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Removal of scattered light in the Earth atmosphere
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Atmospheric correction algorithm, which means a procedure to remove scattered light in an atmosphere from
the spaced-based data, are shown for ocean color data given by the satellite ADEOS. In order to achieve better
atmospheric correction, this paper proposes two subjects; one is how to determine aerosol characteristics by referring
to both of radiance and polarization, and the other is introduction of atmospheric correction coefficients.

At first it is shown that a heterogeneous grain model according to Maxwell-Garnett mixing rule as small water-
soluble (WS) inclusions in an oceanic (OC) matrix is available to interpret ADEOS/OCTS and POLDER data
observed over the Arabian Sea. Our algorithm is based on an idea that aerosol characteristics can be estimated
in terms of scattering behavior in the polarization field. Then atmospheric correction, which is based on radiative
transfer process in an atmosphere-ocean model involving the retrieved aerosol model, is applied to ocean color data
given by ADEOS/OCTS. Finally our atmospheric correction provides an expected chlorophyll map near the sea

surface.

It is of interest to mention that retrieval of atmospheric aerosols is improved by combination use of radiance and
polarization, moreover atmospheric correction process is progressed by using the correction coefficients.

1. Introduction
Ocean color data given by the Ocean Color and Tempera-
ture Scanner (OCTS) onboard the Advance Earth Observing
Satellite (ADEOS) is considered here. ADEOS was unfortu-
nately ten-months life but provided us with valuable informa-
tion of Earth environments since August 17in 1996(NASDA,
1996). The OCTS is the second ocean color sensor in eigh-
teen years since the first Nimbus-7/CZCS (Coastal Zone
Color Scanner) (Zion, 1983). Furthermore ocean color re-
mote sensing is expected to progress with SeaWiFS of the
USA, which was successfully launched on August 1 in 1997
(see Gregg et al., 1997). At this time we focus our attention
on atmospheric correction for ocean color data.
Atmospheric correction is the process of removal of con-
taminated atmospheric light from space-borne data. This
process is a key factor especially for ocean color analysis,
because the contribution of atmospheric light to the satel-
lite data is about 80 to 90% in the visible wavelengths over
the ocean. Certainly atmospheric correction is necessary not
only for ocean color analysis in the visible wavelengths but
also for the longer wavelengths and for land usage (Zagolski
and Gastellu-etchegorry, 1995; Francois and Ottlé, 1994).
Since atmospheric light is mainly due to multiple scattering
by aerosols, the aerosol model itself contributes greatly to
the atmospheric correction of the ocean color data (Mukai et
al., 1992; Fukushima and Toratani, 1997). It is well known
that atmospheric aerosols reflect the environmental change.
Namely aerosol characteristics might change greatly in tem-
poral and regional scales (Dalu ef al., 1995; Pilinis et al.,
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1995; Liu et al., 1996; Carmichael et al., 1997). Therefore
the efficiency of atmospheric correction strongly depends
on how we can set up an appropriate aerosol model for the
satellite-image concerned.

This work partly cites aerosol retrieval by using both of
radiance and polarization in the near-infrared wavelengths
given by both of ADEOS/OCTS and POLDER. The
POLDER (POLarization and Directionality of Earth Re-
flectance) is one of the sensors on board the satellite ADEOS,
and aims to collect global-scale visible and near-infrared
observations of polarized and directional solar radiance re-
flected by the Earth-atmosphere-surface system (Deschamps
et al., 1994). It is shown that aerosol retrieval can be effi-
ciently pursued by combination use of radiance with polariza-
tion, because the polarization features strongly depend on the
optical properties of particles shown by Mukai ef al. (1996).

Finally our atmospheric correction is applied for the
ADEOS/OCTS ocean color data. Here the radiative trans-
fer process in an atmosphere-ocean model involving the re-
trieved aerosol model is simulated. We have introduced an
idea of atmospheric correction coefficients, which represent
the values of a ratio of the water leaving radiance to the
observed radiance at the satellite (see Mukai et al., 1992).
Namely the atmospherically corrected images are obtained
by multiplication of the calculated coefficients with the raw
ocean color data. An expected chlorophyll map near the sea
surface is derived through bio-optical algorithms.

