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The flow just below the core-mantle boundary is constrained by the radial component of the induction equation.
In the Alfvén frozen-flux limit, thought to be applicable to the outer core on the decade timescale of interest in
geomagnetism, this gives a single equation involving the known radial magnetic field and its secular variation
in two unknown flow components, leading to a severe problem of non-uniqueness. Despite this, we have two
specific pieces of flow information which can be deduced directly from the frozen-flux induction equation: the
component of flow perpendicular to null-flux curves, contours on which the radial magnetic field vanishes, and
the amount of horizontal convergence and divergence at local extrema (maxima, minima and saddle points) of
the radial magnetic field. To produce global velocity maps, we make additional assumptions about the nature of
the flow and invert the radial induction equation for flow coefficients. However, it is not clear a priori that the
flows thus generated are consistent with what we know about them along null-flux curves and at local extrema.
This paper examines that issue. We look at typical differences between the null-flux curve perpendicular flow
component, and convergence and divergence values at extrema, deduced directly from the induction equation
and those from the inversions, investigate the effect of forcing the inversions to produce the correct null-flux
curve and extremal values, and characterise the uncertainties on the various quantities contributing. Although
the differences between the flow values from the induction equation directly and obtained by inversion seem
large, and imposing the direct flow information as side constraints during inversion alters the flows significantly,
we also show that these differences are within the likely uncertainties. Thus, we conclude that flows obtained
through inversion do not contravene the specific flow information obtained directly from the radial induction
equation in the frozen-flux limit. This result should reassure the community that frozen-flux flow inversion is
a consistent process, even if including the extremal-value and null-flux conditions as additional information on
flow inversion is unlikely to be useful. Solving for a time-dependent core-mantle boundary field model and flow
simultaneously may be a good way to produce a temporally-varying field model consistent with the frozen-flux
constraint; the ability to fit the data with such a model could be used to establish the timescale over which the

frozen-flux assumption is valid.
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1. Introduction

Deducing the flow at the core-mantle boundary (CMB)
from geomagnetic observations suffers from several prob-
lems. To make progress, we first make the frozen-flux ap-
proximation, whereby magnetic field lines are tied to fluid
parcels at the CMB (Roberts and Scott, 1965; Backus,
1968). The jump in electrical conductivity across the CMB
means that only the radial component of the magnetic field
is guaranteed continuous across this boundary, and there-
fore we can only glean velocity information from this com-
ponent of the induction equation. This is a single equation
in two unknowns, the tangential flow components (there
is no flow across the solid CMB). The exact form of the
non-uniqueness was well-characterised by Backus (1968),
who showed that only the component of flow perpendicu-
lar to null-flux curves (contours on which the radial com-
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ponent of the magnetic field, B,, vanishes) is uniquely
determined. We can also determine the amount of hori-
zontal convergence and divergence at local extrema (max-
ima, minima and saddle points) of B, (Whaler, 1980; Ben-
ton, 1981). Several non-uniqueness-reducing assumptions
have been proposed (e.g., Whaler, 1980; Gubbins, 1982;
Le Mouél et al., 1985; Voorhies and Backus, 1985; Holme
and Whaler, 2001; Amit and Olson, 2004). We can test
whether the assumptions (and frozen-flux) are consistent
with the geomagnetic data, which depends on the assumed
uncertainties in the geomagnetic field and its secular varia-
tion (SV) at the CMB (e.g., Bloxham and Jackson, 1991).
It is also possible to characterise mathematically the ex-
tent to which the assumptions succeed in reducing the non-
uniqueness. We work with spherical harmonic, or Gauss,
coefficients of the geomagnetic field and its SV, and their
associated standard deviations (neglecting off-diagonal el-
ements of the covariance matrix), treating the SV model
coefficients as ‘data’. The usual approach taken to estimat-
ing the velocity is to solve an over-determined least squares
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system with an additional spatial (and possibly temporal)
smoothness, or minimum complexity, requirement imposed
on the flow, which eliminates the practical non-uniqueness.
The question then arises as to whether the flows resulting
from damped least squares inversion satisfy the fundamen-
tal relationships derivable from the frozen-flux assumption,
and further, whether such constraints could be applied di-
rectly to help constrain models of core flow. We examine
this by two methods: first, we assess the extent to which
imposing the constraints based on the fundamental relation-
ships during inversion changes the flows deduced and the
fit to the data, and second, estimate the uncertainties on the
quantities involved to characterise how serious is the failure
of unconstrained flows to satisfy the constraints exactly.

There is a philosophical difficulty with this approach to
determining whether flows obtained by inversion are con-
sistent with the frozen-flux hypothesis. The constraints
frozen-flux imposes apply at points on the CMB, either
along null-flux curves, or at local extrema, and involve
pointwise estimates of certain quantities. The true uncer-
tainty on any quantity estimated at a point on the CMB is
infinite (e.g., Backus, 1989); what we can calculate is the
uncertainty if the quantity was a finite sum of spherical har-
monic coefficients, whereas the actual expression is an in-
finite spherical harmonic sum. We see a practical expres-
sion of this below, when the uncertainty increases rapidly
as the truncation level of the spherical harmonic expression
changes from degree and order 10 to 14. However, we can
bound uncertainties on local averages of quantities. We thus
justify our approach by noting that imposing smoothness
during inversion means that quantities vary slowly spatially,
so we regard point values and local averages and, more im-
portantly, their uncertainties, as synonymous. This applies
to both the temporally varying magnetic field and the flow
at the CMB.

2. Methodology
The radial component of the frozen-flux form of the in-
duction equation at the CMB is
B, + B, Vy.v+Vv.VyB, =0, (1)
where B, is the radial component of the magnetic field, the
overdot denotes (partial) time derivative, v is the tangential
velocity and
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working in spherical polar coordinates (r,6,¢). Expand-
ing B,, B, and toroidal and poloidal scalars representing v
as truncated spherical harmonic series, this can be written
(after some algebra) as

g=E®@:G@)| - |. @)

where g is a vector of spherical harmonic coefficients of the
SV, E and G are matrices whose elements are linear combi-
nations of spherical harmonic coefficients of the main field
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(forming a vector g) multiplying Elsasser and Gaunt inte-
grals respectively, and t and s are vectors of spherical har-
monic coefficients of the toroidal and poloidal scalars of the
flow respectively (see, e.g., Whaler, 1986). Equation (2) is
usually solved for t and s by least squares inversion. Often,
the inversion is damped to minimise the spatial complex-
ity of the flow as well as the misfit to the SV coefficients.
In addition, extra non-uniqueness reducing assumptions can
be introduced at this point, for instance by combining equa-
tions of the form (2) from several epochs to calculate a
steady flow, or incorporating a side constraint that imposes
tangential geostrophy on the flow. Both the main field and
SV coefficients are subject to uncertainties. Standard de-
viations on the SV are often used to weight the inversion;
those on the main field, which are proportionally smaller,
are usually ignored (but see Jackson, 1995; Mosegaard and
Rygaard-Hjalsted, 1999). Whether or not the inversion is
weighted by the SV standard deviations, statistical uncer-
tainties can be placed on the velocity coefficients. For ex-
ample, Bloxham (1989) plots a CMB flow map with error
ellipses derived from the covariance matrix of the flow co-
efficients.

