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Numerical study of electrostatic electron cyclotron harmonic waves
due to Maxwellian ring velocity distributions

Takayuki Umeda

Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya, Aichi 464-8601, Japan

(Received August 3, 2007; Revised September 18, 2007; Accepted October 2, 2007; Online published November 30, 2007)

Excitation of electrostatic electron cyclotron harmonic (ECH) waves is studied by performing linear dispersion
analysis and particle-in-cell computer simulation. The ECH wave emissions can be excited by a positive slope
in a velocity distribution function perpendicular to the ambient magnetic field, such as that due to a loss cone
or ring velocity distribution. However, there exists no analytic expression for integration of Maxwellian ring
velocity distribution functions. Here we present a method to solve the linear dispersion relations of Maxwellian
ring velocity distribution functions with numerical integration. The obtained dispersion relations are confirmed
by particle-in-cell simulation.
Key words: Electron cyclotron waves, linear dispersion analysis, numerical simulation.

1. Introduction
Electrostatic electron cyclotron harmonic (ECH) waves

are observed in the near-Earth equatorial region (e.g., Ken-
nel et al., 1970; Rönnmark et al., 1978; Kurth et al., 1979a,
b, 1980; Rönnmark and Christiansen, 1981; Horne et al.,
1981, 1987; Koons and Fennel, 1984; Matsumoto and Usui,
1997; Usui et al., 1997, 1999a, b; Shinbori et al., 2007).
The ECH wave emissions were observed at frequencies
f ∼ (n + 1

2 ) fce, where n is a positive integer and fce de-
notes the electron cyclotron frequency.
It is well known that the ECH waves can be excited by an

electrostatic instability induced when an electron velocity
distribution function F(v||, v⊥) (where v|| and v⊥ are veloc-
ity components parallel and perpendicular to the ambient
magnetic field, respectively) has a region of positive gra-
dient, i.e., ∂ F/∂v⊥ > 0. Thus, a loss cone or ring veloc-
ity distribution is likely to drive ECH waves unstable, and
the presence of the cold background electrons strongly af-
fects the growth rates (Fredricks, 1971; Young et al., 1973;
Young, 1975; Ashour-Abdalla et al., 1975, 1979; Ashour-
Abdalla and Kennel, 1978a, b), which may explain the en-
hancement of such waves near the plasmapause.
The effects of a loss cone distribution have been exam-

ined in a number of theoretical linear dispersion analyses of
ECH waves whereby the loss cone feature of the distribu-
tion was modeled using subtractedMaxwellian velocity dis-
tribution functions (e.g., Ashour-Abdalla et al., 1975, 1979;
Ashour-Abdalla and Kennel, 1978a, b). However, self-
consistent particle-in-cell (PIC) simulations of loss cone
distributions, which can be used to analyze nonlinear ef-
fects, are difficult to be carried out. Since a loss cone dis-
tribution, which is relatively narrow, as expected from the
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magnetospheric conditions in which these waves are ob-
served (∼ few degrees), would be weakly unstable, it is dif-
ficult to study with PIC codes because of its high numerical
noise level.
For the reason, the excitation of ECH waves has been ex-

amined by means of two-dimensional PIC simulations as-
suming a Maxwellian ring distribution (Ashour-Abdalla et
al., 1980; Umeda et al., 2007). The Maxwellian ring ve-
locity distribution was adopted since the resulting physi-
cal processes are similar to those occurring in a loss cone
distribution. In contrast, the electrostatic linear dispersion
relation for Maxwellian ring velocity distributions has not
been analyzed because there is no analytic expression for
the integral of ring distribution functions over v⊥. Thus,
cold plasma approximations, i.e., the Dirac delta functions,
were used in previous theoretical works on the linear disper-
sion relation of ring velocity distributions (e.g., Fredricks,
1971; Tataronis and Crawford, 1970a, b; Lee and Birdsall,
1979; Sotnikov et al., 1995; Convery, 1997). The purpose
of this paper is to present a method for solving the linear
dispersion relations of Maxwellian ring velocity distribu-
tions with a numerical integration. The results of the linear
dispersion analysis are compared against PIC simulation re-
sults.
The paper is structured as follows. The Maxwellian ring

velocity distribution is introduced and its linear dispersion
equation is derived in Section 2. The linear dispersion rela-
tion of electrostatic ECH waves is analyzed and compared
against PIC simulation in Section 3. A summary and dis-
cussion of the results are presented in Section 4.