2. Aerosol Retrieval Based on ADEOS/OCTS

It is well known that aerosols contribute greatly in the
atmosphere by scattering and absorption in the visible and
near infrared region of the spectrum. A procedure to esti-
mate aerosol models suitable to the OCTS image of interest
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is shown first. Itis found that, in the near-infrared wavelength
of OCTS band 6 (0.67 um) and band 8 (0.865 pm), the con-
tribution of radiation out of the ocean to total radiation is
negligibly small and the optical thickness of the atmosphere
is also small, by Sano ef al. (1997). In these two bands the
contribution of gas absorption is small in comparison with
that in the band 7 (0.76 wm), where O, A-band absorption
is too dominant to neglect. Therefore it is possible to as-
sume that the OCTS band 6 and 8 images approximately
represent the single scattering pattern by atmospheric con-
stituents. Therefore the OCTS radiance data at bands 6 and
8 are used to retrieve the aerosol characteristics, e.g., size
and refractive index. A single scattering phase matrix is ex-
pressed by Stokes parameters (I, O, U, V') and composed
of Rayleigh scattering by molecular gases and Mie scatter-
ing by aerosols. The values of the phase matrix elements
strongly depend on the characteristics of aerosols because
of the uniform distribution of molecular gases. A single-
mode log-normal representation with two parameters, the
mode radius (7) and the width of the log-normal curve (o),
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Fig. 1. Correlation coefficients between OCTS data observed in the Arabian
Sea on November 18 in 1996 and simulations by using a heterogeneous
aerosol model-B at wavelengths of 0.67 um and 0.865 pm.

0.670 pm

0.865 pm

Fig. 2. The best acrosol model of several samples for each window in Fig. 1
at wavelengths 0f 0.67 um and 0.865 ;wm, where black and gray represent
the model-A and model-B, respectively.

is considered here for one of the most widely used size dis-
tributions. Thus it becomes our purpose to retrieve (r, o) for
the log-normal distribution.

It is natural to consider that several kinds of aerosols could
exist together in general. In this section, we take into ac-
count heterogeneous particles for maritime aerosol models.
World Meteorological Organization (WCP-112, 1986) pro-
vides a standard maritime aerosol model, which is mainly
composed of oceanic (OC) and water-soluble (WS) compo-
nents. Oceanic type denotes sea-salt solution in water, and
water-soluble type includes water-soluble substances con-
sisting of ammonium sulfate, calcium sulfate and organic
compounds. That is, we assume now the maritime aerosols
are composed of oceanic component and water-soluble one.
The mixing rules of several components into a spherical
shaped heterogeneous particle have been presented by sev-
eral authors, e.g. Maxwell-Garnett (MG) theory (Bohren
and Wickramasinghe, 1977), Bruggeman theory (Chylek and

Fig. 3. Distribution of polarization degree at a wavelength of 0.67 pum.
(a) POLDER data observed on Nov. 18, 1996 in the Arabian Sea, (b)
Simulated results by using an aerosol model-A, (c) Simulated results by
using an aerosol model-B.
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Fig. 4. Polarization degree along the scan line X-Y in Fig. 3, where the
solid, dashed and dotted curves represent the values in Fig. 3 (a), (b) and
(c), respectively.

Srivastava, 1983; Burkhard, 1984) and core-mantle type (Van
de Hulst, 1957). Since these mixing rules have been already
adopted for astrophysical grains, descriptions of each theory
are omitted and MG theory is employed in our present sim-
ulations. That is, a heterogeneous grain model according to
Maxwell-Garnett mixing rule as small water-soluble (WS)
inclusions in an oceanic (OC) matrix where the volume frac-
tion of WS-inclusions is represented by f, is examined for
atmospheric aerosols.

