double peak impulse, first
negative and then positive, Sc(−+).
These lists were used to undertake several studies of fre-

quency occurrence. Thus Rodés (1932) examined: a) the
secular variation finding an eleven year period supporting
the existence of a relationship between solar activity and
the frequency of SCs; b) the annual variation, finding a
two equinoctial maxima coinciding with the highest helio-
centrical latitude of the Earth; and c) the diurnal variation
with a minimum around 0800 (local time) LT and a maxi-
mum at 2100 LT. McNish (1934) confirmed Rodés results
and found a seasonal variation which was reversed in the
northern and southern hemispheres. The presence of a pre-
liminary impulse subject to a diurnal effect was found by
Newton (1948). In his study, inverted SCs were dominant
around diurnal minimum in the H -component of the mag-
netic field (0800–0900 LT).
Later, amplitude studies followed. Ferraro and Unthank

(1951) found that the greatest amplitudes occurred near
0000 LT, after which there was a fall to the minimum at
about 0700 LT. SC and SI did not differ greatly in their
behaviours. Sugiura (1953) found that there exists a solar
diurnal variation in the SC during sunlit hours at Huancayo,
located near the geomagnetic equator.
Meanwhile, studies on the recurrence of magnetic storms

(Chapman, 1918a); on equivalent electrical currents during
storms (Vestine, 1940); and on morphological aspects of
storms (Sugiura and Chapman, 1960) improved the defini-
tion of a geomagnetic storm: a key aspect of the SSC clas-
sification. Again, each author used their own original list of
events. These lists did not pretended to be exhaustive but
the criteria for determining an SC event was determined by
the authors and was therefore different for each study.
Ferraro et al. (1951) analyzed each magnetogram for the

years 1926–1946 from the observatories; Cheltenham, Tuc-
son, San Juan, Honolulu, Huancayo and Watheroo. They
introduced the criterion of not including any sudden change
in their list of SSC or SI unless it was shown by at least one
observatory in two magnetic elements.
Mayaud (1973) set up a new list of SSC for the pe-

riod 1868–1967 in accordance with his new definition (Sec-
tion 2.2) which was complemented later by Mayaud and
Romañà (1977) for the year 1969–1975. The data given in
these SSC lists were: the hour of occurrence and the mean
value of the duration and amplitude recorded by five low
latitude but not equatorial observatories.
Since 1976, the SSC determination has been made by

the Service of Rapid Variations, hosted at the Observatorio
del Ebro, and is published regularly in the IAGA Bulletin
no. 32 series by the International Service of Geomagnetic
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Indices. A copy of them can be found in a digital form
at (http://isgi.cetp.ipsl.fr/). The current list of global SSC
events is a homogeneous compilation covering more than
120 years. The list does not indicate the type of SSC be-
cause this is location dependent, therefore the term SSC∗ is
reserved for individual observatory lists.
2.4 Time determination and simultaneity
The temporal location of an event is necessary for pre-

dictability and modelling. Hence the starting time of an
event is an important parameter. For SSC, the onset was
taken at the point where a dramatic change in the slope
occurred. The accuracy in this parameter depends on the
sharpness of the discontinuity but also on the accuracy of
the time signals in observatories and development of the
recorders. Former magnetic recorders were driven by clock-
work and time signals were originated by separate mechan-
ical (in some cases wind-up) clocks. Thus, the degree of
simultaneity between the different observatories was a ma-
jor concern in the early stages of recording.
In the first Assembly after the creation of IAGA (Rome

Assembly 1922), Rodés, at that time Director of the
Ebro Observatory, introduced the problem of the non-
simultaneity of the sudden storm commencements and pre-
sented a theory to explain this fact (Rodés, 1922; Bauer,
1923). The question of the simultaneity, or the propagation
of the SSC, was still a debated issue, in part because of the
difficulty to obtain accurate time reference in the data with
the available instruments.
In 1924, Bauer proposed to organize the International

Committee on SC in the Division of Terrestrial Mag-
netism and Electricity (STME), of the International Union
of Geodesy and Geophysics, IUGG, and recommended
Tanakadate as the chairman of the committee who, with
time, became an important promoter of SC studies.
At the Assembly of Lisbon (1933), Tanakadate, using

records made with rapid run magnetographs at Kakioka and
Kanoya, selected three well-marked SSC events in the H -
component that had been carefully measured. He compared
the result with similar measurements on records of other
far away observatories, and found only a few seconds of
difference (Tanakadate, 1934). He deduced that the same
event was registered almost simultaneously at all stations
with characteristics dependent upon the local time. In the
same report, he mentioned the difficulty of defining the ex-
act initial point of the SSC, a problem not totally solved yet.
The slow temporal development in the recorders (typically
2 cm per hour) reduced the precision of the determinations.
In 1937, Rodés sent a report to the President of the IAGA

Committee on Sudden Commencements about the research
on simultaneity or non-simultaneity of storm sudden com-
mencements. He deduced that the highest temporal accu-
racy that can be obtained with the magnetometers in use
was of the same order as the time differences of arrival of
the perturbation to the different observatories. He therefore
urged the observers to take great care to keep the exact time
in the record time marks and in the measurements.
The Second Polar Year (1932/33) and the International

Geophysical Year (IGY) (1957) produced a general im-
provement in timing and recording. Rapid run magne-
tographs (19 cm per hour) produced by LaCour gained pop-

ularity and allowed greater precision in time determination.
During the IGY, some observatories started the use of