Here, we wish to test whether these inversion-derived
flows are consistent with the flow information deduced di-
rectly from the frozen-flux induction equation (1). Vy.visa
measure of the amount of horizontal convergence or diver-
gence of fluid at the CMB and, for an incompressible flow,
the amount of upwelling or downwelling. At local extrema
of B,, i.e. where its horizontal gradient vanishes, we see
from (1) that

B,
VH V=——
8

3

which can be compared with its value from a flow inversion,
taking into account the various sources of uncertainty. The
positions of the extrema are themselves uncertain, but this
uncertainty can easily be estimated in the root-mean-square
(rms) sense from the standard deviations of the Gauss co-
efficients. It is even more straightforward to derive rms
uncertainty estimates for B, and B,. and hence to exam-
ine whether the convergence and divergence values deduced
from an inversion of (2) conform to frozen-flux.
Examining pointwise estimates of the component of flow
perpendicular to null-flux curves is more problematical.
From (1), with B, = 0,
B,
vV = ————

, “)
|VH Bl|

where v, is the component of v perpendicular to the null-
flux curve. We can only ever examine the flow at a finite set
of null-flux curve points, and need to ensure that they are
representative. We must also be aware that small changes
in the CMB magnetic field, such as would be consistent
with its uncertainty, will alter both the position of the null-
flux curves and the direction of the normal to it. Besides
these sources of uncertainty, there are those on the quan-
tities in (4), from which we calculate uncertainties in both
the direction of the normal and the magnitude of the com-
ponent in that direction. These cannot easily be calculated
in a rms sense, so we use standard deviations on the Gauss
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coefficients to calculate pointwise uncertainties on the flow
components. These are then compared with the component
of the flow from a velocity inversion in a range of direc-
tions corresponding to the uncertainty in the direction of
the normal. We should also compare flow components for a
range of positions through which the null-flux curve could
pass, given its uncertainties. However, the spatial smooth-
ness constraint on the inversion means that the flow varies
slowly, and so we take the standard deviation on its magni-
tude to be representative of this source of uncertainty, bear-
ing in mind that the actual uncertainties will be a little larger
due to this unaccounted-for error.

The convergence and divergence, and the perpendicular
velocity component, can both be expressed as linear com-
binations of the flow coefficients. Thus we can treat the
values deduced from both (3) and (4) as additional ‘data’
during inversion, either separately or jointly. We control
the extent to which they are satisfied by a Lagrange multi-
plier, in much the same way as the smoothness constraint
is incorporated. Thus in this case our objective function
contains three terms, all quadratic norms of the flow coeffi-
cients: one measuring the fit to the SV coefficients, one the
smoothness of the flow, and one the fit to the frozen-flux
constraints on the flow. Their relative importance during
least squares minimisation is controlled by two free param-
eters.

3. Data and Results

We use the ufm model of Bloxham and Jackson (1992)
which covers the period 1840-1990, although we restrict
the analysis here to 1970-80. This is because we seek
epochs for which the models are constrained by satellite
data, thereby maximising the spherical harmonic degree
at which we have useful information, and avoid the end
effects present in the last few years of the model. Contours
of the 1980 epoch CMB radial field component and its
extremal points are shown in Fig. 1. Note that ufm was not
constrained to be consistent with frozen-flux. The velocity
inversion takes model coefficients from epochs 1970, 1975
and 1980 to determine a steady flow, minimising the spatial
complexity norm of Bloxham (1988). To ensure that our
conclusions are not specific to steady flows, we also invert
for a tangentially geostrophic flow for epoch 1980, which
we construct by regularisation of the non-geostrophic flow,
using an additional Lagrange multiplier (see, e.g., Holme,
1998). We limit the spherical harmonic degree and order of
the analysis to 14; the spatial norm ensures that the flow has
converged. Our preferred steady flow is plotted in Fig. 2.
It shares features common to most other published flow
maps, such as an equatorial band of westward drift beneath
the hemisphere centred on the Greenwich meridian, a gyre
beneath the southern Indian Ocean and slower flow beneath
much of the Pacific hemisphere (e.g., Bloxham and Jackson,
1991; Holme, 2007, and references therein).

There are 71, 74 and 77 extrema of B, for epochs 1970,
1975 and 1980 respectively. As Fig. 1 shows, many of these
are poorly constrained, i.e. a small change to the geometry
of the field would cause them to move a significant distance
(or even disappear and new ones appear), which we will
see later reflected in the large uncertainties in their position.
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Fig. 1. Contour plot of B, at the CMB (continent outlines on this and sub-
sequent plots shown for reference) from ufm for 1980. Thick lines are
the null-flux curves, positive values are solid, negative values dashed.
Contour interval is 0.1 mT. Triangles mark positions of extrema.
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Fig. 2. Steady flow at the CMB from ufm for 1970-80, using main field
and SV coefficients for 1970, 1975 and 1980.

We calculate Vj.v at these points from the velocity inver-
sion and using (3). We then choose approximately the same
number of points along the null-flux curves at each epoch
and calculate their v, values from the velocity inversion and
using (4). Neither the Vy.v nor the v, values from the in-
version match their values determined directly. A robust
way to estimate the differences in the Vg .v values is to com-
pare B, Vy.v with B,A; the result is given in Table 1. This
compares the rms values of the ufm B,, their values pre-
dicted by the flow inversions (a measure of the goodness-of-
fit of the model to the SV data) and the differences between
B, and B, Vy.v, at the extrema of B,, for 1970, 1975 and
1980. The SV predicted by the steady flow is of the correct
order of magnitude, but that predicted by the tangentially
geostrophic flow is much less than the actual values at the
extrema. However, the normalised rms misfits (last pair of
columns) for the tangentially geostrophic flows are smaller
than for the steady flows. Table 2 shows the rms value of v,
according to (4), the value from the flow inversions and the
differences between the two at the digitised points along
the null-flux curves. Tables 1 and 2 show that the differ-
ences between the estimates of the quantities directly from
the induction equation and from the flow inversions are as
great as (or greater than) the quantities themselves, regard-
less of whether the flow is assumed steady or tangentially
geostrophic. This suggests that flows obtained by inver-
sion are not compatible with the underlying assumption of
frozen flux. Note that the normalised differences in the last
pair of columns of Tables 1 and 2, which compare the data
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Table 1. Comparison between rms values of B, Vy.v and B, (in nT/yr) at the extrema of B, for the three epochs used to generate a steady flow, and
for the 1980 tangentially geostrophic flow. For the first three rows, the second column gives the actual rms B, values from the induction equation,
and the following columns, the comparisons with predictions of B, from convergence and divergence of steady flows obtained with two damping
parameters, in terms of rms B, values themselves, the rms difference between B, values, and the rms value of the ratio of the difference to B, itself.
The left hand set of columns is for a damping parameter of 5 x 10>, the right hand set for a damping parameter of 10~*. The final row tabulates
the same quantities for 1980 tangentially geostrophic flows, with the left hand column for a damping parameter of 1073, the right hand column for a

