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A new model of the stably stratified layer at the top of the core is proposed. The existence of a stably stratified
layer (we name it the stratified ocean) at the top of the core makes possible the propagation of the waves akin to
the Rossby waves (also named “planetary waves”), well known in oceanology and meteorology. These waves are
modified and experience significant decay, due to the core’s magnetic field. The “magnetic Rossby waves” are
considered here, using a simple planar model, to reveal their qualitative features without going into significant
mathematical complications. The core-mantle coupling, which originates from the interaction of the surface flow
with the topography of the core-mantle boundary, is strongly influenced by the stably stratified layer. We consider
the topographic core-mantle coupling arising due to generation of motion resembling the magnetic Rossby waves
in the stably stratified layer. A simple expression is obtained for the topographic tangential stress on the core-mantle

boundary.

1. Introduction

This paper is part of a series of studies investigating
different aspects of the dynamics of a stably stratified layer
at the top of the core, adjacent to the core-mantle boundary
(CMB). This layer has a density that differs very little from
the one corresponding to the adiabatic density gradient;
however, this small difference implies a very large
Archimedean (buoyancy) force. Therefore, hydrodynamic
properties of such a thin layer differ drastically from those
of the bulk of the Earth’s core. We call this layer the
stratified ocean of the core (SOC).

Many authors have assumed that the top of the core is
stably stratified: Whaler (1980), Fearn and Loper (1981),
Yukutake (1981), Gubbins et al. (1982), Frank (1982),
Braginsky (1984, 1987b, 1993, 1998), Bergman (1993),
Braginsky and Le Mouél (1993), Lister and Buffett (1994),
Loper and Lay (1995), Shearer and Roberts (1997). The
convincing proof of the existence of a stably stratified layer
at the top of the core with an accurate estimate of its
parameters is still lacking. Only recently Braginsky (1993)
has shown that the observed 65-year variations of both the
geomagnetic field and the speed of the Earth’s rotation can
be explained by the axisymmetric oscillation (akin to MAC-
waves) in the stably stratified layer at the top of the core.
Two main parameters of the layer were estimated in
Braginsky (1993) by comparing the theory of this 65-year
MAC-oscillation with the observed variations, namely the
thickness of the layer, H = 80 km, and its Brunt-Viisild
frequency, N = 2Q, where Q = 0.729-10~* s~ is the angular
velocity of Earth’s daily rotation. These estimates provided
the hypothesis of existence of the SOC with an observational
support.
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The stably stratified layer is characterized by its (nega-
tive) density excess, C = (p — pa)/pa. Here p is the fluid true
density, p, is the equilibrium density corresponding to the
adiabatic gradient; we substitute p, below by the constant py
=10 gcm. Braginsky (1993) assumed the following model
of the stratified layer with the linear C(r) dependence

C=-Cs— (Cu/H)(r — Ry). ()
The CMB placed at the radius R is the bottom of the SOC,
and its top merges with the bulk of the core at the radius Rg
= R; — H, where the layers’ density excess, C, drops to a
negligibly small value, ~Cy, corresponding to the bulk of the
core. The density excess, ~Co, driving the geodynamo in the
bulk of the core is very small and we ignore it here. It can be
estimated from Cy ~ 2QV/g, where V is the fluid velocity,
and thus Cy ~ 1078 follows for V ~7-102 cm s~!. The three
characteristic parameters of the above model of the SOC are
its thickness, H, the inner change of density excess, Cy, and
the jump of density excess, Cs, at the top surface of the
ocean, r = Rg. It is convenient to use also two corresponding
Brunt-Viisild frequencies:

N=(gVO)'"? = (g1Cp/H)'", (2a)

Ns = (g1Cs/H)'2, (2b)
where g=-1,g1 is the gravity acceleration, 1, is the unit vector
in r-direction, and g; = 10 m s2 in the SOC.

The estimates H =80 km and N = 2Q give Cy~ 10~*. Even
the best available seismic models, e.g. the well known
PREM model by Dziewonski and Anderson (1981) are not
able to differentiate such a small deviation of the core
density distribution from the adiabatic stratification. That is
why the stratified layer was called in Braginsky (1993) “the
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hidden ocean of the core”, or HOC. It should be noted,
however, that evidence is now accumulated from seismic
observations that ~1% decline in a seismic velocity exists in
the uppermost layer of the core, about 50-100 km thick, see
Lay and Young (1990), Souriau and Poupinet (1991), Garnero
etal.(1993), and Sylvander and Souriau (1996). This effect
was not precisely measured yet, because of the difficulties
associated with complications introduced by inhomogeneity
of the D" layer in the mantle nearby, but if confirmed, it
would provide a direct proof of the existence of a layer of
light material at the top of the core. The deficit of ~1% in
seismic velocity would imply, however, a similar change in
density, C ~ 1072, which is two orders of magnitude greater
than Cp, and corresponds to Brunt-Viisild frequency one
order of magnitude greater than N obtained by Braginsky
(1993). This apparent contradiction can be resolved in the
frame of the model (1) by assuming a sharp density jump, Cs
~ 1072, at the layer’s boundary, r = Ry, and a much smaller
change, Cy ~ 107, inside the layer. The Brunt-Viisili fre-
quency, N = 2Q, estimated by Braginsky (1993) from the
MAC-oscillation in the layer is determined by the density
gradient, Cy/H, inside the SOC, while the seismic measure-
ments are sensitive to the total change of density, C =
—Cs ~ 1072, In anticipation of a future confirmation of this
model of the layer of light material at the top of the core we
remove the adjective “hidden” from the name of the layer,
and call it simply the stratified ocean of the core (SOC).