WWV signals (a shortwave radio broadcast disseminating
beeps in phase with seconds of universal time) to synchro-
nise timing. During the General Assembly of Berkeley
(1963), Romañà considered time accuracy one of the ma-
jor problems related to SSC determination and pointed out
the necessity of observatories equipped with modern instru-
mentation to measure the SSC times accurately.
With the generalisation of digital equipment, sampling

rate was what conditioned the accuracy in time determina-
tion. Menvielle (1996), using statistics of mean average du-
ration, amplitude and rate of field variation of SSCs, showed
the influence of sampling rate on the accuracy of these pa-
rameters describing the sudden commencements in analog
and digital data. In digital data, a one second sampling rate
is necessary to get the same accuracy as analog data.
2.5 Notation
Notation is another important point in the process of stan-

dardisation of SCs.
In older studies (Chapman, 1918b; Rodés, 1922) there

was no special nomenclature to refer to these events. E.g.,
in the Colaba list of magnetic storms (Banerji, 1926) there
were only additional notes with the comment “Commence-
ment sudden” when it was appropriate.
Later, Chree (1925) used the nomenclature S.C.s to name

them in the paper: “Sudden Commencements (S.C.s) of
magnetic storms: Observation and theory”.
In the IAGA Assembly of Edinburgh (1936) it was pro-

posed a code-system of 5-number groups for broadcasting
gradual commencements and sudden commencements of
magnetic storms be used.
Howe (1939) found SCs not followed by storms and

Ferraro et al. (1951) distinguished between sudden com-
mencements of magnetic storms (SCs) and sudden impulses
(SIs) in his notation. After an IATME recommendation, the
acronyms s.s.c. and s.i. were used by Yamaguchi (1958).
Matsushita (1957) proposed a type of notation (Sc, −Sc,

Sc−) where the sign on the left indicates a negative impulse
preceding the main impulse and on the right indicates a sud-
den increase followed by a decrease lasting some minutes.
Following this kind of classification and using data from the
IGY he studied the complexity of the local variations of the
horizontal components (Matsushita, 1960, 1962). He found
their local time and latitudinal distribution: Sc− dominated
morning hours at high latitudes, −Sc dominated afternoon
hours at high latitudes and Sc were present at any hour of
the day at mid and low latitudes.
Following this, Akasofu and Chapman (1959) proposed

a new type of notation according to the sign and order
of the sudden changes in H variations (Sc(+), Sc(−+),
Sc(+−), Sc(−), Sc(++)) to replace the current notation in
use then (SSC, SSC∗, reversed SSC, reversed SSC∗). With
the nomenclature Sc, (++) will apply to two successive in-
creases of H . They, quoted Yamaguchi (1958), stating that
most Si events were followed by a storm time variation Dst,
though its range was much less than the usual storms. Al-
though they proposed the above change in the nomencla-
ture, in the discussion, Dr. Bartels, in the name of Commit-
tee 10 on Rapid Magnetic Variations and Earth Currents,
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chose not to adopt the proposed change and continued with
the classical SSC denomination. However, the two nomen-
clatures are used today. We wish to end this discrepancy.
A new list of 100 years of SSC was presented by Mayaud

(1973) which was accepted by IAGA as the official list.
Although he did not change the wording, he represented
events not included previously in the concept, such as sud-
den commencements not followed by a magnetic storm but
for a slight or moderate increase of magnetic activity.
From 1976 onwards, the SSC lists, elaborated by the Ser-

vice of Rapid Variations which is hosted at the Observatorio
del Ebro, follow the recommendations of Mayaud adopted
by IAGA.
The interest of continuing the cataloguing of SCs has

been explicit in several IAGA resolutions: Madrid (1969),
Grenoble (1975) and Upsala (1997) and, of course, by the
researchers who appreciate this job and value these lists as
the starting point of studies oriented to understanding the
response of the magnetosphere and ionosphere to the impact
of interplanetary shocks (Joselyn and Tsurutani, 1990).
2.6 Collaborating observatories and its distribution
As the appearance of SSC events depends on the obser-

vatory location on the Earth the distribution of the obser-
vatories collaborating in the identification tasks has been
fundamental in ensuring the completeness of the lists. The
uneven distribution of magnetic observatories around the
world has made difficult the study of phenomena such as
magnetic storms and other world-wide effects like SC. This
topic was discussed at the General Assembly of Stockholm
(1930). During the General Assembly of Berkeley (1963),
Romañà, acting as a coordinator, pointed out the necessity
of sorting a series of observatories latitudinal and longitu-
dinally well distributed, and equipped with state of the art
instrumentation.
Since the beginning, the SRMV used the general net-

work of collaborating observatories which after inspection
of their records produces a list of candidate SSCs. The
norms decided at the IAGA Madrid Assembly (1969) were
introduced in Bulletin 32a. Since then, the SSCs and SIs
were only considered if the number of the reporting stations
was high enough: Only cases reported by a minimum of 10
stations were considered. However, the required number of
stations varied in regions where there existed a low density
of stations. After Mayaud’s (1975) proposal, the SRMV
uses additionally the records of five low latitude, not equa-
torial observatories, evenly distributed around the globe to
determine the true SSC from the list of possible SSC and
to measure their parameters. At these latitudes the auro-
ral and equatorial electrojet disturbances are eliminated.
The selected low-latitude observatories are MB (Mbour),
FQ (Fuquene), HO (Honolulu), PM (Port Moresby), and
AL (Alibag), and as supplementary: TA (Tamanraset), PA
(Paramaribo), AP (Apia), KY (Kanoya), and HY (Hyder-
abad).
The method used to detect rapid magnetic variations in