2. Theoretical Formulation
The starting point of the present analysis is the Harris dis-

persion equation of electrostatic waves in a uniform mag-
netic field (Harris, 1959),
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frequency and the cyclotron frequency, respectively, for
species s, ω∗ ≡ ω + iγ represents the complex frequency,
and k||, k⊥, and v||, v⊥ represent wavenumbers and veloci-
ties in the directions parallel and perpendicular to the ambi-
ent magnetic field B0, respectively.
We use a Maxwellian ring velocity distribution function,
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where Vr , Vt ||, and Vt⊥ are the ring velocity and thermal ve-
locities in the direction parallel and perpendicular to the am-
bient magnetic field, respectively. The velocity component
parallel to the ambient magnetic field v|| is defined from
−∞ to ∞, while the perpendicular velocity v⊥ is defined
from 0 to ∞.
The dispersion equation is derived by inserting Eq. (2)

into Eq. (1). The dispersion equation contains the following
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Here the left-hand side of Eqs. (3) and (4) are analytically
expressed by using the plasma dispersion function Z(ζ ).
For the left-hand side of Eqs. (5) and (6), on the other hand,
the following two new functions are introduced,
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∫ ∞
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]
y dy, (7)
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∫ ∞

0
J 2

n (ay) exp
[−(y − b)2

]
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Fig. 1. Plots of the functions Xn and Yn for n = 1.

It is well known that there are no analytic expressions of
these two integrals except for b = 0,

Xn(a, 0) = Yn(a, 0) = 1
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.

Thus, here we compute the values of the functions Xn and
Yn using numerical integration. The linear dispersion rela-
tion of electrostatic waves in Maxwellian ring velocity dis-
tributions is then obtained,
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In this study, the interval [max(0, bs−5), bs+5] is broken
into 100 pieces and Simpson’s rule is used for numerical
integration of the functions (7) and (8). Plots of functions
Xn and Yn for n = 1 are shown in Fig. 1. We do not need
to integrate over the full interval [0, ∞] because e−52(∼
10−11) is small enough. It is also noted that numerical error
between numerical integrals with 100 pieces and that with
1000 pieces is ∼ 10−8.

3. Numerical Results
A basic plasma model is used here for the ECH insta-

bility (Young et al., 1973) in which an unstable plasma
is composed of a hot free energy source and a cold com-
ponent. Thus, the subscript s = h and c represent hot
and cold electrons, respectively. The free energy source
consists of a ring in velocity space in the direction per-
pendicular to the ambient magnetic field. The hot ring
Maxwellian electrons have the ring velocity Vrh = Vr ,
whereas the cold background electrons have zero ring ve-
locity (Vrc = 0). Isotropic thermal plasmas are also as-
sumed, i.e., Vts|| = Vts⊥ = Vts . Since only high-frequency
electrostatic electron plasma waves with a normalized fre-
quency ω/|�e| ∼ 1.5, are to be considered here, the ions
are assumed to be an immobile background.
It is assumed that the total electron plasma frequency

�e ≡
√

�2
h + �2

c = 1.0, the electron cyclotron frequency
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Fig. 2. Growth rates of electrostatic ECH waves in (k||, k⊥) space with Vtc/Vth = 0.1, Vr /Vth = (a) 6.0, (b) 5.0, (c) 4.0, (d) 3.0, (e) 2.0, and (f) 1.0.

�e(= �h = �c) = −0.3, the density ratio nh/nc = 4.0,
and the isotropic thermal velocity of hot ring electrons
Vth = 1.0. It is also assumed that a condition outside the
plasmapause where a warm plasma with a positive slope in
the velocity distribution function is injected into a plasmas-
pheric low-density cold plasma on closed field lines.
3.1 Growth rates of ECH waves in (k||, k⊥) space