The SOC can be observed by its dynamic effects which are
rather strong because the value, N = (¢Cy/H)"2, of Brunt-
Viisidld frequency in the layer is about three orders of
magnitude greater than the corresponding value,
~(gCo/R1)'2, in the bulk of the core. The density jump, Cs,
is about six orders of magnitude greater than the density
excess, ~Cyp, in the bulk of the core, and this gives a strong
rigidity to the surface of the layer, = Rs. This density jump
separates the SOC from the bulk of the core, like the density
jump on the surface of the “common” ocean separates it
from the atmosphere. It should be emphasized that even C ~
Cy is still much smaller than unity.

There is a close similarity between the SOC and the
Earth’s “common” ocean, both in their geometry of a thin
shell and in the magnitude of the Brunt-Viisild frequency.
Dynamics of the SOC is reminiscent of the rich dynamics of
the ocean and the atmosphere. The SOC parameters are
determined by the arrival of light fluid into the SOC and its
redistribution under the action of so far unknown mecha-
nisms. There are two ways of addition of the light fluid to the
SOC. One is the arrival of fluid particles with higher con-
centration of light admixture from the bulk of the core, and
another is the leakage of light material from the mantle due
to its chemical interaction with the core. Both of these
processes are quite different from the convectional mecha-
nisms of formation of the stable layer considered by Fearn
and Loper (1981), Gubbins et al. (1982), Lister and Buffett
(1994), and Shearer and Roberts (1997).

We do not even try to consider here the obscure and
complicated mechanisms of SOC formation. Instead we
postulate the model (1) and investigate various waves and
oscillations which can develop in such an ocean of conducting
fluid penetrated by a magnetic field. Various oscillations are

possible in the SOC. We investigate here the waves, which
are similar to Rossby waves. They were considered previ-
ously by Braginsky (1984, 1987b) and Bergman (1993) but
for a much thinner layer; the small conductivity approxi-
mation was used in these papers. We reconsider these waves
in Section 3 using the above parameters of the SOC.

In Section 4 we consider the core-mantle friction due to
unevenness of the CMB. This mechanism of the “topo-
graphic coupling” was first suggested by Hide (1969), then
it was considered (but without taking Archimedean forces
into account) by many authors, e.g. Anufriev and Braginsky
(1975, 1977a, 1977b), Moffatt (1978), Kuang and Bloxham
(1993). Hide (1969) assumed that the CMB perturbations of
small height, 7 << Rj, generate large perturbations of the
fluid flow. Hide estimated the horizontal gradient of pres-
sure perturbation due to the CMB topography as ~py2Q2Vy,
so that for an effective tangential stress on the CMB he
obtained 74° ~ po 2QVsh. Here Vyis the fluid velocity at the
CMB, and for V4~ 5-10* m s7! this estimate gives 74 ~
5-1072 hxm N m~2 (here the height hyy, is in km). The Hide’s
estimate appeals to a similarity between the interaction of
the atmospheric wind with the Earth’s surface topography
and the process in the core. The wind perturbation extends
along the vector Q like the “Taylor column”, therefore the
horizontal pressure perturbation is determined by the hori-
zontal Coriolis force, and itis nearly independent of /2, hence
70 is proportional to h. It was shown by Anufriev and
Braginsky (1975, 1977a, 1977b) that the situation in the core
is quite different from the above. The influence of the
magnetic field levels out the flow perturbation, reduces it
strongly, and makes the process nearly linear. In this case the
pressure perturbation is proportional to %, or, more pre-
cisely, it is proportional to a small slope k¢h << 1. Here ky=
7Ly where Ly is a horizontal dimension of the topography.
Anufriev and Braginsky (1977a) assumed a horizontal
(toroidal) magnetic field, By, and considered the topography
of a very small scale (“roughness”) for which the magnetic
Reynolds number is small, Vy/kgn << 1. For this case they
obtained the estimate 74 ~ o' ~ PoQVkoh>. Anufriev and
Braginsky (1977b) considered also the topography of alarge
scale, k¢~ R;~!, with the large magnetic Reynolds number.
For this case they found an approximate solution assuming
that the parameter M = B¢2(/Jop()ZQV¢L)*1 is small, and ob-
tained the estimate of the stress, 7.4 ~ M~' 74! In both cases
the core was modeled by a plane layer of thickness L. Kuang
and Bloxham (1993) obtained a similar estimate, 7.4 ~
fipo2QVgh?/L, for large-scale perturbations, kg~ L~' ~ 1076
m, and a large magnetic Reynolds number, ~102. They
considered a magnetic field, By, which varies inside the
layer, and assumed the maximum value of parameter M to be
Mmax ~ 1. A “friction coefficient”, f, is determined by nu-
merical integration; it depends on the form of By. For asmooth
field f; ~ 1 but with concentration of Bynear the CMB (thus
the averaged M is reduced) it increases, and f; ~ 20 was
obtained for strongly concentrated By This is roughly
comparable with the result of Anufriev and Braginsky
(1977b).