the observatories is based on visual inspection of each mag-
netogram. It is time consuming. This fact has caused a
progressive diminution in the number of reporting observa-
tories. This compromises the coverage of the wide areas
in the world and the completeness of the lists. With the

decrease of collaborating observatories, in the General As-
sembly of Seattle (1977), the Working Group V-6 insisted
in the necessity that as many observatories as possible re-
port to Ebro Observatory on possible detected SSC events,
to help better the selection of the SSC events to be published
in Bulletin no. 32.
To prevent this lack of information, since the year 2000,

the SRMV takes advantage of the new facilities in data ac-
cess provided by the INTERMAGNET network and a mod-
ification was introduced on the procedure of data treatment.
Data from non collaborating observatories is consulted di-
rectly by the Service. However, a lot of work falls on the
Service. A complementary solution is foreseen in the uti-
lization of new semi-automatic methods. In this line, Curto
presented in the General Assembly of Boulder (1995) a sys-
tem for automatic detection of SSC based on evaluating al-
gorithms of magnetic fluctuation levels. In the General As-
sembly of Sapporo (2003), the same author presented the
actual strategies for the SSC detection, comparing the tra-
ditional and the actual methods and showed a prospective
for the future. And in the General Assembly of Toulouse
(2005), he also presented the progress in methods applied
to automatic detection of SSC and the convenience of us-
ing solar wind data as a complement for the observation of
magnetic variations. The need for an automatic detection of
SSC in real time to alert forecasters and costumers of poten-
tial geomagnetic storm conditions was treated by Joselyn
(1985). More recently, the same need for mid-term fore-
casting of magnetic storms has been pointed out by some
authors such as Khabarova et al. (2006) who used a moving
gradient of the SYM-H index as a detecting algorithm.

3. Concept of SSC
3.1 First studies on SSC
It is said that von Humboldt (1769–1859) first used the

term “magnetic storm” for severe geomagnetic disturbances
and suggested the global occurrence of magnetic storms
(Tsurutani et al., 1997; Schlegel, 2005). However, Tsu-
rutani et al. (2006a) have shown that, most probably, von
Humboldt’s observed auroras and magnetic needle oscilla-
tions, that originated the term “magnetic storm”, were not
associated with a magnetic storm, but with a High-Intensity,
Long-Duration, Continuous AE Activity, or HILDCAA
event. It was Gauss (1777–1855) who organized the Got-
tingen Union to promote geomagnetic observations which
were going to give a global view of the Earth magnetic phe-
nomena (Stern, 2002).
Continuous accurate observations of the Sun and Earth

phenomena promoted the connection between solar activity
and geomagnetic variations. In 1852 Sabine (Director of the
British Colonial Observatories) found a certain correlation
between sunspot numbers and the number and size of mag-
netic disturbances in the period 1843–1848 (Cliver, 1994).
In 1859, Carrington presented his results on the compari-
son of the observation of the first reported solar flare (seen
with the naked eye) with the magnetic records of Kew Ob-
servatory. He found a definite but short-lived magnetic dis-
turbance at the time of the flare while a great geomagnetic
storm began about 18 hours later. It was the most intense
magnetic storm in recorded history, as recently shown by
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Tsurutani et al. (2003) with a thorough analysis of the storm
itself, and of the predictability of similar or greater intensity
events.
Ellis, in 1880, using Wolf’s sunspot numbers and the

daily range of magnetic variation observed at Greenwich,
found that solar and geomagnetic activity occurred approx-
imately in phase. These and other works in the same vein
showed that at the beginning of the 1890’s, the relationship
between the solar and magnetic disturbances was almost
universally accepted (Meadows, 1970 as cited by Cliver,
1994). But only almost, in 1892 Lord Kelvin (1892) theo-
rised that the amount of energy needed by the Sun as whole,
radiating in all directions through space, to produce a mag-
netic storm was too large to produce a magnetic storm on
the Earth, he therefore deduced that there was no connection
between magnetic storms and any kind of dynamical action
area on the Sun. He recommended pursuing the idea of the
relationship between magnetic storms and aurora and Earth
currents in future research to find the origin of the magnetic
storms. In the same Journal, Ellis (1892) studied 17 storm
sudden commencements in 9 observatories well distributed
around the world. He also studied the relationship between
magnetic variations and Earth currents during storms and
suggested that both kinds of variations were caused by an
external agent, possibly the Sun.
Adams (1892) showed that the different phases of the

magnetic storms take place at different stations at the same
instant of time. Although the electromagnetic wave was
theoretically predicted by Maxwell in 1869 and proved by
laboratory experiments of Hertz in 1888, it was not un-
derstood as a physical reality connected with SCs. Thus
it seems that global simultaneous SC occurrence was not
yet proved at that time and volcanic eruptions as a possible
cause was discussed (Bauer, 1910). Only later would simul-
taneous occurrences of geomagnetic sudden commence-
ments (SCs) around the world within several minutes be
widely recognized.
Maunder (1906), observing the recurrences of magnetic