Figures 2 and 3 show the normalized growth rates of ECH
waves γ /|�e| in (k||, k⊥) space. In Fig. 2, the ring velocity
is varied as Vr = 6.0, 5.0, 4.0, 3.0, 2.0, and 1.0 with a
constant isotropic thermal velocity of cold electrons Vtc =
0.1. In Fig. 3, the thermal velocity of cold electrons is varied
as Vtc = 0.2, 0.3, and 0.4 with a constant ring velocity
Vr = 3.0. The parallel and perpendicular wavenumbers k||
and k⊥ are normalized by the gyro-radius of hot electrons
ρh ≡ Vth/|�e|. In the present (k||, k⊥) space search, we
used Muller’s complex-root finder (Muller, 1956) to obtain
the numerical solution to the dispersion equation (Eq. (9)).
The linear dispersion analysis shows that the ECH

waves have positive growth rates at the frequency range
of ω/|�e| = 1.4 ∼ 1.8, which is below the upper-
hybrid resonance frequency of the cold background elec-
trons,

√
�2

c + �2
e . Thus, the cold background electrons

affects the linear dispersion relation of the ECH waves
(Fredricks, 1971; Young et al., 1973; Young, 1975; Ashour-
Abdalla et al., 1975, 1979; Ashour-Abdalla and Kennel,
1978a, b).
The ECH waves have maximum growth rates at a parallel

wavenumber range of k|| ρh = 0.25 ∼ 0.5. A typical
cyclotron resonance velocity is given by

Vp|| = ω + �e

k||
∼ 0.7|�e|

0.3/ρh
= 2.33Vth .

The ECH waves have positive growth rates in a resonance
velocity range faster than the thermal velocity of hot ring
electrons. Thus, the growth of the ECH waves is not af-

fected by the Landau damping.
Figure 2 shows that the perpendicular wavenumber of the

ECH mode becomes larger as the ring velocity becomes
slower. The ECH waves have maximum growth rates at
k⊥Vr/�e ∼ 5 when the ring velocity is faster than the
perpendicular thermal velocity of hot electrons. This result
indicates that the perpendicular wavenumber of the ECH
mode is determined by the ring velocity.
Figure 3 shows that the growth rate of ECH mode be-

comes lower as the thermal velocity of cold electrons be-
comes faster. The parallel wavenumber range of the un-
stable ECH waves becomes narrower as the thermal ve-
locity of cold electrons becomes faster. The perpendicu-
lar wavenumber range of the unstable ECH waves is also
slightly modified. The wave normal angle of the most un-
stable ECH mode is modified by the cold electron tem-
perature. To study the effect of both Landau and cy-
clotron damping, results with Vtc|| = 0.4, Vtc⊥ = 0.1
and Vtc|| = 0.1, Vtc⊥ = 0.4 are shown in Fig. 3(d) and
Fig. 3(e), respectively. When the parallel thermal veloc-
ity of cold electrons increases, the parallel wavenumber
range of ECH waves becomes narrower while the perpen-
dicular wavenumber range does not change (see Fig. 2(d)
and Fig. 3(d)). This results from the parallel thermal ve-
locity affecting only Z ′(ζ )(= −2[1 + ζ Z(ζ )]) in Eq. (9).
On the other hand, when the perpendicular thermal veloc-
ity of the cold electrons increases, the growth rate of ECH
mode decreases and the perpendicular wavenumber range
becomes slightly narrower. The perpendicular thermal ve-
locity affects the arguments of both Xn and Yn in Eq. (9).
A larger Vt⊥ gives a larger a and a smaller b, which can
change the properties of Xn and Yn , as shown in Fig. 1,
and the cyclotron resonance condition can be modified. In
summary, the parallel thermal velocity determines the par-
allel wavenumber range of ECH waves while the perpen-
dicular thermal velocity determines the dispersion relation
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Fig. 3. Growth rates of electrostatic ECH waves in (k||, k⊥) space with Vr /Vth = 3.0, Vtc/Vth = (a) 0.2, (b) 0.3, and (c) 0.4.