damping parameter of 107>,

Epoch Actual (B,)ms Predicted (B, )ms (8B mms 8By /By )ms

1970 1765 1931 1596 2132 1937 16.5 15.0
1975 1843 1915 1581 2237 2034 1413 228.0
1980 1878 1915 1584 2317 2102 19.7 21.8
1980G 1878 119 236 1872 1861 1.43 1.25

Table 2. Comparison between rms values of v (in km/yr) on null-flux curves. As in Table 1, we show the rms values, the rms difference and the
rms ratio. The top three rows are for steady flows with damping parameters 5 x 10> (left column) and 10~ (right column). The last row is for
tangentially geostrophic flows for epoch 1980 with damping parameters 103 (left column) and 1072 (right column). Note that flows obtained with
a smaller damping parameter bring the perpendicular flow components into better agreement with values obtained from the frozen-flux induction
equation, whereas flows with heavier damping predict B, more accurately from the convergence and divergence values at extrema of B,.

Epoch direct vyms inversion vymg SVUrms (8v/V)tms

1970 9.1 7.4 13.7 9.8 14.9 104 7.4
1975 8.6 7.7 14.2 9.4 15.0 7.1 10.0
1980 7.1 7.8 14.2 8.1 14.1 6.9 16.0
1980G 7.1 7.7 15.6 8.6 16.1 204 322

Table 3. Sum of squares of residuals, SSR (nT?), flow complexity (in
10° (km/yr)z), and rms flow speed (km/yr) for the unconstrained flow,
and flows when constraints (3) and (4) are satisfied at the 90% level.
SSR reflects only the misfit to the SV coefficients, i.e. does not include
the misfit to the constraints that have been included as extra ‘data’.

Flow SSR Flow complexity Vrms
Unconstrained 223.7 74.8 9.6
Extremal constrained 3430 33910 25.9
Null-flux curve constrained 6712 9539 14.8

and model predictions at specific points, are much greater
than one (except for the predictions of B, at extrema by
the tangentially geostrophic flow), whereas the overall nor-
malised misfits of the inversion flows are much lower—the
flows are a reasonable fit to the SV data.

How serious is this incompatibility? It is possible that a
small change to the flow pattern would bring it into agree-
ment with the frozen-flux constraints, in which case, we
would not regard the apparent failures indicated by Tables 1
and 2 as a cause for concern. To test this, we introduce
the constraints given by (3) and (4) by treating them as
additional data during inversion, thus also minimising the
sums of squares of the differences between the quantities
predicted by the flow and those deduced directly from the
data. We control how closely we wish them to be satisfied
using a Lagrange multiplier. Although (3) only involves the
poloidal flow coefficients, inverting for a flow that satisfies
the convergence and divergence constraints also alters the
toroidal ingredient of the flow. Just as we compare quan-
tities with the dimensions of SV in Table 1, we multiply
by the denominators of the right-hand sides of (3) and (4)
and treat them as providing additional SV data values at
extremal or null-flux curve points, respectively. When im-
posing (4), we apply it at the same set of null-flux curve

points we used to test compatibility. Table 3 summarises
the results when we require the constraints to be satisfied at
the 90% level. Note that the fit to the data is considerably
degraded, and the complexity of the flow is increased, to
accommodate the constraints. In fact, the flows are barely
converged, due to the increased power in the short spatial
wavelength components. Figures 3 and 4 plot the flows for
which the null-flux curve and extremal constraints are sat-
isfied (at the 90% level), respectively. The main features of
Fig. 2 can still be seen, but superimposed is the small-scale
structure necessary to satisfy the constraints, with the mod-
ifications concentrated near the null-flux curves or extrema
of B,, but necessarily affecting the flows globally due to the
use of spherical harmonics as basis functions.

We also produced flows in which both constraints (3) and
(4) have been imposed simultaneously. This turned out to be
significantly more difficult than to satisfy either set of con-
straints separately. The reason why is illustrated by consid-
ering the small null-flux patch beneath the North Atlantic.
Both B, and B, are positive within the patch, indicating
from (3) that there is convergence; however, on the null-
flux curve bounding the patch, because B,. is positive, from
(4) the flow is anti-parallel to Vg B, i.e. outward, implying
divergence. Thus, to satisfy both sets of constraints simul-
taneously, the sign of V.v must reverse twice within a very
small distance; this is incompatible with the assumption of
large-scale flow. However, it is clear that the problem dis-
appears if the sign of B, changes within the patch; since the
zero contour of B, lies just to the east of the patch, it is pos-
sible that its sign is not robust everywhere within it. This
suggests we quantify the uncertainties on the terms appear-
ing in (3) and (4).

The rms uncertainty on B, is strongly dependent on
the truncation level of the spherical harmonic series. Ex-
panding to degree and order 10, the standard deviation is
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Fig. 3. Steady CMB flow matching values of the flow speed normal to
null-flux curves.

Fig. 4. Steady CMB flow matching values of convergence and divergence
at extrema of B,..