storms at intervals equal to the synodic rotation period of
the Sun, deduced that magnetic storms should be occa-
sioned by some solar agent which was not radiated but
transmitted along narrow, well-defined streams, issuing
from a “restricted area” and rotating with the same period
as the Sun. At present we know that recurrent solar wind
streams cause magnetic storms with totally different charac-
teristics than those by flares/ICMs (Tsurutani et al., 2006b).
These ideas were not known then and these findings consti-
tuted a great advance with respect to the idea of the whole
sun radiating in all directions.
Schuster (1911) evaluated the necessary energy of a

swarm of electrified particles, coming from the Sun, to pro-
duce a magnetic storm, and deduced that this production is
only possible indirectly, by increasing the ionization of the
outer regions of the atmosphere. Bauer (1910) deduced that
small magnetic storms propagated over the Earth more of-
ten eastward and completed the circuit of the Earth in about
3–4 minutes. For bigger and more complex magnetic dis-
turbances the velocity of propagation might be cut down
considerably. Several authors opposed these results and the
theory behind. Chapman (1918a) opposed Bauer’s method

and sustained Maunder’s view on the origin of the mag-
netic storms. He showed that the time of commencement
of a magnetic storm at different stations depended mainly
on their orientation relative to the Sun. In a posterior paper,
Chapman (1918b) gave an outline of the way he understood
the origin and evolution of the magnetic storms. He consid-
ered that they were caused by a stream of charged particles,
mainly or entirely of the same sign, coming from the Sun.
Lindemann (1919) showed that Chapman’s theory of mag-
netic storm was untenable, and suggested that the storms
are produced by a neutral stream of electric particles of dif-
ferent signs.
The magnetic storm model of Chapman and Ferraro

(1931, 1932, 1933) assumed Lindemann’s hypothesis that
the corpuscular flux emitted from the Sun (now termed so-
lar wind) constituted a neutral stream of electric particles
of different signs. This stream collides with the geomag-
netic field and forms a magnetic cavity and electric currents
flowing on the surface of the cavity causes SCs. This is es-
sentially the same as the present theory of formation of the
magnetosphere and the magnetopause current by the solar
wind. It is amazing that they could propose such a theory
which is very consistent with present in situ observations
only from the few ground observations at that time. In two
subsequent papers, Chapman and Ferraro (1940) and Fer-
raro (1951), clarified the difficulty of the penetration of the
electrons, until the distance of a few Earth radii, into the
Earth’s magnetic field to produce the SC. When Chapman
and Ferraro proposed their SC production model, the space
at the distance where the original currents were produced
was considered empty, so the electromagnetic field changes
were propagated with the speed of light “in vacuo” towards
the Earth’s surface, until the ionosphere was reached. After
the knowledge of the presence of ionized gas out to dis-
tances of a few earth radii, Hines (1957) and Hines and
Storey (1958) gave arguments in favour of the transmission
of the magnetic changes from the solar stream to the Earth’s
surface by hydromagnetic waves, a view soon adopted by
the other scientists in the field such as Dessler and Parker
(1959), Piddington (1959), Francis et al. (1959), Green et
al. (1959), etc.
3.2 Morphological studies on SC and hypothesis on

their nature
Since the SCs are global geophysical phenomena which

can be clearly detected everywhere on the Earth, studies of
SCs have attracted many scientists. For example, global si-
multaneity of the SC occurrence, described earlier, has been
a long standing unsolved problem. Several papers were
written on this topic by using high time resolution data from
rapid-run magnetographs installed during the IGY period
(1957–1958) (Gerald, 1959; Williams, 1960; Yamamoto
and Maeda, 1960; Nishida and Jacobs, 1962) but the results
of the analyses diverged greatly. Another important charac-
teristic of SCs is the strong enhancement of the amplitude of
the main impulse (MI) of SCs in the dayside equator (Sug-
iura, 1953). It suggests importance of the role of the Cowl-
ing conductivity (Hirono, 1952).
The preliminary reverse impulse (PRI) which appears in

the very initial stage of SCs was also puzzling. Nagata and
Abe (1955) showed a twin vortex equivalent current sys-
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tem for PRI. Matsushita (1962) reported that the PRI sta-
tistically appears in the afternoon side at high latitudes and
the dayside equator. Sano (1962) showed, also statistically,
that the PRI appears dominantly at high latitude in the af-
ternoon whereas in the morning side at high latitudes the
preliminary positive impulse (PPI) appears. Rastogi and
Sastri (1974) showed that the equatorial enhancement rate
is larger for PRIs than for MIs.
Maeda et al. (1964) proposed that a seasonal dependence

of the SSC field should exist due to the geometrical relation
between the incident direction of the solar wind and the
direction of the geomagnetic dipole axis. Fukushima (1966)
discussed seasonal and local time dependence of the D-
component SC at Kakioka.
Burlaga and Ogilvie (1969) concluded that SSCs and SIs

are essentially the same and both can be caused either by
shocks or tangential discontinuities. The same idea was
proposed by Nishida (1978).
With his list of 100 years, Mayaud (1975) performed sta-

tistical studies of SSC occurrence for different parts of the
world: subauroral and low-latitude observatories. He found
that yearly numbers of SSCs are much better correlated with
yearly averages of sunspot numbers than with yearly aver-
ages of the magnetic activity. He didn’t find a daily or semi-
annual variation of occurrences. He detected two compo-
nents in the SSC: one appearing at low latitude (already
reported by Maeda et al., 1964) not very sensitive to any
modulation by the Earth movement around the Sun, and the
other superposed on the preceding one, being originated in
high latitudes with a very large annual variation. This effect
was described by Obayashi and Jacobs (1957) as related to
the flow of ionospheric vortices and changes in the electric
conductivity.
Simon and Legrand (1989) and Legrand and Simon