It should be emphasized that for the largest bumps, kg ~
R;!, the plane layer model is not valid. Anufriev and
Braginsky (1977b) considered also a spherical model for the
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case M << 1. They found that, at least in this case, the CMB
sphericity drastically changes the influence of topography,
reducing it by the factor ~i/R;. The cause of this strong
effect is simple: a small radial shift, As, results in the same
order change of the distance between the surfaces of north
and south hemispheres, Az ~ As. Thus a very small radial
shift of the fluid particle path, As ~ h ~ Az, can nearly cancel
the influence of the bump on the geostrophic flow. This
makes the problem of the largest bumps especially difficult
to consider. In Section 4, where the problem of interaction
of the flow in the SOC with the topography of the ocean’s
bottom (CMB) is investigated, we use the plane model and
consider only the bumps which are not very large.

2. Main Equations

Let us consider small oscillations about the stationary
basic state. The main system of equations for the fluid
velocity, V'+ v, magnetic field, B + b, and the density excess,
C + c, is taken in the Boussinesq approximation. Here the
capital and the small letters denote the basic and the oscil-
lating quantities respectively. The linearized equations for
(v, b, c, p) in the Boussinesq approximation may be written
as (see e.g. Brekhovskikh and Goncharov (1985))

dv +2QXv=-Vp+fr+f, (3)
dib— Vb = (B-V)y, 4)
dic =-v-VC, (5)
V=0, (6)
Vb =0. (7

The Archimedean force, f%, and magnetic force, f?, per unit
mass are

Sr=gc, (8)
1 = (B-V)b. 9)

The magnetic field is divided by (topo)'/?, where L is the
magnetic permeability, so that B and b are measured in ve-
locity units; 1 cm s~! is equivalent to 11.2 G. It is assumed
that the term corresponding to magnetic pressure, B-b, is
added to the (divided by po) thermodynamic pressure, pr.
Both terms are absorbed in the effective pressure p = pt +
B-b, so that magnetic pressure gradient term is absent from
Eq. (9).

We consider here decadal periods which are very short on
the time scale of the core convection, and we assume that the
basic velocity has only Vycomponent, so that material time
derivative is d; = d; + V4V 4. We ignore also the terms having
the gradients of ¥ and B in Egs. (3) and (4): L = (b-V)B -
(v-V)Vand L? = (b-V)V - (v-V)B. We assume these terms to
be negligibly small as compared with the retained terms,
(B-V)b and (B-V)v having the gradients of oscillating quan-
tities. This assumption is valid for perturbations with a short
wave length.

The boundary conditions should be prescribed on the

bottom of the ocean (r = R;) and on its surface (r = Rs). On
the solid CMB the normal (approximately radial) velocity
component, v,, should disappear, and an arbitrary pressure
is admissible. Jumps in tangential velocities also are admis-
sible because we neglect viscosity and disregard the Ekman
layers which are very thin. The top boundary of the ocean is
a moving surface, however a large magnitude of Cs makes
the surface r = Ry very rigid. It is well known (Landau and
Lifshitz, 1987) that gravitational waves can propagate at a
density jump inside a fluid, like the common surface waves
do at the external surface of the fluid. For the assumed large
magnitude of Cs in the SOC the surface waves frequency is
much greater then the frequency of the considered decadal
variations. This means that the surface r = Ry is very rigid,
and we can ignore the motion of the “upper” surface of the
SOC. A similar simplification is often used in oceanology,
where it is called a “rigid lid approximation”. We assume,
therefore, the same boundary conditions both at the solid
CMB and at the boundary r = Rs:

vn =0, (10)

[[6]1=0. (11)
A double square brackets [[...]]denote the jump in a quantity.

The energy balance equation can be obtained if we mul-
tiply scalarly Eq. (3) by v, Eq. (4) by b, and Eq. (5) by the
combination cg,/9,C = c(g,/N)?, add up the three results, and
integrate over the space using boundary conditions (10) and
(11). The energy balance takes the form

dEs=-0; (12)
Ex=E,+E,+Eg=]e,dV+[edV +Je.dv  (13)
£, =122, (14a)
& = b2, (14b)
€= (8,/N)*c*/2. (14c)

Here ¢, and g, are kinetic and magnetic energies (per unit
mass), € is an available potential energy, compare e.g.
Cushman-Roisin (1994), Subsection 15-4. The terms &, and
£y are integrated over the core’s volume (&, # 0 only in the
SOC) while g, is integrated over the whole space. The total
energy dissipation is mostly produced by the Joule heating
Qj, where

Qs=InjPdv. (15)
It determines the oscillations’ decay. A dissipation due to
viscous friction, Qy, depends on the viscosity magnitude
which is poorly known. The commonly accepted viscosity
value v ~ 107° m%/s ~ 10°n corresponds to the Ekman
number of order of 10-!5 and leads to Q<< Q,. We neglect