This implies that the correlation coefficients between the
radiance of OCTS-band 6 and 8 data and the scattering simu-
lations by atmospheric constituents, i.e. Rayleigh scattering
by molecules and the heterogeneous model aerosols, become
a good indicator to select the appropriate acrosol model for
the OCTS images. The detailed descriptions of this algo-
rithm have been shown in our previous paper (Mukai et al.,
1992), however brief outline is surveyed again. First we cal-
culate the correlation coefficients between satellite radiance
data and the simulated results in respect of directional infor-
mation. Namely different viewing angles of Sun and satellite
on each pixel of the image correspond to light from different
angles of incidence to different angles of scattering as far as
the light scattering process at the particle is concerned. In
other words, each pixel of the image gives each scattering
angle. On the other hand, the scattering pattern can be cal-
culated for an arbitrary scattering angle. Thus a scattering
angle correlates radiance of a pixel of OCTS bands 6 and 8
images with a numerical value of the scattering pattern of
an aerosol type. Note that Rayleigh scattering by molecular
gases is also taken into account. The optical thickness of the
Rayleigh scattering constituents and absorbent constituents
such as ozone and water vapor are obtained by LOWTRAN
7 (Kneizys et al., 1988).

The single scattering phase function in our atmosphere
model is expressed with the following form;

PO) = (1 — fo) Pa(©) + [ Fe(O), (1

where O is the scattering angle and subscripts a and g denote

aerosols and molecular gases respectively. The functions
P, and P,, respectively, are given by Mie scattering phase
function if an aerosol type is fixed, and by the Rayleigh phase
function. The value of f; represents the ratio of the opacity
source by molecules to the total one.

Figure 1 presents an example of correlation coefficients
calculated for the OCTS image at band 6 and 8 observed in
the west coast of India (Arabian Sea) on November 18 in 1996
by using a MG-aerosol model of { f = 0.2, (* = 0.22 um,
o = 3.4)}, which is named model-B hereafter. Note that a
window size is assumed to be 75 x 75, namely a 75-pixels
square is adopted for sampling area to calculate correlation
coefficients. The values of correlation coefficients higher
than 0.5 are divided into five ranges [0.5, 0.6], [0.6, 0.7],
[0.7,0.8], [0.8, 0.9] and [0.9, 1.0] from black to white.

For each window, it is possible to determine the best set
of optical parameters of aerosol, i.e. { f, (, o)}, by choosing
the highest value of correlation coefficients among several
sample aerosols. Two of them are selected (see Fig. 2). Inthis
figure gray and Black, respectively, corresponds to model-
B and model-A of {f = 0.4, ¥ = 0.20 um, o = 2.51)}.
At a glance, a correlation degree of each model seems to be
similar.

It is well known that the dust particles originated from
desert areas usually exist in the west coast of India, but
November is an exceptional season to avoid contamination
of the desert dust (Herman et al., 1997). So our present re-
sults on November 18 also show rather clear sky, that is the
retrieved aerosol model is composed of 40% water-soluble
inclusions mixed into oceanic components.

3. Polarimetric Properties of Aerosols Based on
ADEOS/POLDER

Degree of polarization is a good indicator to derive optical
properties of aerosols, because polarization features strongly
depend on characteristics of scattering particles (Hansen and
Travis, 1974). Thus an efficient algorithm for aerosol re-
trieval is developed here by considering simulations of the
polarization field. Two heterogeneous MG-models selected
in the previous section are used as the basis of functions for
aerosol models.

Polarization information simultaneously observed by
POLDER is used to determine which is better, aerosol model-
A or -B, to interpret the OCTS data. Top image in Fig. 3
presents the polarization degree at wavelengths of 0.67 um
observed by POLDER on November 18 in 1996 in the Ara-
bian Sea (nearly the same area as OCTS images in Figs. 1
and 2). The middle and bottom images show the simulated
results by using model-A and -B. By comparison with these
three images, it is found that the middle image is much more
similar to the top one. This feature is clearly enhanced in
Fig. 4, where the values of polarization degree along the scan
line denoted by X-Y in each image in Fig. 3 are shown. The
solid, dashed and dotted curves in Fig. 4 represent the values
of polarization degree given by observations, and simula-
tions with model-A and model-B, respectively. The dashed
curve applying model-A aerosol coincides with the POLDER
data denoted by the solid curve, because model-B (the dotted
curve) shows an unexpected hump. Thus we can conclude
that model-A is a better candidate than model-B for an aerosol
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Fig. 5. A system flow of data processing line from OCTS CCT data to the chlorophyll map near the sea surface, where / represnts the specific intensity of
radiation in an atmosphere-ocean model and C denotes the atmospheric correction coefficient.

model in order to explain both of OCTS- and POLDER-data
observed on November 18 in 1996 in the Arabian Sea.