1381 nT/yr, rising rapidly to 17493 nT/yr for degree 14
(which implies B, is zero to within less than half a stan-
dard deviation everywhere on the CMB!). We will take
1500 nT/yr to be an indicative estimate, from which it can
be seen that the incompatibility between the two sets of con-
straints discussed in the previous paragraph is more appar-
ent than real: since B, is 2951 nT/yr at the North Atlantic
extremum of B, (in 1970; values for the other two epochs
are similar), a change of sign is within 2 standard devia-
tions. We can also calculate an rms uncertainty on the hori-
zontal gradient of B,, 207 nT/km including terms up to de-
gree and order 14, which is less sensitive to truncation level
than the SV, but more so than B, itself, since the gradient
operator preferentially amplifies the less well constrained
shorter wavelengths. Figure 5 shows the result of super-
imposing the two sources of uncertainty for 1980. |Vy B, |
is zero to within one standard deviation anywhere within
the grey shaded areas, many of which are quite large and
frequently contain more than one extremum (compare with
Fig. 1). This illustrates how poorly constrained many ex-
trema are, lying in areas of the CMB where B, is almost flat.
The contours are of the difference between Br and B, Vy.v,
at 500 nT/yr intervals up to 21500 nT/yr, with negative val-
ues dashed. Thus, where these bands intersect a grey shaded
area, the constraint of (3) is satisfied at the extremum (or ex-
trema) enclosed to within approximately one standard devi-
ation (depending on the spherical harmonic truncation level
chosen). There are only 5 grey shaded patches inside which
Br — B, Vy.v exceeds 1500 nT/yr (i.e. the patches are not
intersected by the contours in Fig. 5), and one of these (the
patch beneath Thailand and the south-east Indian ocean)
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Fig. 5. Contours of the difference between B,. and B, Vy.v, at 500 nT/yr
intervals up to 1500 nT/yr (a representative standard deviation of
B,), with negative values dashed. The grey shaded areas are where
|V By | is zero to within one standard deviation. Since B, should equal
B, Vy.v where |Vy B, | vanishes, the grey areas should be intersected
by contours of B,A — B, Vy.v in the range shown. The epoch is 1980,
but the picture is similar for 1970 and 1975.

does not contain an extremum—although both horizontal
derivatives of B, vanish, their zero contours do not quite
intersect. Thus the constraint fails at the one standard de-
viation level at only 4 out of 77 extrema, well below the
one-third to be expected by chance. Hence we deduce that
flow inversions satisfy the constraint on convergence and
divergence deduced from frozen-flux.

As noted earlier, many of the extrema are poorly con-
strained, lying in areas of the core where B, is almost flat.
H. Amit (2007, pers. comm.) has pointed out that at many
of them, particularly those beneath the Pacific, B, and Br
are both small, so the inverted flow and its upwelling and
downwelling are weak, and hence the fit to the frozen-flux
constraints is good. He suggested that a more robust test of
the frozen-flux constraints would be to examine only well-
defined extrema, defined by those contained within small
grey patches in Fig. 5 where the B, values are large. He
notes that it is the displacement of these intense magnetic
field features that should constrain core flow models. The
decision as to which extrema should be included in this set
is somewhat subjective, but we chose only those easily iden-
tified at all three epochs, inside grey patches enclosing a
single extremum, and for which the B, values were signifi-
cantly non-zero. This gave 11 extrema, all but two of which
were outside the area of low SV beneath the Pacific. For
1980, at 6 of them, (3) is satisfied to within 1 standard de-
viation; at a further 3, within 2 standard deviations; and the
final 2 are satisfied to between 2 and 3 standard deviations.
This is a good approximation to the expected Gaussian dis-
tribution (for a small number of samples). Thus the inver-
sion flows appear to be consistent with frozen-flux. It is
also very easy to invert for a flow satisfying the constraints,
although this is mainly because they provide only 11 extra
‘data’ points.

In Fig. 6, we plot the pointwise upwelling and down-
welling values for 1980 from (3) (results from other epochs
are similar) and contour values from a flow inversion. This
allows a qualitative, visual comparison between the two
types of upwelling estimate, to complement the quantita-
tive comparison of Table 1. The agreement between the
two is fair, both in magnitude and sign, for the small-to-
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Fig. 6. Contours of upwelling from steady flow shown in Fig. 1. Contour
interval is 0.001/yr; negative values are dashed. Superimposed are the
pointwise values from (3) for 1980, with the size of the circle reflecting
the amplitude, dark grey shaded for positive values, light grey shaded
for negative values.

moderate pointwise values. For example, several of the
very small pointwise values—some of which are invisible
at the scale chosen here, but their positions can be identi-
fied from Fig. 1—Ilie close to zero upwelling contours. The
unfeasibly large (up to two orders of magnitude greater than
values obtained from inversion) pointwise upwelling and
downwelling values obtained from (3) are the consequence
of non-zero B, where B, is small. Backus (1968) refers
to points where both B, and its horizontal divergence van-
ish as double null-flux points, and points out that they must
have zero B, to be consistent with frozen-flux. To within
one standard deviation in B, (approximately 0.05 mT to
degree and order 14), 7 of the extrema in Fig. 1 could be
double null-flux points; at 3 of them, Br is zero to within
one standard deviation, and at 5, zero to within two stan-
dard deviations, fewer than would be expected statistically
for consistency with frozen flux. However, when the un-
certainty in the locations of the extrema is taken into ac-
count as well, the condition is satisfied at 6 out of the 7
points. Formally, upwelling/downwelling is not defined at
double null-flux points, so we should not be too concerned
by the large values at these 7 extrema. One of them is the
extremum in the small null-flux patch beneath the North At-
lantic discussed earlier. Examining a longer time period
than that considered here, Gubbins (2007) argues that the
changes in flux through some southern hemisphere null-
flux patches over the 20th century have been as large as the
changes in flux through patches bounded by non-zero con-
tours of B, used to estimate upwelling (Whaler, 1984), and
therefore that the SV changes could be as easily ascribed
to flux expulsion by upwelling (a diffusive process). Tan-
gentially geostrophic upwelling and downwelling is largest
near the equator, and upwelling is associated with equa-
torward flow, downwelling with poleward flow (Gire and
Le Mouél, 1990). As Figs. 2 and 6 show, our pointwise val-
ues, and the steady flow inversion results, do not follow the
same pattern.

To examine the uncertainties on flow on null-flux curves,
we begin by estimating the uncertainty in the direction of
the normal to the null-flux curve, i.e. the direction of Vy B,,
at any point. Let the angle the direction of Vy B, makes
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with North be «, so that

(VH Bl')d) _
(VuB,)o

1 B, /0B, _ x

sinf ap | 90~ y’

tano =

The rms uncertainty on « cannot be calculated in a straight-
forward fashion, so instead we estimate its standard devia-
tion at individual points along null-flux curves. This is more
numerical effort than estimating an rms value, but is scien-
tifically more rigorous. Defining o2 as the variance of x and
afy as the covariance between x and y, the variance of « is
given by
5 yiol + x20y2 — 2xyo.3y
o, = 5 5 . )
(% +y%)

Here, the functions x and y, and hence their variances and
covariances, are functions of the Gauss coefficients, which
are themselves correlated. We discuss the implications of
this for estimates of the uncertainty in o, and give numerical

values, in Appendix. The standard deviation of v, is

. 2
1 B,
0y, = \/033 + <—) ok, - (6
[VuB: |\ 5 |V B | ’

involving the variances of the radial SV and Vg B,, as well
as the quantities themselves.