Qv

3. Magnetic Rossby Waves
Let us consider the waves in the SOC which are non-
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axisymmetric, unlike one investigated in Braginsky (1993).
We model the SOC by an infinite plane fluid layer of
thickness H placed between two solid walls corresponding
tor=R; and r = Rs=R; — H. The walls are perpendicular to
the vertical unit vector 1, at the colatitude 6y. The horizontal
scale of perturbations in 6-direction, Lg, is assumed to sat-
isfy the conditions H << Lg << Ry, e.g. Lo ~ 10H ~ 800 km
will be used in estimates below. This makes it possible to use
the approximation of a thin layer and also to consider the
perturbations as being essentially local. We introduce the
local Cartesian coordinates (x;, xg, xy) where x,=r — Ry, xg
=R1(0- ), and xy = s09; here so = R sin6. The subscripts
r, 6, ¢ indicate the corresponding Cartesian projections.
Directions (0, ¢) are called horizontal or tangential and
simbolized by the subscript 7. For example, a horizontal
gradient operator is V= 1gVg+ 14V, where Vg= R 'dgand
V= 5071ds. Acceleration due to gravity g = -1,g1, Brunt-
Viisild frequency N, and magnetic field B, are considered
constant in the SOC. The “Coriolis parameter”, 2Q, =
2Qcos 6y, is taken at = Oy; the value 6y =45° is used below,
assuming that the waves propagate at mid-latitudes. Thus
we avoid the complicated effect of equatorial trapping of the
Rossby waves considered by Bergman (1993). The change
of the Coriolis parameter along the colatitude will be taken
into account in the linear approximation. It is measured by
the “B-parameter”, § = -Vg2Q, = 2QR;~! sin6), which is
considered constant (8 = 3-10~!! m~!s~!). This model cor-
responds to the well known “B-plane” approximation, which
is customary in oceanology and meteorology.

The perturbation equations of the model are greatly sim-
plified by the fact that the frequencies 2Q, = 10~* s~ and N
=~2Q are much greater than all other characteristic frequencies
of the problem, therefore Coriolis and Archimedean forces
are strongly dominating. The inertia force is much smaller
than the Coriolis force because d; << Q. The dimensionless
number B,%/2Q,1 compares magnetic and Coriolis forces; it
is of order of 10~! or smaller.

The huge Archimedean force has only a vertical compo-
nent which can be balanced only by the vertical pressure
gradient. Therefore a quasistatic equilibrium of the greatest
vertical forces is established. The horizontal gradient of
pressure is ~L/H ~ 10 times smaller than the vertical one. It
is balanced (approximately) by the horizontal component of
the Coriolis force which is about 2Q,1/B,? ~ 10 times greater
than the magnetic force. Thus the equation of motion in the
leading approximation is reduced to the equation of equi-
librium of the Coriolis force and the pressure gradient. This
equation is called a “geostrophic balance” equation.

The vertical velocity is much less than the horizontal one,
and estimates show that even v,/v; << H/L; << 1. Hence in
the leading approximation we have Vv = 0. The quantity
d,v, enters the continuity equation only in the higher order
approximations, therefore it should be found from the cor-
responding higher approximation of the equation of motion.
Fortunately it is not necessary to construct a complicated
perturbation scheme to derive the equation for v,. Taking the
curl of the equation of motion and looking on its vertical
projection we eliminate both greatest terms, f/ = —Vp and f*
= —1,g1c, and obtain the equation which govern the small
deviation from the geostrophy. A simple transformation

using the complete continuity equation, V-v =0, gives [V X
(2Q x v)], = —2€,0,v, + (2Q4/r)ve, and thus the small term
0,v,canbe expressed through the quantities of leading order.
We use here the approximation —2Qg/r = 2QR;"'sinfy = .
The rigor derivation of the “f-plane model” with explicit
introduction of the relevant small parameters (Rossby
number, and the ratio L/R) can be found in standard text-
books on geophysical fluid dynamics, e.g. Pedlosky (1987),
Gill (1982).

With the above simplifications, Egs. (3)—(8) canbe reduced
to a system of equations which is similar to the
“quasigeostrophic” system well known in the oceanology:

gic+d,p=0, (16)
2Q,1, xv:+V:p=0, (17)
d(VeX ve), — 20,90, — Bro= B.dy (Vex b),  (18)
db - 119,%b = B,d,v, (19)
g1dic — N*v, =0, (20)
Veve =0, (21a)
Veb:=0. (21b)

Equation (21a) is in accord with (17). Its validity follows
from (18) and an estimate Vo ~ m/Lg = kg¢. This gives
v/ Veva~ B2, ko) ~ (keR1) ' << 1. E.g. for Ly ~ 800 km
we have kg~ 4-10"°m~" and (kgR;)~' ~ 10~'. Equation (21b)
can be written now according to b,/b; ~ v,/v;, which follows
from (19). The “inertia term”, d(V; X v;),, in (18) is small as
compared with fvg, and it will be neglected below. With the
assumption H/Lg ~ 0.1 the overall accuracy of the SOC
quasigeostrophic theory is ~10%. It is of course rougher
than corresponding approximations in oceanology applica-
tions because H ~ 80 km is much greater than a typical depth
of the common ocean, and R; = 3.48:10% km is smaller than
the Earth’s core radius Ry = 6.37-:10° km. We hope, never-
theless, that the results obtained are at least qualitatively
correct.