(1989, 1991) identified four different signatures in the geo-
magnetic activity using long geomagnetic data series (SSC
among them) to study the long term behaviour of the Sun as
a major contribution to Solar-Terrestrial physics. Simon et
al. (1995) reviewed the above results.
Sastri et al. (2006) analyzed the appearance of the two

basic forms of SCs in the dayside dip equatorial region.
SC(+) related with negative IMF Bz and SC(−, +) related
with positive IMF Bz . In the equatorial stations, they found
that the average value of the amplitude of the positive main
impulse (MI) of SC∗ is higher than that of the conventional
SC(+).
Wilson and Sugiura (1961) and Tamao (1964) wrote

papers which hypothesised about physical mechanisms of
SCs. The former showed elliptical polarization of the hor-
izontal vector of SCs as evidence of hydromagnetic waves
in the magnetosphere. The latter proposed that the high lati-
tude PRI is caused by twin vortex ionospheric currents pro-
duced by transverse hydromagnetic (HM) waves incident
to the polar ionosphere. This transverse HM wave is con-
verted from the wave front of the compressional HM wave
propagating earthward in the dayside magnetosphere.
3.3 Physical models

3.3.1 Construction of model The papers referred to
above provided important key parts which should be assem-
bled into a physical model. But until the 1970s, the way to

assemble them into a unified physical model had not been
known. The first step to construct a physical model of the
SC is to interpret the separate appearance of PRIs in the
dayside equator and the high latitude afternoon (Matsushita,
1962). The equatorial dayside PRIs could occur almost with
or without a relationship with the high latitude PRIs. Araki
(1977) checked the one-to-one correspondence of the PRIs
in the two regions and found that the PRIs occur simultane-
ously in high latitudes and the dayside equator with a simi-
lar waveform. Then global distribution of the SC waveform
was checked and the following characteristics were found
for the H -component variation; (1) the waveform of SCs is
step-function like in low latitudes except the dayside equa-
tor, (2) it consists of two pulses in auroral latitudes; a posi-
tive pulse followed by a negative pulse in the morning side
and a negative pulse followed by a positive pulse in the af-
ternoon side, (3) the two pulse structure with a smaller am-
plitude is superposed on a step-function like increase in the
middle latitudes, (4) the waveform at the dayside equator
resembles that in the high latitude afternoon (Araki, 1994).
Any SC models to be proposed must explain the fundamen-
tal characteristics of SCs summarized here.
Araki (1977, 1994) proposed to interpret SCs by super-

position of a step-function like variation dominant in low
latitudes and a two pulse structure dominant in high lati-
tudes. The former was denoted the DL-field and the latter
the DP-field. The DP-field is further decomposed into the
DPpi- and DPmi-fields where pi and mi denote a prelim-
inary impulse and a main impulse, respectively. Thus the
disturbance field of SCs is expressed as

Dsc = DL + DP = DL + DPpi + DPmi.

Although the decomposition above seems to be rather ar-
bitrary and intuitive, it would be meaningful if an appro-
priate physical mechanism could be found for each sub-
field. According to the model proposed, the DL-field is pro-
duced mainly by the enhanced dawn-to-dusk (east-to-west)
magnetopause current and the dusk-to-dawn (west-to-east
in the dayside) polarization current along the wave front
of the compressional HM wave propagating earthward in
the magnetosphere. The DPpi is caused by a pair of field-
aligned currents (FACs) and the FAC-induced twin vortex
ionospheric currents (ICs) as proposed by Tamao (1964).
Although this current system was originally proposed to ex-
plain the high latitude PRIs, the model considers that the af-
ternoon current vortex extends to the day side equator. This
explains the simultaneous appearance of PRIs with simi-
lar waveform in the high latitude afternoon and the dayside
equator. It is difficult to produce the equatorial PRI by di-
rect vertical incidence of the compressional HMwave in the
equatorial plane.
After the initial compression of the magnetosphere, the

magnetospheric convection is enhanced by the increased
velocity and density behind the shock or discontinuity in
the solar wind and also by the distance between the convec-
tion vortex centres decreasing in the compressed magneto-
sphere. As a result, the dawn-to-dusk convection electric
field is enhanced and transmitted along field lines to the
polar ionosphere accompanying FACs. This FAC and the
FAC-induced twin vortex ICs produce the DPmi-field. The
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sense of the FACs is opposite to the FACs for the DPpi and
so the vortex sense of the IC is also opposite. Again the
afternoon vortex extends to the dayside equator to produce
the equatorial enhancement of the DPmi. It is also difficult
to produce the equatorial enhancement of MI by direct ver-
tical incidence of HM waves because the wave field below
the ionosphere is reduced by a shielding current flowing in
the ionosphere. The shielding is more effective in the day-
side equator where the ionospheric Cowling conductivity is
especially higher.
The model described above assumes that the FAC in-