Independently, we can also calculate the covariance ma-
trices for the flows obtained through inversion, which de-
fine error ellipses on the flow vectors (e.g., Bloxham, 1989).
These are different for the unconstrained and the two con-
strained flows, even though the damping parameter con-
trolling spatial complexity is the same in all three cases,
since we treat the constraints as extra data (Bloxham er al.,
1989, see equations (3.13)—(3.15)). We use them to calcu-
late the standard deviations on the components of flow in
the direction of the normal to the null-flux curve. There is
an additional source of uncertainty in this flow component,
however, since the direction of the normal along which we
calculate it is also uncertain, as expressed through the an-
gle variance ao? given by (5) and tabulated in Appendix.
We have therefore varied « by up to +o, and found the
maximum and minimum flow component values within that
swathe of possible directions to the normal. In most cases,
the extremal values are found at the ends of the range of
possible directions; when they lie within the range of an-
gles, we have ensured that we are allowing the direction to
vary finely enough to capture the maximum and minimum
values. In some cases, varying o encompasses only a small
range of flow component values. In others, usually when
the direction of « is poorly defined (but occasionally when
the flow uncertainty is large at the point), varying it within
+o0, allows a huge range of flow components. The results
for 1980 are shown in Table 4 (those from the other two
epochs used to calculate the steady flow are similar). The
first column is v, , the second column its value from the in-
verse steady flow, and the third and fourth, the range of flow
component values as « is varied. Columns 5-7 are the same
quantities for the flow for which the constraints (3) have
been imposed, and columns 8—10 for the flow for which the
constraints (4) have been imposed. Standard deviations on
the inverse v, estimates are denoted with subscripts u, e
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Table 4. Flow components perpendicular to null-flux curves for 1980. The first column is deduced directly from the induction equation, with its
one standard deviation oy, from (6). The second column is computed from the damped least squares inversion flow, with its standard deviation
o, from the flow coefficients covariance matrix. The third and fourth columns are the minimum and maximum values calculated from the damped
inverse flow when « is allowed to vary within one standard deviation; this indicates the variability resulting from this additional source of uncertainty.
Columns 5-7 tabulate the same quantities for the flow constrained to satisfy the conditions (3) at extrema of B, with standard deviation o,, and
columns 8-10, for the flows constrained to satisfy conditions (4) on null-flux curves, with standard deviation o,,. All values are in km/yr.