The system (16)—(21) allows a separation of variables. Let
there be v, =1,v,+ 1gvgand b, = 1,b, + 1gbe. The solution of
the system can be sought in the form of a progressive wave
in ¢ but a standing wave in 6:

(Wp, bp, ¢, p) = (vpS, bp©, ¢, p)cos(kexplexp(i®@), (22a)

(vg, by) = (v¢*, bg*)sin(kgxg)exp(iD). (22b)
We denote @ = kgxy — 0t, = w— kyVy, and
ko= mlLg, ko= mlso= /Ly, ki = ko> + ks>,  (23)

where Lg, Ly, L; = n/k are the characteristic lengths. After
the separation of variables we keep the same notation v, b,
¢, p for the unknown functions omitting the superscripts ¢
and s, but we substitute V= iky, Vo> = —k¢?, and replace d;
by —i@. The transformation VoV X b;), =V 2bg exploiting
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(21b) is made in (18). It can be derived from (16)—(21):

gic = —i(2Q,/kg)0,ve, (24a)

p = i2Q,/kg)ve, (24b)

and
im(2Q,/N)?0,*ve — Bikgve = k*B,d,bg, (252)

ibg + T]arzbe =—B,0,vs. (25b)
Equations (25a) and (25b) determine vy and bg, while (20)
and (24a) give v,

vy = Ar60r Vo, (26a)

Ao = —(0lkg)(2Q/N?). (26b)
The length A.¢ is very small, e.g. for the frequency @ ~
108 57! (that is 27/@ ~ 20 yr) and kg ~ 4-10°° m~! we have
Ao~25m~ 10 kgl

The bottom surface of the SOC is solid; its top surface, r
= Rs, though fluid, is nevertheless very rigid (effectively
solid) because Cs is very large. Therefore the boundary
conditions for velocity are

v(Rp) =0, (27a)
v(Rs) =0, (27b)

which implies
dve(R1) =0, (28a)
dve(Rs) = 0. (28b)

The boundary conditions (11) for the magnetic field are
more complicated. Neglecting the mantle conductivity and
matching the field in the core with the potential field in the
mantle we obtain for r = R;:

by =—i(ki/ko)b,, kr= (krz)l/z- (29)
It follows that b; on the boundary (b; ~ b,) is much smaller
than inside the SOC where b;>> b,. We may, therefore, take,
as a good approximation, the simpler condition, b(R;) = 0.
The plain reason for this simplification is that a potential
magnetic perturbation in the insulating mantle, 5, changes
in all directions on the same characteristic length, L ~ 103
km, so that throughout the mantle we have b, ~ b,, and the
same is true at the boundary r = Ry. The exact form of re-
lation (29) is not significant; the simplification b«(R;) = 0
follows from bM; ~ b = b(R;) ~ b, << by, therefore it is
valid for a weakly conducting mantle as well.

Magnetic, b, and velocity, ', perturbations in the bulk of
the core generated by perturbations in the SOC have a
complicated form of superposition of MAC-waves. There is
no specific reason for them to have b,“~-component much
smaller than b%;, hence one may anticipate b'; ~ b,L. If this

is confirmed, the simplification ¥ = 0 can be assumed for
r = Rg as well as for r = R;. It is difficult to find the field in
the bulk, b, in general case to match it with the solution in
the SOC. We will only consider a simple example of a
constant B and a plane wave proportional to exp(ik-r—it).
In this case Egs. (3)—(7) with the Archimedean force omitted
can be reduced to

0 2Q-k)v = (04° — Owy)ikX v, (30a)

Wb = —wqv, (30b)
where @a = k-B is Alfvén frequency, and 0, = @ + ink>. A
solvability condition for (30a) gives two () frequency
relations for magnetic waves

a2 — o+ ink?) = Hw + ink>)(2Q-k/k).  (31)

Substitution of (31) into (30a) and (30b) transforms them to

v =ik lkxv, (32a)

b =+ik'kxb, (32b)

then a simple manipulation using (6), (7) gives for the
components of magnetic waves in the bulk of the core: v,2 =
—v2and b2 = -b2.

To work with the simplest model we assume b, ~ b,L, and
accept both for r = R; and for r = Rg the same simplified
boundary conditions:

b(R) =0, (33a)

b(Rs) = 0. (33b)
Equations (25a) and (25b) should be solved with the
boundary conditions (28a), (28b), (33a), and (33b). The
equation of fourth order for vgand bgcan be obtained from
(25a) and (25b), and the same equation is valid for other
components due to (26) and (20):
{(@ - ind,?)(wpk? — @I,%) + WE*d, 2} (v, b, ¢, p) =0. (34)
Here ky = 7/H, and the quantities wp and @p with dimension
of frequency are introduced:

op = Pkoku2(NI2Q,)?%, (35a)

wg* = k? BA(NI2Q,)%. (35b)
Let us assume Lo = 10H = 810> km and Ly = 7so/m =
1.55-103(5/m) km where so = 0.707R;. For m = 5 we have kg
=3.910°m ™, ky=2-10m!, k;=4.410"°m". Assuming
also N = 2Q, hence (N/2Q,)?=2, and B, =5 G (=0.45 cm
s71), we obtain wp=7.8:108 s7! and wp = 2.8:10-% s71; the
corresponding periods are 27t/ wp=2.6 yrand 27/ wp="7.1 yr.
We use the smallness of the ratio wp* @g> = 0.13(5/m)? to
simplify calculations.