duced ionospheric current vortices for the DPpi and DPmi
extend almost instantaneously to the equatorial region. Ac-
tually the onset of PRIs at afternoon auroral latitudes and
the dayside equator is almost simultaneous (within 10 sec-
onds). If a horizontal electric field impressed on the polar
ionosphere is transmitted to the equator in the ionospheric
E-region, it takes more than one hour for the equatorial elec-
tric field to rise up, because the transmission is governed by
a diffusion equation (Watanabe, 1962). There is a duct for
HM wave propagation in the F-region minimum of the HM
wave velocity but it has a lower cut off frequency, around
0.1 Hz and a longer period disturbance, such as the DPpi
and DPmi, cannot propagate in the duct. The only way,
at present, to solve this difficulty is to utilize electromag-
netic transmission in the space between the ground and the
ionosphere. After proving the difficulty of producing the
equatorial PRI by HM wave incidence, Kikuchi and Araki
(1979) proposed the zeroth order mode propagation in the
earth-ionosphere wave guide. Here, we stress that the po-
lar electric field is observed very near the source current
even if the observation is made at the equator because of
the long wave length of the DPpi and DPmi. The observa-
tion is made within one wave length where the static field
dominates over the wave field. The quasi-static polar elec-
tric field which extends to lower latitudes attenuates greatly
but can still allow enough flow of ionospheric electric cur-
rents with help of the enhanced Cowling conductivity in the
dayside equator.
To prove that a pair of the FACs could produce the ob-

served ionospheric current vortices, Tsunomura and Araki
(1984) made static calculations of the FAC produced elec-
tric fields and currents giving a realistic conductivity distri-
bution on the spherical thin shell ionosphere. The results
were consistent with the observed current pattern for SCs.
Osada (1992) synthesized an SC using similar calculations.
The calculated results could explain the observed latitudinal
and local time distribution of the amplitude and waveform
of the SC. Ionospheric currents consistent with the pro-
posed model have been detected by MAGSAT (Araki et al.,
1984) and Oersted (Han et al., 2007).
Thus the SC model (called hereafter ATK model) which

was proposed by Araki (1977) taking the basic processes of
Tamao (1964) and Kikuchi and Araki (1979) is considered
to have physical bases (Araki, 1994).

3.3.2 Diurnal variation of SC amplitude Since the
DL field dominates over the DP field in low and middle lati-
tudes, the amplitude of SCs was expected to be larger in the
dayside than the night side. However, actual observations
indicate larger night time amplitudes as shown in 1951 by

Ferraro and Unthank analyzing 55 SCs and 40 SIs deter-
mined from latitudes 21–49 deg. From analyses of several
tens of SCs, Russell et al. (1992, 1994) and Russell and
Ginskey (1993) reported that the SC amplitude is larger in
the night time during the southward IMF while it is larger
in daytime during the northward IMF. Araki et al. (2006)
analyzed more than 600 SCs observed in Memambetsu
(geomagnetic latitude = 35.2◦), Kakioka (27.2◦), Kanoya
(21.7◦) and Alibag (10.0◦), and obtained the diurnal vari-
ation of the averaged H -component amplitude which has
the maximum around midnight and the second maximum
near noon at 3 Japanese stations. They also showed, by
case studies, that the diurnal variation indicates a similar
pattern for both, northward and southward IMF, but the am-
plitude of the diurnal variation becomes larger during the
southward IMF. Shinbori et al. (private communication to
Araki) studied the IMF dependence of the diurnal variation
of the averaged SC amplitude using more than 2300 SCs
and obtained results which support the analysis by Araki et
al. (2006). This unexpected diurnal variation of the SC am-
plitude can be explained by a magnetic field due to the FACs
for DPmi. This result and similar FAC effects for the DPpi
field (Kikuchi et al., 2001) shows that the FAC produced
magnetic field is important even in middle latitudes.

3.3.3 Rise time of SC The rise time of an SC, defined
as the time interval between the starting time (onset) and
the maximum of the H -component, usually appears on the
magnetograms as a monotonous increase only disturbed by
small fluctuations. The rise time of SC distributes from
1 to 10 minutes with the most frequent occurrence at 3–
4 minutes in low latitudes (Maeda et al., 1962). Nishida
(1966) pointed out the items below as mechanisms which
may affect the rise time of SCs:

(a) The time taken for the front of the interplanetary shock
or discontinuity to sweep the geoeffective distance
along the magnetosphere,

(b) The difference in travel time of HM waves to an ob-
serving point on the ground,

(c) The thickness of the front of the shock or discontinuity
in the solar wind,

(d) Inertia of the magnetospheric plasmas against a sudden
deformation,

(e) The broadening of the wave front during the passage
through the magnetosphere due to multi-reflection.

Several analyses were made on the rise time and the re-
lationship between the rise time and amplitude of SCs
(Yokouchi, 1953; Dessler et al., 1960; Chapman and Bar-
tels, 1962; Ondoh, 1963; Pisharoty and Srivastava, 1962;
Nishida, 1964, 1966; Burlaga, 1970; Mayaud, 1975) sug-
gesting item (a) above as the main mechanism for the rise
time. Fowler and Russell (2001) also discussed the rise time
based upon the mechanism (a).
Since the rise time shows a diurnal variation (Yokouchi,

1953), Araki et al. (2004) made an analysis using only night
time SCs and concluded that item (a) principally determines
the rise time with the averaged geoeffective magnetopause
distance of about 30Re (Earth radii). Magnetospheric com-
pression in the distant magnetotail will not have much af-
fect on the Earth. Further, the compression itself is small at
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the tail because the solar wind flow is nearly parallel to the
magnetopause. Therefore, 30Re seems to be a reasonable
geoeffective distance. If we accept this distance, the rise
time is roughly given by 30Re/Vsw, where Vsw is the speed
of the interplanetary shock or discontinuity. This consider-
ation on the rise time suggests that the source of SCs ob-
served on the ground is distributed on the wide surface of
the magnetopause.