direct unconstrained extremal points constrained null-flux curves constrained
vy Eoy, v, oy, minimum  maximum vy, o, minimum  maximum vy oy minimum  maximum
—5.9+34 —4.2+0.7 —5.2 -2.9 —6.0£4.5 —12.7 1.2 —5.4+0.3 —11.0 0.6
—6.5+4.1 —0.7£0.7 -23 1.0 —12.4+39 —13.4 —10.4 —6.3£0.3 -9.8 -23
—1.1+3.7 0.7£0.5 —-0.9 2.4 14.24+3.0 18.8 9.0 0.3+0.2 2.0 2.6
—2.945.2 —6.3£0.9 -7.0 —4.3 5.8+6.1 —8.1 18.4 —1.7+0.3 —16.0 12.9
2.4420.2 —5.5%1.5 -2.5 5.1 —56.5+7.1 —62.4 39.5 —1.5+0.5 —-17.3 18.0
—11.4+42.1 6.4+1.3 —6.5 7.3 58.9£7.3 —47.9 61.9 —14.61+0.5 —25.7 25.9
—14.6+9.6 —6.0+1.2 -9.0 -2.0 55.5£6.9 70.3 314 —15.6+0.4 —18.5 —10.1
—5.4+6.2 6.5£1.1 1.9 8.3 —16.2+6.4 —39.9 14.6 —7.4+0.4 —135 1.9
1.4+4.4 2.8+0.8 0.3 4.8 —46.5+£4.0 —47.1 -394 1.5+0.2 14 1.5
1.3£7.4 —-3.7£14 —4.7 -0.7 —4.61+8.4 18.8 —255 1.3+£0.4 —6.7 8.6
—1.2432 1.0£1.3 1.3 32 31.948.1 22.5 38.0 —1.240.3 -2.9 0.6
0.6+4.3 0.1+0.4 2.7 29 15.242.3 11.6 16.3 0.9£0.1 —0.5 2.3
—0.2+5.6 —1.6+0.8 —6.1 3.5 233452 7.0 322 0.3£0.3 -7.3 7.8
—1.3+35 0.5+0.7 —2.6 3.6 9.4+4.4 —-1.9 19.5 —0.8+0.2 —=5.7 4.2
12.6+13.8 10.74+0.7 5.3 11.2 3.3+4.4 —-1.1 6.2 12.940.2 2.8 17.0
6.1+4.0 12.440.8 10.8 12.8 2.7+4.7 0.0 52 6.24+0.3 3.7 8.1
—1.1+4.6 —3.8+0.8 —8.1 1.3 1.8+4.4 —17.1 20.4 —0.5+0.2 —10.8 9.9
—6.6+3.3 —6.81+0.7 —8.4 —4.8 2.5+3.9 9.4 14.3 —6.61+0.2 —12.3 -0.5
—4.0+2.5 —8.4+0.9 9.1 7.2 —28.8+5.4 —32.7 —23.6 —4.0+0.2 —8.1 0.2
0.0+1.8 0.1£0.2 —1.3 1.5 —3.7%1.5 —4.3 -3.0 0.0+0.1 -0.9 0.9
2.9+1.6 4.94+0.7 33 6.3 10.1+4.4 6.7 132 2.8+0.2 2.0 3.6
—2.942.0 —8.3+0.8 —10.0 —6.3 —8.6£5.7 —14.8 2.2 —3.0£0.3 -3.0 -2.9
3.7£2.1 8.7£0.8 6.5 10.6 18.94+5.8 16.2 21.0 3.7£0.3 3.1 4.2
6.7+3.3 2.440.2 —-1.2 6.0 —1.0£1.6 —6.3 42 6.7£0.1 6.5 6.7
7.7+4.2 —3.4+0.6 —6.0 —0.4 —10.3+4.1 —11.3 —8.5 7.7£0.3 22 12.7
3.0£2.7 4.84+0.3 33 6.0 16.8+1.9 12.6 20.0 3.1£0.1 2.4 3.7
6.0+5.4 8.3£1.1 7.4 8.3 —16.24+7.1 —6.1 —23.0 5.9+0.4 0.6 10.1
5.245.1 9.6x1.1 8.3 9.6 —11.6+7.0 —16.8 —4.1 5.240.4 -1.0 104
—9.447.5 —9.7+1.1 -9.5 -7.8 12.4+7.0 1.0 20.9 —9.3+0.3 —13.7 2.8
—10.8+£9.4 —7.8+1.0 =79 —6.1 18.4+6.3 8.4 229 —12.3+0.3 —124 —10.1
—15.6£17.5 —2.5+0.6 —4.8 1.1 7.9+4.0 8.0 3.8 —16.5+0.2 —42.0 17.4
—14.3£19.2 3.8+1.2 0.7 44 2.7£7.2 2.7 6.0 —14.240.3 —46.6 29.0
—8.4+6.2 5.7£1.2 4.9 5.7 2.3+6.7 0.0 4.1 —9.3+0.3 —24.7 8.0
—1.3+3.0 0.3+0.9 —-23 2.7 6.5+5.5 35 8.9 —1.4+03 —1.8 -0.9
—1.0+2.7 —5.0£0.6 =55 —4.2 —22.1+£3.9 —23.7 —18.9 —1.240.2 2.1 —-0.2
—1.3+2.7 1.3+0.6 0.3 2.2 —5.7£3.6 —11.9 1.0 —1.4+0.2 —1.4 -1.3
—0.9+7.7 5.1£0.9 —1.4 8.8 —19.4%£55 —28.6 0.6 —0.2+0.3 0.5 -0.8
1.14+4.1 —7.240.5 -9.2 —4.2 18.14£3.1 11.6 21.9 1.2+0.2 0.7 1.5
0.8+4.7 —3.8+0.9 -7.1 0.2 12.0£5.7 19.8 1.7 0.7£0.3 0.3 0.9
—0.1+4.9 6.4+0.8 32 8.3 —25.5+4.38 —26.1 —19.3 —0.1+0.3 -0.9 0.8
32429 9.9+0.5 7.7 11.7 —29.24+2.8 —23.2 —34.3 3.5+0.1 1.7 5.2
1.4£2.0 0.8+0.4 -33 4.9 —29.9+2.6 272 -30.8 1.340.1 2.2 4.7
1.7£2.6 —1.3+0.5 —11.6 9.7 38.5+£2.8 39.7 22.1 1.7£0.2 —15 4.0
—1.1+£3.9 —17.4+0.8 —18.2 —12.7 3.8+5.1 —4.3 11.0 —1.5+0.3 —5.6 29
9.44+10.9 22412 —24 6.0 —6.6£6.7 -9.7 —0.8 8.9+0.3 6.1 8.1
8.9+5.7 0.6+1.0 —1.4 2.5 —35.0£5.0 —40.9 —25.1 9.1£0.3 1.9 15.2
32428 2.7£1.2 1.1 4.2 17.6+6.3 21.3 12.7 3.5+0.4 -0.7 7.5
6.7£3.8 6.3+1.2 5.8 6.4 —27.7£5.0 -39.1 —14.4 7.0£0.3 4.9 8.7
0.6£5.0 1.94+0.7 2.7 6.1 —10.1+4.1 0.0 —17.8 1.3£0.2 —14 3.7
—7.1+£6.9 —9.4+£1.2 -9.7 -7.1 —25.6+7.1 —26.4 —19.3 —7.1+£0.4 9.4 33
—7.5+4.5 —4.01+0.7 7.2 —-0.3 —16.4+4.2 —16.3 —14.4 —7.6£0.2 -9.0 5.2
21.1420.2 11.94+0.8 6.3 13.1 0.2+4.8 —0.1 0.3 21.1£0.3 11.0 23.3
12.34+6.2 14.94+0.9 12.9 154 15.24+6.3 11.2 17.8 12.440.3 8.0 15.8
4.7£15 10.440.5 8.8 11.9 7.0£3.6 9.5 44 4.7+0.2 29 6.4
—4.942.2 —13.2+1.1 —13.2 —-12.9 —34.2+7.7 -36.1 —31.2 —4.9+04 —6.2 -35
—8.24+3.0 —5.8+1.1 —6.7 —4.3 —18.5+6.2 —213 —15.1 —8.1+04 -95 —6.4
—9.8+4.6 1.1+0.8 -1.0 3.0 —25.4+4.0 —30.7 —18.4 —9.8+0.2 —13.2 —=5.7
15.24+19.6 —6.1£1.1 —8.5 0.0 —7.6£6.0 —44.9 34.4 15.7+0.3 11.0 15.7
6.24+2.8 4.44+0.8 3.7 4.9 13.0+4.5 11.5 14.0 6.2+0.3 4.8 7.3
39427 4.6+1.0 3.6 5.5 —11.4+6.3 —14.2 —-8.0 3.8+0.3 3.6 3.8
1.0£2.7 1.94+0.8 —-0.2 3.8 —11.0+4.6 —11.0 —-10.7 1.1£0.3 0.7 1.4
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and n, for unconstrained, extremal points constrained, and
null-flux curve constrained, respectively. We have used rms
variances of B, and Vy B, in (6); the results would not differ
greatly if we used point-wise values. Imposing the extremal
constraints has increased o, by a factor of typically 5 (over
0,), while imposing the null-flux curve constraints has re-
duced o, by about a factor of 3.

Unlike the convergence and divergence values at extrema
of B,, the flows obtained through damped least squares in-
version do not immediately appear to be consistent with the
constraints on their components normal to null-flux curves.
The range of values of the flow component as « is varied
encompasses the actual v, value at only 20 (out of 61)
null-flux curve points. But this number can be increased
to 42, consistent with the two-thirds expected statistically,
by accounting for the uncertainties in the direct v; com-
ponents. In general, their standard deviations o, , calcu-
lated from (6), are much larger than those on the inverse
v, components, o,, calculated from the covariance matrix.
This reflects primarily the uncertainty in Vg B,., which also
determines the amount of variability in «. Hence Table 4
shows that the range of values of the inverse v; component
as « is varied tends to be large when o, is large, and the
range of variability of inverse v; components is typical of
0y, . Columns 5-7 show that flows constrained to satisfy the
constraints (3) at extrema of B, only match the actual v
values at 18 null-flux curve points (to within one standard
deviation on each quantity). As previously noted, match-
ing the constraints at extrema of B, tends to increase the
flow amplitude, so the inverse v; components are typically
larger than those obtained in the other calculations. Thus,
the inverse flow components at only 6 more null-flux curve
points are in agreement with the direct v, values when the
variability arising from uncertainty in « is taken into ac-
count. This is another illustration of the incompatibility be-
tween the constraints. In contrast, the range of values of the
v, components from inversions in which the null-flux con-
straints (4) have been imposed include the direct v; value
at all but 5 null-flux curve points, even without accounting
for their standard deviations.

4. Discussion

An initial calculation of the differences between direct
(from the frozen-flux radial component of the induction
equation) and inversion-based flow components perpendic-
ular to null-flux curves, and convergence and divergence at
extrema of B,, suggested that the two sets of values were
badly inconsistent. Imposing the constraints during inver-
sion markedly altered the flows and the fit to the SV. How-
ever, analysis of the uncertainties demonstrates that most of
these differences are well within the errors.