Equation (34) has elementary solutions proportional to
sinocand cosa where o = k,(r — R1), and k,2(®) are the roots
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of the biquadratic

(@ + ink,)(wpkr® + Ok,*) — wp*k,? = 0. (36)
The free modes eigenfrequencies can now be found. There
are two different branches of k,2(®@) and four independent
elementary solutions. Substitution of them into four boundary
conditions gives a system of homogeneous equations for
amplitudes of the elementary solutions. A solvability con-
dition of this system determines the (complex) values of
eigenfrequencies, @. Finding the solution is greatly sim-
plified by the fact that both boundary conditions (27a) and
(27b) for v,, and both conditions (33a) and (33b) for bg can
be satisfied by one term, sinc, with the same value of k. =
nky, wheren=1, 2, 3, ...; the term coso describes vg. There
are two modes of solution: the weakly decaying magnetic
Rossby mode, @vr, and the strongly decaying magnetic
diffusion mode, @yp. Both modes have the same form:

Vo = V4COS O, (37a)
vy = —iva(kelky)cos 0, (37b)
Vr = VyaSINoy,, (37¢)
bg = bsinoy, (38a)
by = —ibu(kelkg)sinor, (38Db)
¢ = icg SN0y, (38¢c)

where o, = nky(r — Ry). The relations v,./v, = —A.¢ nky and
gicalve = (2Q,/kg)nky follow from (26a) and (24a). The
expressions (37a), (37b), (38a), and (38b) satisfy the con-
tinuity Eqs. (21a) and (21b). The amplituderatio b,/v, is given
by (25b): bulv, = (k,B)(i@ — nk,2)".

Biquadratic Eq. (36) can be solved for @in acommon way
but to keep the algebra as simple as possible we use (for n =
1) the small parameter wp?/g?, and obtain the complex
frequencies of the free modes in a very simple approximate
form:

OMR = —08 — W2 05" — iR, (39a)
WR = Ty wp20p2, (39b)
@Omp = WE* W™ — iMD, (40a)
Wb =Ty, (40b)
where
o) = ki, (41a)
=10 yr. (41b)

The simple expressions (39a) and (40a) are valid only for n
= 1. For n > 1 one should replace @wg by wgn~? and 7, by 7,
n~2; the ratio @yp/®@wr then would increase by the factor n*.
In this case the modes are not separated. The rate of decay

also strongly increases with n. Only the n = 1 modes which
have a smaller decay rate are considered below.

The main term in (39) is a well known frequency of the
Rossby waves, —wg, which always propagate to the west
with the non-dispersive phase velocity Vg = wplky= 3.6 cm
s~1. This velocity is much greater than fluid velocities in the
core, and the latter may be ignored while considering
magnetic Rossby waves. The Rossby frequency, wg, is non-
dispercive because we neglected the inertia term d,(V; X v;),
in (18). Magnetic correction, a)Bza)ﬁ*1 ,tothe frequency (39a),
is an order of magnitude smaller than g, and it is highly
dispersive. The decay rate, g, is much smaller than even
this magnetic correction, therefore we can calculate the
group velocity of the magnetic Rossby waves in a usual way
as dwmr/dkg. The energy of the waves propagate to the west:

aa)MR/ak¢ = V¢— Vﬁ[l + a)Bza)ﬁ’Zkf’z(kfpz — kez)]. (42)

It is interesting to estimate separately each term in the
energy density of free magnetic Rossby waves, €z = €, + &
+ &4 The absolute values are not given by the linear theory,
only the proportions can be calculated. We ignore the small
radial components and the decay rate wir. According to (25b)
we have the ratio b./v, = ikpB,/wp. An Archimedean
(buoyancy) part of energy density is proportional to (g1 c./N)?
= (2Q,/N)*(knulkg)*v4>. For the energy components averaged
over r, xg, x¢ the following proportion (which gives €, < &
< &) can be established:

£:6p:€q = WFP(NI2Q)2 (kP ki?): g 0p*(kePlkg?).  (43)
4. Topographic Core-Mantle Coupling