3.3.4 Simultaneity of SC onset As was described in
Section 3.2, simultaneity of SC occurrence has been a long
standing problem since Adams (1892) and Ellis (1892).
Before going further, we have to stop here to consider what
the onset time of an SC is. Basically it represents the
starting time of the event and is related to the point in the
magnetogram where the inflection happens. We point out
the following 3 key concepts;

(a) On a normal run magnetogram (what an observer
would use) the rise of SCs looks very sharp. However,
when the time scale is expanded the rise is often found
to be too slow to accurately determine the onset. Even
if we use the highest possible time resolution observa-
tions, it is difficult to determine the precise onset time
if the onset is slow. A sharp rise SC is necessary in ad-
dition to high time resolution observations for precise
determination of an SC onset.

(b) The onset time actually measured is not the time of the
true onset of the event but the time when the amplitude
of the magnetic field reaches a detectable level. There
is a certain interval between the true onset and the
measured onset. To be accurate this interval should
be mentioned in addition to the measured onset time
itself. This interval is shorter for shaper SCs.

(c) The disturbance field of SC (Dsc), consists of the sub-
fields, DL and DP, and DP is further decomposed into
DPpi and DPmi. We should always keep in mind that
Dsc is a superposition of the DL and DP sub-fields. A
negative increase of the DP may cancel out a positive
increase of DL and as the result an apparently delayed
onset may be observed. This superposition applies not
only to the onset but also to the peak of the PRI andMI.
The peak time of both PI and MI can differ depending
upon LT and latitude. Examples of the global SC
distribution with time delay of the onset and the PRI
peak at some of the stations are shown in Araki (1977,
1994).

An anomalous SC occurred on March 24th, 1991 which
showed a very sharp and large impulse (one minute dura-
tion and 202 nT H -amplitude at Kakioka) at the initial stage
of the SC. The inner radiation belt was formed simultane-
ously with this SC and lasted more than one year (Blake et
al., 1992). Li et al. (1993) successfully simulated the mag-
netospheric particle acceleration due to this pulse propagat-
ing tailward from the 1500 LT magnetopause. Araki et al.
(1997) checked the day-to-night propagation of this pulse,
and found that the peak of this pulse propagated with the
appropriate HM velocity above the ionosphere but the on-
set propagation was almost globally instantaneous (within
5 seconds accuracy). The observation of this pulse in the
day and night in addition to the almost simultaneous on-

set of PRI’s in afternoon auroral latitudes and the dayside
equator led them to believe in the existence of a propa-
gation mode much faster than an HM wave. Ohnishi and
Araki (1992) studied the interaction of a plane compres-
sional HM wave with a cylindrical Earth-ionosphere sys-
tem. This showed that the ionospheric shielding current
suppressed the build up of the ground magnetic field and
the onset time delays, apparent from the onset of the mag-
netic field above the ionosphere but the onset on the ground
was simultaneous at noon and midnight. They interpreted
it as electromagnetic transmission in the space between the
Earth and the ionosphere. Deformation of the wave front of
the SC in the magnetosphere was calculated by Namikawa
et al. (1964) and Stegelmann and von Kenschitzki (1964).

3.3.5 Criticisms to the proposed model Lam and
Rodger (2001) tested the ability of the Osada’s calculation
referred in Araki (1994) to predict the signs of the prelim-
inary and main impulses using a case study. Basic coinci-
dences in high latitude signatures did not repeat at low lati-
tudes, especially at night. The calculation is highly depen-
dent upon the chosen electrical conductivity and the FAC
model.
Chi et al. (2001) made a case study of one particular

SC event observed at 35 ground stations. They specified
the peak time of PRI as the arrival time of PRI and ob-
served it differed 30 seconds at most between stations. Then
they calculated travel time of the HM wave emitted from a
point source in the magnetosphere based upon Tamao’s con-
cept of mode conversion from the compressional to Alfven
mode. They reported that the observed delay of the arrival
time of the SC agrees well with the HM wave propagation
calculated but it is inconsistent with the theory of instanta-
neous propagation in the Earth-ionosphere waveguide.
As it was previously described, the ATK model insists

that the onset of the PRI is almost simultaneous in the af-
ternoon auroral latitudes and the dayside equator but it does
not claim that the peak time of the PRI is simultaneous ev-
erywhere. Several figures of the waveform distribution in
Araki (1977) and Araki (1994) show differing peak times
of the PRI as a matter of fact. The peak time may be af-
fected by superposition of the DL and DPmi field in ad-
dition to propagation from different source points. They
should check the onset time of PRIs (not their arrival times)
if they want reject the Earth-ionosphere propagation.
Chi et al. (2006) numerically calculated the travel time

of a linear wave emitted from a point source in the mag-
netosphere and obtained almost simultaneous onset of the
SC over the globe. They reported that almost simultane-
ous onset of SCs can be achieved without invoking hori-
zontal propagation in the Earth-ionosphere waveguide. At
present, the calculation is limited to the travel time of the
wave. We want to see further development of their simula-
tion if it can explain (1) global distribution of the waveform
and amplitude of SC, (2) daytime equatorial enhancement
of PRI and MI of SC, (3) almost instantaneous propagation
of SC from day side to night side, (4) wider distribution of
possible wave sources. As mentioned previously, any theo-
ries of SC have to explain all aspects of the SC.