Our study has been conducted using field models con-
strained primarily with ground data, especially concern-
ing the SV. Current satellite magnetic missions @rsted
and CHAMP have been providing almost global, continu-
ous coverage of the vector magnetic field for a number of
years, from which models have been produced which give
better estimates of both the shorter wavelength components
of the magnetic field and the SV. Unfortunately, it is not
yet clear whether such models would provide greater in-
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sight for a study of this kind. The SV in the new models is
definitely determined far better (at least for the subdecadal
period over which the satellites have flown), but its spec-
trum is “blue”: power increases steadily with harmonic de-
gree (Holme and Olsen, 2006). Noise in individual coeffi-
cients becomes increasingly a problem with higher degree,
to the extent that even simple tests for frozen flux become
inconclusive: while it impossible to reject the frozen-flux
hypothesis, a more positive test seems increasingly unlikely
to be possible. Lack of knowledge of the higher degree
components of the main field due to the lithospheric field
may be an even greater problem. While the internal field is
undoubtedly resolved far better in satellite data models than
in models such as ufm, the transition between the core and
lithospheric fields is still unclear, and a conservative view
would taper such models to give a core field with spectrum
little different to that of ufm. The unknown higher-degree
field places additional uncertainty on the position of null-
flux curves and field extrema. Further, Eymin and Hulot
(2005) show, following earlier conjectures of Hulot et al.
(1992), that the flow can interact with the small scale field
to produce low degree secular variation, imposing an ad-
ditional, perhaps dominant, contribution to the uncertainty
in fit to observed SV. While better and better data could
in principle allow the accurate determination of higher de-
gree SV, the high-degree field is always likely to be beyond
direct observational constraint. The best we can do is prob-
ably to accept the lack of precision in the main field, and
constrain the secular variation by modelling the field over
longer time, as is done with the historical data and the ufm
model used here.

The ufm model we used to define the main field and SV
for this study is not consistent with frozen-flux. In par-
ticular, there was a strong increase in the flux through the
patch bounded by the null-flux curve beneath South Amer-
ica, the southern Atlantic Ocean and the south-western part
of the Indian Ocean between 1960 and 1980 (Bloxham et
al., 1989). Bloxham and Gubbins (1986) produced a se-
ries of ‘snapshots’ of the main field in which flux through
patches bounded by null-flux curves was conserved, a nec-
essary condition for the frozen-flux hypothesis to hold. The
extension of this concept to produce a continuously time-
varying field model consistent with frozen-flux is ongoing;
Jackson et al. (2007) have developed a new method for im-
plementing this constraint and that imposed by Kelvin’s cir-
culation theorem (Jackson, 1996), which they believe offers
greater promise for producing a continuously time-varying
field model consistent with frozen-flux. However, it re-
mains to be seen how much better flows derived from such a
model would satisfy the conditions (3) and (4). Another ap-
proach would be to generate a frozen-flux field model and
time-dependent core flow model simultaneously, by solv-
ing for an initial field, and a time-varying flow which will
define the field morphology at later epochs. Such a fully
self-consistent approach should ensure that constraints (3)
and (4) are satisfied, although because evolution of the field
depends on the time-integration of the product of the field
and the flow, the inverse problem is significantly non-linear
(Voorhies, 1986; Bloxham, 1988). This would also address
the question of the existence of a model consistent with
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B,

S¢ - for 61 points along null-flux curves for epoch 1980, showing that the

covariance term is typically 3 orders of magnitude smaller than the variances.

(rxz af avf‘, Oq af (73 Ufy Oy
2.44 x 10! 2.54 x 10" —9.10 x 107 14.5 2.49 x 10'! 3.00 x 10'! —2.05 x 108 51.8
2.47 x 10'! 2.52 x 10 1.89 x 10° 16.7 2.53 x 10'! 3.24 x 10'! 2.55 x 108 24.9
2.48 x 10! 2.51 x 101! 2.26 x 10° 11.8 2.53 x 101! 3.27 x 1011 3.99 x 107 17.4
2.46 x 1011 2.49 x 101! —4.43 x 10° 26.5 2.53 x 10! 3.25 x 1011 6.94 x 108 15.5
2.48 x 1011 2.45 x 101! 2.11 x 107 104.0 2.53 x 10! 3.20 x 10'! 3.59 x 108 15.2
2.46 x 10! 2.46 x 1011 4.85 x 108 122.7 2.50 x 10! 2.99 x 10!! 3.24 x 107 439
2.49 x 10'! 2.58 x 10! —1.79 x 108 23.7 2.51 x 10! 2.99 x 10'! —1.24 x 108 22.7
2.48 x 10'! 2.71 x 10" —-1.93 x 108 38.6 2.49 x 10'! 2.69 x 10! —5.97 x 107 26.3
2.50 x 10! 2.57 x 1011 —1.26 x 108 23.8 2.49 x 10! 2.70 x 10! 1.53 x 107 27.2
2.53 x 1011 2.84 x 101! —7.74 x 108 424 2.48 x 10! 2.96 x 10!1 2.52 x 107 10.2
2.52 x 10!1 2.82 x 10! —7.48 x 107 18.4 2.49 x 10! 2.98 x 10!1 9.15 x 108 13.9
2.53 x 10! 3.27 x 1011 —4.14 x 108 23.7 2.47 x 101! 2.70 x 10!! 2.45 x 108 41.8
2.50 x 10'! 3.28 x 10! 2.38 x 107 32.6 2.45 x 10! 2.70 x 10'! —4.23 x 108 27.3
2.54 x 10'! 3.23 x 10" —3.75 x 108 19.7 2.48 x 10'! 2.55 x 10! —9.94 x 107 36.7
2.54 x 10! 3.22 x 101! 2.05 x 108 39.8 2.49 x 10! 2.56 x 10!! —1.04 x 108 19.7
2.54 x 1011 3.12 x 101! —1.25 x 108 17.7 2.46 x 10! 2.52 x 1011 —1.55 x 10° 14.1
2.53 x 1011 3.10 x 101! —1.64 x 108 26.1 2.51 x 10! 2.49 x 10!1 —1.15 x 10° 152
2.49 x 10! 3.31 x 101! 3.25%x 107 12.7 2.51 x 10! 2.59 x 10!! —1.32 x 108 27.3
2.51 x 10'! 3.13 x 10! 6.82 x 108 12.6 2.51 x 10! 2.50 x 10'! 1.34 x 108 26.9
2.49 x 10'! 2.97 x 10" —8.46 x 108 94 2.51 x 10! 2.45 x 10'! —2.86 x 100 20.5
2.50 x 10! 3.13 x 10! —8.10 x 108 8.5 2.51 x 10! 2.42 x 10! 1.50 x 108 35.6
2.51 x 10! 3.09 x 101! 2.59 x 108 10.4 2.49 x 10! 2.49 x 1011 —4.05 x 100 17.3
2.51 x 1011 3.15 x 101! —5.39 x 108 10.7 2.48 x 10! 2.71 x 1011 —2.39 x 108 6.9
2.54 x 101 3.22 x 101! 2.44 x 108 13.2 2.50 x 10! 2.58 x 10!1 3.23 x 108 10.2
2.53 x 10'! 3.11 x 10! —3.99 x 108 16.3 2.48 x 10! 2.47 x 10! 2.73 x 108 10.8
2.53 x 10'! 2.84 x 10" 8.96 x 107 13.8 2.49 x 10'! 2.44 x 10'! 6.55 x 108 14.9
2.53 x 10! 3.11 x 10! 8.95 x 107 25.6 2.52 x 10! 2.43 x 10! —5.94 x 108 45.8
2.50 x 10!! 3.25 x 101! 4.65 x 107° 25.6 2.57 x 10! 2.43 x 10! 6.77 x 107 11.5
2.54 x 1011 3.21 x 101! 423 x 108 27.9 2.52 x 10! 2.42 x 1011 3.25 x 108 12.8
2.54 x 1011 3.20 x 101! 2.77 x 107 31.8 2.49 x 10! 2.47 x 101 —6.33 x 107 14.5
2.50 x 10'! 2.97 x 10! 1.11 x 108 414