Topographic coupling relies on the non-spherical form of
the CMB, which can be described by the equation

r=R; - h(6, ¢, (44)
where h(6, ¢) gives the topography of the SOC’s bottom (A
> 0 for hills, and & < O for valleys). It is certain that 4 << Rj,
e.g.h~0.3 kmcorresponds to #/R; ~ 104, but the exact value
of the function A(6, ¢) is unknown. The topographic torque,
M, exerted by the core on the mantle due to interaction
between the core fluid flow and the CMB topography is
M = [rx1,popdA, (45)
where the integral is taken over the CMB. Here pgp is the
pressure (note that pressure divided by density, po, is de-
noted by p), dA is an element of the surface area, and 1, is the
unit vector directed along the normal to CMB from the core
to the mantle. Since h/R; << 1, the integral in (45) can be
taken over the spherical “unperturbed” CMB, r = R;. The
vector of the normal can be written as 1,, =1, + VA, then (45)
takes the form

M = polpr x VhdA (462)

= —polhr xVpdA, (46b)

compare (Roberts, 1988). We are especially interested in the
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component of M parallel to Q:

M, = polspV yhdA (47a)

= —polshV ypdA. (47b)

A general topography can be expressed as a sum of the
terms proportional to exp(ikr;); effects of these terms are
mutually independent in the linear approximation. The
effect of uneveness with the wavelength ~R; is of a global
character; itis difficult to separate this effect from the whole
core dynamics. We consider only bumps of rather short
wavelength. Their influence on the global core motion can
be modelled as linear and local, hence the plane model of the
previous section is applicable. The topography has the
amplitude A, and can be written in the complex form:

h(xe, x¢) = hacos(kgxg)exp(ikexy), (48)
which is similar to the horizontal dependence of magnetic
Rossby waves (22a) and (22b). The topography creates a
velocity perturbation at the bottom of the SOC. To consider
it we use Eqgs. (24)—(26), and (34). The boundary conditions
for velocity at r = Rg are given by (27b) and (28b); the
conditions for magnetic field at r = Ry, r = Ry are accepted
in the form (33a) and (33b). The conditions for velocity at r
= Ry are, however, different from (27a) and (28a). We
assume V;= 1,4V, and replace (27a) by the condition (V7 +
v)-1, = 0 in the linear approximation:

V= —V¢V¢/’l = —i/’lk¢V¢ at r=R;. (49)
It is just the velocity perturbation (49) which generate the
perturbation of pressure p(R1, 6, ¢) and the topographic torque
(47a) and (47b). Both the velocity perturbation (49) and the
integrand of (47a) are proportional to Vgh, thus M, is pro-
portional to the amplitude of (V41)2. Note however that the
integrals (47a), (47b) would be zero if p(R;,0, ¢) were
proportional to (0, ¢).

We consider an interaction of the CMB topography with
the stationary flow 14Vand substitute @=—kyVyin the above
equations. The typical values Vs ~ 510 m s~! and k¢ ~
2:10°m! give @~ 10~ s~!. This “frequency”” is much smaller
then wp and g allowing a convenient approximate method
of solution of Eq. (34). Elementary solutions are sought in
the form exp() where o= k(r— R1), therefore, perturbations
generated by topography decrease with distance from the
CMB. The biquadratic equation for k follows from (34). It
is similar to (36) but with k,% replaced by —k>. There are two
solutions for &2, corresponding to velocity and magnetic
modes, &2 and x,2, which are approximately equal to

K2 = kpa2(1 + €g), (50a)
Kp? = —i(kn* kg ks )(1 — €m), (50b)

where
£ = Ki*Kp*/ Kps®, (51a)

K2 = @in = 218,72, (51b)
Kps® = Kg* + iKg?, (52a)
Kg? = ki wpl @, (52b)
Kp? = wp*/No. (52¢)

The correction, £5 ~ 0% wg? is very small, for example, for
@ ~ 107 s! we have €5 ~ 10-3. We neglect it and take ap-
proximately &, = kpp and k;, = (1 — i)y~ (kp/Kpp). It is as-
sumed that Re(x;,) > 0 and Re(x;,) > 0 where Re( ) denotes
a real part. The quantity Jy is a common estimate of a skin
depth for the frequency @. Using the same values of pa-
rameters as in Section 3 we obtain the estimates: &, =63 km,
kgH ~ 28, kgH ~ 50.

A solution of Eq. (34) together with (25), (26), and
boundary conditions (27), (28), (33), and (49) can be written
as

Vi = Veal filr) + € fos()] = Vra fr, (53a)
Vra = —ihakoVe, (53b)
vo = Valfu(r) + (€a Kpp/Kp)fbe(1)], (54a)
Va = —ihakoips (N212Q)), (54b)
bo = balfu(r) = fos(r)], (55a)
ba = ihakekps (B, M(N*2,), (55b)
Ju(r) = explxi(r — Ri)l, (56a)
fos(r) = sinh[Ky(r — Rs)]/sinh(k,H), (56b)
foe(r) = cosh[ K(r — Rs))/sinh(K,H). (56¢)

A simple exponential function is used in (56a) instead of a
hyperbolic sinh because k,H = kppH >> 1, so that f,(Rs) = 0.

The tangential velocity is much greater than the radial
velocity. For example, Vs ~ 5-107* m s~! corresponds to
ValVra = N*(2€,Vskpp)~™' ~ 10°. The velocity mode strongly
dominates in the radial velocity; the magnetic term in (53a)
is of order of €5~ 1073, and we ignore it. The velocity mode
dominates also in vg though not so strongly as in v,. Using
(50b) and (51a) we obtain €z Kgp/K» ~ kn/kp ~ 6:1072. The
magnetic perturbation, bg, expressed in the velocity units,
exceeds the velocity perturbation, ve; the amplitude ratio is
balva = -B/(nKpp)~! ~ 4.