and growth rate of ECH waves.
3.2 Comparison with PIC simulation
The present linear analysis was confirmed by perform-

ing a PIC simulation. A 2.5-dimensional electromagnetic
PIC code (Umeda, 2004) is used in which Maxwell’s equa-
tions and the equations of motion for individual charged
particles are solved in a self-consistent manner in two spa-
tial and three velocity dimensions. The simulation system
is taken in the x–y plane with a simulation box size of
Lx × L y = 512λe × 128λe, where λe = Vth/�e is the elec-
tron Debye length. The ambient magnetic field is taken in
the x direction. Periodic boundary conditions are imposed
in both the x and y directions for both fields and particles.
A total of 256 particles were used per cell for each com-
ponent. The time step and the grid spacing of the present
simulation are �e�t = 0.032 and �x = �y = λe, re-
spectively. Detained descriptions on the simulation setup
are given by Umeda et al. (2007).
The maximum growth rates of the ECH waves obtained

by the PIC simulation and the numerical dispersion anal-
ysis are compared in Fig. 4. The bracketed numbers rep-
resent mode numbers of the most unstable ECH mode in
each PIC simulation, where the mode number corresponds
to the number of spatial oscillation cycles in the x and y
directions, i.e., (Lx k||/2π, L yk⊥/2π). Thus, the maximum
growth rate is also a function of wavenumbers. Note that
the wavenumbers and the maximum growth rates do not
necessarily correspond to the theoretical analysis shown in
Figs. 2 and 3 because of the discrete wavenumbers in com-
puter simulations.
Figure 4(a) shows the simulated and theoretical growth

rates of as a function of ring velocity Vr , and Fig. 3(b)
shows the growth rates of ECH waves as a function of
cold thermal velocity Vtc. The result shows an excellent
agreement between the PIC simulation and the numerical
analysis of the linear dispersion relation (Eq. (9)). Note

Fig. 4. Comparison between PIC simulation and numerical analysis of
the theoretical dispersion relations: Simulated and theoretical maximum
growth rates of ECH waves as functions of (a) Vr and (b) Vtc . The
theoretical growth rates are plotted as solid lines, while the simulated
growth rates are plotted as circles. The numbers in parenthesis represent
mode numbers of the most unstable ECH modes in the PIC simulation,
(Lx k||/2π, L yk⊥/2π) with Lx = 512λe, L y = 128λe .

that we cannot find the growth of the ECH mode in the run
with Vr/Vth = 1.0 in Fig. 4(a) because the growth rate is
too small to follow a PIC simulation with a high numerical
noise level.

4. Summary and Discussion
In the present paper, excitation of electrostatic electron

cyclotron harmonic (ECH) waves is studied by means of
theoretical dispersion analysis and particle-in-cell (PIC)
computer simulation. A theoretical expression for the ECH
waves due to Maxwellian ring velocity distributions is first
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derived, and then the linear dispersion equation is numeri-
cally solved.
As there is no analytic expression for integrals of the

Maxwellian ring velocity distribution over the velocity
component perpendicular to the ambient magnetic field, the
former was analyzed using the cold approximation (e.g.,
Fredricks, 1971; Tataronis and Crawford, 1970a, b; Lee
and Birdsall, 1979; Sotnikov et al., 1995; Convery, 1997).
In this study, the ring distribution is integrated numerically
and dispersion relations are then derived. The obtained dis-
persion relations have been compared against the PIC sim-
ulations. The result shows an excellent agreement between
the numerical analysis and the computer simulation.
In this study, we assumed a condition outside the plasma-

pause in which an unstable velocity distribution consists of
a warm ring plasma and a plasmaspheric low-density cold
plasma. Detained nonlinear consequences due to the ring
velocity distribution have been reported by Umeda et al.
(2007). Here, the perpendicular wavenumber of the ECH
mode is shown to be proportional to the ring velocity when
the ring velocity is faster than the thermal velocity of hot
electrons. The parallel phase (resonant) velocity of the ECH
mode becomes slightly faster as the ring velocity becomes
faster. The temperature of the cold electrons affects the lin-
ear dispersion relation and the growth rate. Since the fre-
quency of the ECH mode is determined by the upper-hybrid
resonance frequency of cold electrons, the density ratio of
cold-to-hot electrons is an important parameter. Thus, prop-
erties of ECH waves inside the plasmapause and plasma-
sphere would be different from those outside the plasma-
pause.
The present approach is useful when the perpendicular