frozen-flux (i.e. whether it fits the data adequately), and
might also provide constraint on core field above spherical
harmonic degree 14, because of its influence in positioning
the radial field extrema and null-flux curves.

The method by which we have imposed the constraints
indicated by (4) during inversion is similar to that which
Wicht and Jault (1999) used to determine the toroidal part
of vB,. They applied (4) at a sequence of points along null-
flux curves to give a set of equations of condition for the
toroidal flow coefficients, ignoring the equations of con-
dition provided by the frozen-flux form of the radial in-
duction equation (this would be like attaching a very large
weight to the constraints of (4) in our calculations, thereby
downweighting strongly the information from the induc-
tion equation). They showed that the flow so determined
is not sensitive to the distribution of the points provided
their density is sufficiently high (about 200 points), so long
as the flow is regularised in the usual fashion during inver-
sion. This, and the use of spherical harmonics to provide a
global set of basis functions, enabled them to extrapolate the
toroidal flow component away from null-flux curves. Their
resulting flows resemble those found by the traditional in-
version method.

In a similar fashion, (3) could be used to define equa-
tions of condition for both the toroidal and poloidal flow

coefficients. The extrema of B, are more evenly distributed
over the CMB than sets of points defining the null-flux
curves, suggesting that the flow so defined would be bet-
ter determined. However, we have seen how poorly con-
strained the extremal positions are, and their numbers can-
not be increased, unlike points along a null-flux curve, so
the least squares problem would be seriously underdeter-
mined. Hence it is unlikely that the extremal constraints
on their own would provide a useful practical technique for
flow determination. Even more importantly, where their po-
sition falls at a point where the magnitude of B, is low, but
the radial SV is not small, then condition (3) requires a flow
with unphysically large upwelling. An inversion scheme
would need to incorporate constraints limiting the amount
of upwelling, unless downweighting such points owing to
their large uncertainties and standard methods of flow regu-
larisation were sufficient to give reasonable values. It there-
fore seems unlikely that conditions at the extremal points,
and to a lesser extent, the null-flux curves, can sensibly be
built into an inversion scheme, particularly given uncertain-
ties due to the unmodelled high-degree field, and spectrally
“blue” secular variation.

Nevertheless, by calculating flow quantities directly from
the radial component of the diffusion-less induction equa-
tion and comparing them with their counterparts from flows
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obtained by inverting SV, we have shown that inversion
flows do not contradict the pointwise flow information, once
uncertainties are taken into account. Thus regularised flow
inversion does not contravene the underlying frozen flux
constraints and involves solving a consistent system. Flow
inversion tends to match the upwelling and downwelling
values at extremal points where the magnitude of B, is high
better than where B, is small. A few of the extrema where
B, is small could be double null-flux points, at which B,'
must also be zero to be consistent with frozen-flux (Backus,
1968). As we have seen, small deviations from this con-
straint give unfeasibly large upwelling that is not repro-
duced in flow inversions. Thus flow inversion may provide a
good way of producing temporally-varying core fields con-
sistent with the frozen-flux hypothesis.
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Appendix A.

Equation (5) gives the variance of « as

252 1 252 2
Yoo, +x‘oy —2xyoy,

2
o, =
* (2 +y2)?
where x = ﬁ (—%12) and y = (—[;12), i.e. x2 + y2 =

r2(VyB,)?. Expanding x and y in terms of the Gauss
coefficients, we have

o2 = Z (g)Zl+4 (+ 1

l

! 2
de
) Z <ﬁ) (a;m cos’>mep + ohz;n sin’ m¢>) ,
2Ut4
o
.

i m o\ 2
. E - ) m? (ogzm sin® m¢ + ofm cos? mq‘)) ,
sin 6 ! !

. XI: ﬂp—lmm cos me sin m¢ (02 — o )
“— df sinf st Th)
Here, correlations between the Gauss coefficients them-
selves have been ignored. We justify this by noting that the
magnitudes of the variances of the Gauss coefficients are
similar when derived from sufficient, well-distributed data,
implying that estimates of the coefficients are broadly inde-
pendent (as would be expected near the era of global data
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coverage from MAGSAT satellite data). The covariance be-
tween x and y does not in general vanish. Its mean value
over the sphere does, but it is not pointwise zero. However,
if the errors on the Gauss coefficients are rotationally in-
variant (for example, because they are derived from an even
data distribution, or resulting from a rotationally invariant
error process like the stochastic model of the crustal field

(Jackson, 1994)), then they are both a function of / only.

In that case, ogz,n = thm, so the covariance ofy would van-
; ;

ish, and using the spherical harmonic addition theorem and
relations derived therefrom (Whaler and Gubbins, 1981, ap-
pendix B)

1 an2+4
2 _ 2 _ 3 2
oy =0,=3 E (;) [T+ 1) ogm.
Thus,

O‘Dt:x2+y2'

2 2

Table 5 shows calculations of o2, o2, oy, and oy (ex-

pressed in degrees) for the 61 points chosen to represent the
null-flux curves in 1980. The covariance term is typically 3
orders of magnitude smaller than the variances, indicating
that it can safely be neglected. Note that the angular uncer-
tainty can get very large when the gradient of B, is small,
i.e. when the direction of the normal to the null-flux curve
is poorly defined.
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