4. Atmospheric Correction Coefficients

A system flow of our data-processing from a OCTS CCT
data to a distribution of the pigment concentration, which
is briefly called chlorophyll map hereafter, is presented in
Fig. 5. As shown in this figure, our atmospheric correction
is based on multiple scattering calculations. Therefore the
radiative transfer problem in an atmosphere-ocean model in-
volving the retrieved aerosol model has to be numerically
solved to obtain the values of the atmospheric correction co-
efficients C. The value of C is obtained from the ratio of the

water leaving radiance to the observed radiance at the satel-
lite. Namely C = I,/1; (refer to Fig. 5). The values of C
depend on the place of each pixel in a satellite image as well
as on the wavelength. Atmospherically corrected images are
obtained by multiplication of C-values to the raw satellite
data.

In our present calculations, the MG-model-A is employed
for an aerosol model. The sea surface is simulated by multi-
ple facets whose slopes vary according to the isotropic Gaus-
sian distribution with respect to wind speed (Cox and Munk,
1954). Wind speed is assumed to be 5 m/sec as a typical value
for a clear day. Several ocean models have been prepared.
For example, one of them is a completely diffused model,
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Fig. 6. ADEOS/OCTS images of the Arabian Sea on November 18 in 1996 before (left) and after (right) atmospheric correction.

namely upward radiance out of the ocean is represented by
Lambert’s law. Multiple scattering for the atmosphere-ocean
model is solved by the adding-doubling method.

Products through our data processing line in Fig. 5 are
shown in Figs. 6 and 7. Expected images after atmospheric

correction, which are presented in the right hand side in
Fig. 6, are obtained by multiplication of numerical values of
C tothe raw OCTS images at each wavelength 0f 0.490, 0.520
and 0.565 um, observed on November 18 in 1996 shown in
the left side in Fig. 6. We found that the over illumination at
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Fig. 7. Anexpected chlorophyll map by using OCTS data on Nov. 18, 1996
in the Arabian Sea.

the limb of the raw images is due to atmospheric effects and
can be eliminated by applying the atmospheric correction al-
gorithm. Figure 7 represents the obtained chlorophyll map
in units of pg/l, where bio-optical algorithms are employed
by using ocean color data as follows;

Chlorophyll
= 0.2818[(Rady 520 + Rady ses)/Rado490]>*",  (2)

where Rad represents the radiance after atmospheric correc-
tion at wavelengths of 0.490, 0.520 and 0.565 um (NASDA,
1997)

5. Discussions

It is found that an efficient atmospheric correction for
ocean color data is pursued due to improved aerosol retrieval
by using both of radiance and polarization degree and em-
ployment of atmospheric correction coefficients.

It is natural to consider that several kinds of aerosol com-
ponents exist together. But it is difficult to determine the
mixing structure of each components. At any rate, from
present work, we can say that such a Maxwell-Garnett mix-
ing rule as small water-soluble (WS) inclusions in an oceanic
(OC) matrix is available to interpret the space-borne data,
and polarization information is useful to improve the aerosol
retrieval.

In this paper atmospheric aerosols have been focused,
however, we know well that many other subjects should be
considered as far as atmospheric correction is concerned, e.g.
removal of thin clouds, adjacent effect in the coastal zone,
white caps of sea waves, the ocean model itself and so on.
We compared the water leaving radiance for several ocean
models (Hale and Querry, 1973; Morel, 1974; Tanaka and
Nakajima, 1977) and found that the upward intensity at the
sea surface level depends upon the ocean model (Masuda and
Takashima, 1988). In order to draw the definite conclusions

in respect of these points, much more extensive measure-
ments of atmosphere and ocean, and their retrieval algorithms
are desired.
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