3.3.6 Other comments The physical model de-
scribed above has been constructed by analyzing mainly
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geomagnetic variations projected on the ground. It is not
easy, however, to imagine what happens in the much larger
magnetosphere from the limited observations on the small
spherical earth even if in situ satellite observations were
available. Three-dimensional computer simulations for the
transient response of the magnetosphere greatly contributes
to our knowledge of the behaviour of the whole system from
discontinuous observations at limited points. For exam-
ple, MHD simulations by Fujita et al. (2003a, b, 2005) are
roughly consistent with the proposed ATK model but clar-
ify more detailed responses which the ATKmodel could not
predict. A simulation by Slinker et al. (1999) also supports
the model above.
It should be noted that all interplanetary shocks or dis-

continuities do not necessarily cause SCs or SIs. If the
shock or discontinuity is obliquely incident to the magne-
tosphere, the SC produced will have larger rise time be-
cause of the longer interaction time with the magnetosphere
(Takeuchi et al., 2002). Such an SC with a slow rise may
not be identified as an SC under the present requirements.
3.4 SC as a probe
It is now established that SCs are caused by a sudden

increase of the solar wind dynamic pressure associated with
the interplanetary shock or discontinuity. It means that
we can detect the pure magnetospheric response without
contamination of the source disturbance. Properties of the
source may be known in more detail with the development
of the solar wind observations.
The response in the magnetosphere-ionosphere-Earth

system can be studied in more detail by the 3D observa-
tions on the ground and in the magnetosphere. Utilizing the
advantages of SC observations, we can use SCs as a probe
to study transient responses of various kinds of magneto-
spheric phenomena. The SC triggers substorms (Kokubun,
1977; Iyemori and Tsunomura, 1983), geomagnetic pulsa-
tions (Psc), particle precipitation (Brown, 1973) and auroral
break up (Lyons et al., 2005). It sometimes forms instanta-
neously with the inner radiation belt (Blake et al., 1992).
The SC model described above shows a way of transmit-

ting the electric field from the magnetosphere to the equa-
torial ionosphere through the polar ionosphere. This is not
limited to the case of SCs but one general way of penetra-
tion of the interplanetary electric field to the low latitude
ionosphere and the plasmasphere.
Recently the prompt penetration of an interplanetary

electric field to the low latitude ionosphere has been dis-
cussed (e.g., Mannucci et al., 2005). We consider that the
electric field transmission described above might be appli-
cable also to this case. This mechanism is also consis-
tent with global manifestation of the DP2 type geomag-
netic variation (Nishida et al., 1966; Kikuchi et al., 1996).
Hashimoto et al. (2002) proposed a model in which the
magnetospheric convection electric field is transmitted to
the inner magnetosphere through the mid-latitude iono-
sphere. Recently, Vasyliunas (2001) and Vasyliunas and
Song (2006) proposed that the polar cap convection flow
can be immediately propagated to all latitudes at the fast
mode HM wave speed. If this is possible, we have two
modes for quick transmission, electromagnetic transmis-
sion under the ionosphere and fast mode HM transmission

in the magnetosphere. We have to make a more detailed
analysis on the “prompt penetration”; how prompt is it? It
is very interesting to check if the HM transmission can ex-
plain the almost simultaneous transmission within the 5 sec-
ond time accuracy previously described.

4. Conclusions
Although the concept of SSC is becoming clearer, there

is still a long way to run in the operative method of the event
detection. Some improvements could be performed by: ex-
tensive patrol towards continuous world wide coverage; au-
tomatisation of the detection generating warnings useful in
space weather now-casting by processing data in real time
and more specific morphological characterization relating
the expected parameter with the position of the magnetic
observatory.
As SSC and SI have the same physical causes, it is pro-

posed to use the general name of SC for both, being then
classified in the lists as SSC or SI according to the mag-
netic character of the following hours.
With the aim to give operative criteria for detection, we

propose (in line with Joselyn and Tsurutani (1990)) a quan-
tification in the threshold values of the SC parameters for an
event to be included in the official list: SI would be spec-
ified by a sharp change (with a minimum slope of the or-
der of 10 nT in 3 min.) of the horizontal magnetic field
at globally spaced observatories at low latitude, and SSC
those which, additionally, are followed by an hour with the
Dst index lower than about −50 nT within the 24 following
hours.
Because of the local time dependence of the SC am-

plitude (Mayaud, 1975; Araki et al., 2006), in addition
to the mean amplitude and starting time given now in the
official lists, the particular SC amplitudes of the 5 refer-
ence observatories—mentioned in Section 2.6—should be
included in the official lists providing valuable material for
future investigations.
As observatories have 1 second data available, these data

should be employed to improve the accuracy in starting time
detection.
The knowledge of SSC has experienced great improve-

ments: from the clear association of the SC events to in-
terplanetary shocks and discontinuities to the modelling of
the three dimensional structures of the SCs. New chal-
lenges, such as mapping of magnetospheric electric fields
penetrating in the equatorial ionosphere are waiting for new
research.
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