velocity distribution is not an analytic function. The inte-
gral can be easily obtained using Simpson’s rule, and linear
dispersion relations can be numerically derived in Eq. (9)
as long as a parallel velocity distribution is a Maxwellian.
When a parallel velocity distribution is not a Maxwellian
nor an analytic function, however, it is not easy to inte-
grate the parallel velocity distribution because the integral
becomes a complex number. In such a case, a numerical
method proposed by Nakamura and Hoshino (1998) would
be useful to numerically derive linear dispersion relations.
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Appendix A. Function Xn in MATLAB
function XX = plasma_X(n,a,b)
%
% Integrate F_n(y) = J_n(a*y)ˆ2 * exp(-(y-b)ˆ2) * y
% from 0 to infinity.
%

ny = 100; % The number of element

nn = length(n); % ii
na = length(a); % jj
nb = length(b); % kk

XX = zeros(nn,na,nb);

for kk=1:nb
ymin=max(0,b(kk)-5); % Minimum y
ymax= b(kk)+5; % Maximum y

y =linspace(ymin,ymax,ny+1); % yy
dy=y(2)-y(1); % dy

for jj=1:na
for ii=1:nn % F_n(y)
F(1:ny+1)=besselj(n(ii),a(jj)*y(1:ny+1)).ˆ2 ...

.* exp(-(y(1:ny+1)-b(kk)).ˆ2) ...

.* y(1:ny+1);
end

%
% Simpson’s Numerical Integration
%

tmp(1:ny/2)=(F(1:2:ny-1)+F(2:2:ny)*4+F(3:2:ny+1));
XX(ii,jj,kk)=sum(tmp)*dy/3;

end
end

Appendix B. Function Yn in MATLAB
function YY = plasma_Y(n,a,b)
%
% Integrate F_n(y) = J_n(a*y)ˆ2 * exp(-(y-b)ˆ2) * (y-b)
% from 0 to infinity.
%

ny = 200; % The number of element

nn = length(n); % ii
na = length(a); % jj
nb = length(b); % kk

YY = zeros(nn,na,nb);

for kk=1:nb
ymin=max(0,b(kk)-5); % Minimum y
ymax= b(kk)+5; % Maximum y

y =linspace(ymin,ymax,ny+1); % yy
dy=y(2)-y(1); % dy

for jj=1:na
for ii=1:nn % F_n(y)
F(1:ny+1)=besselj(n(ii),a(jj)*y(1:ny+1)).ˆ2 ...

.* exp(-(y(1:ny+1)-b(kk)).ˆ2) ...

.* (y(1:ny+1)-b(kk));
end

%
% Simpson’s Numerical Integration
%

tmp(1:ny/2)=(F(1:2:ny-1)+F(2:2:ny)*4+F(3:2:ny+1));
YY(ii,jj,kk)=sum(tmp)*dy/3;
end

end

References
Ashour-Abdalla, M. and C. F. Kennel, Multi-harmonic electron cyclotron

instabilities, Geophys. Res. Lett., 5, 711–714, 1978a.
Ashour-Abdalla, M. and C. F. Kennel, Nonconvective and convective elec-

tron cyclotron harmonic instabilities, J. Geophys. Res., 83, 1531–1543,
1978b.

Ashour-Abdalla, M., G. Chanteur, and R. Pellat, A contribution to the
theory of the electrostatic half-harmonic electron gyrofrequency waves
in the magnetosphere, J. Geophys. Res., 80, 2775–2782, 1975.

Ashour-Abdalla, M., C. F. Kennel, and W. Livesey, A parametric study of
electron multiharmonic instabilities in the magnetosphere, J. Geophys.
Res., 84, 6540–6546, 1979.

Ashour-Abdalla, M., J.-N. Leboeuf, J. M. Dawson, and C. F. Kennel,
A simulation study of cold electron heating by loss cone instabilities,
Geophys. Res. Lett., 7, 889–892, 1980.

Convery, P., Ring and nongyrotropic distributions in the Earth’s magne-
tosphere, Ph.D. Thesis, University of California, Los Angeles, USA,
1997.

Fredricks, R. W., Plasma instability at (n + 1/2)fc and its relationship to
some satellite observations, J. Geophys. Res., 76, 5344–5348, 1971.

Harris, E. G., Unstable plasma oscillations in a magnetic field, Phys. Rew.
Lett., 2, 34–36, 1959.

Horne, R. B., P. J. Christiansen, M. P. Gough, K. Rönnmark, J. F. E.
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