We are now prepared to calculate the topographic coupling.
It is convenient to introduce the topographic stress, 7', as
an average, (...), of the tangential force per unit area: 7,y =
—po{hV ¢ p); here the integrand of (47b) is used. The expres-
sion Vyp =-2Q,vgcanbe obtained from (17) where vois given
by (54a). Here we retain only the velocity mode as a
reasonable approximation. Transforming all quantities to
the real form, using h(xe, xy) given by (48), and averaging
Re(h)Re(vg) over xg, x4 we obtain
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s = Po(Nhal2)2(kol|Kps)singps,  (57a)
|xpsl? = (k5* + K542, (58a)
$in(29ps) = K5%/|Kpsl?. (58b)

Here singpp is a numerical factor, ~0.5, determined by a
phase difference between £ and p; it has the same sign as V.
For example, singps = 0.64, 0.59, 0.49, and 0.38 for %/ k3’
=0.2,0.3,0.6, and 1. For the parameters used above (m =5
etc.) and sin@pp ~ 0.5, (57a) gives

g ~ 8.5 1072h2(Vy/ Vo) 2, (57b)
where ﬂhmp is expressed in N m™2, h, in km, and Ve =
5102 cms.

To interpret (57a) we note that to cross the hill 4, the fluid
stream near the bottom of the SOC is moving up the slope
kehq against the retarding (parallel to the slope) component
of gravitational force of order of pog(h.0,C)ky ha ~ poky
ha*N?. The estimate ¢ ~ h,0,C is used here. The retarding
force acts in the moving fluid layer of thickness of ~k,~! ~
|K'ﬁ3|’l, thus creating the stress of order of (57a). The retar-
dation is partially compensated when the stream goes down
the slope, but owing to the lack of the “for-and-aft” symmetry
of the solution, the non-compensation is left which is
measured by the coefficient singpg,

It is interesting to calculate the Joule heating associated
with the magnetic field perturbation produced by the bumps.
We write (V X b)? = (9,bg)* + (9,bs)* into (15) neglecting
tangential derivatives. Using (21b) we replace 10,by4l> by
10,bg’ke*/k . The magnetic mode can be neglected in 10,bgl
because k, << k;, = Kpp, therefore the integral JQJdr is pro-
portional to | If,12dr=[2Re( Kﬁ;g)]*1 . A simple transformation
gives

[Qsdr = Po(Nhal2)(kg/|kpl) Vesingpp. (59)
Comparing this expression with (57a) we obtain a simple
energy balance relation

[Qdr = 7,4V, (60)

It is interesting to compare (57a) with the stresses due to
the core viscosity and with magnetic stresses due to the finite
magnetic conductivity of the mantle, om. The former is 7%,
= poVvVy/ 8y, where &, = (V/Q,)!/? is the Ekman layer depth.
Assuming v ~ 10° m2s~! we obtain

v = Po(VQ)2V4 ~ 5:103(Vy/ Vo). (61)
The latter can be easily estimated if we assume that the
mantle conductivity is concentrated in the narrow layer near
the CMB. The electric current of density jo = omVyB, is
flowing in the layer of small thickness Ly, and generates the
stress jeBrLm, SO that

9= omLmB 2V~ 3.8:1073(Vy/ V). (62)
Here the estimate omLym ~ 3:107 S of the lower mantle
conductivity is taken according to the results by Peyronneau

and Poirier (1989). The viscous stress is about two orders of
magnitude smaller than the magnetic one. The topographic
stress (57b) is of the same order of magnitude as the
magnetic stress if the amplitude of the uneveness is , ~ 0.2
km.

The perturbation produced by the CMB topography is
considered here in the linear approximation. It is assumed
V-V = V4V which is valid if keve/ksVy << 1. This ratio can
be estimated using (54b) and the above numerical estimates.
This gives

kovalkoVo ~ ha(Vol Ve)'/2, (63)
where &, is expressed in km. For example, we have ﬂ",¢ ~
7lBr¢ for h, ~ 0.2 km, and the linearization is still valid in this
case.

5. Concluding Remarks

The MAC-waves, which are characterized by the near-
equilibrium between magnetic, Archimedean and Coriolis
forces, take the form of the magnetic Rossby waves in the
specific conditions of the SOC. The magnetic Rossby waves
(MR-waves) are “natural” motions in the SOC associated
with periods of order of years to decades. In this paper we
consider only free MR-waves, and MR-perturbations gen-
erated by the topography of the CMB, but various other
kinds of motion of the same type may be expected.

Dynamics of the geomagnetic “jerks” with characteristic
periods of a few years, and dynamics of various processes
leading to decade geomagnetic variations are probably de-
termined by MR-waves excited in the SOC. MR-waves are
essential part of mechanisms of the geomagnetic secular
variations, the length of day variation, and the oscillation of
the Earth’s pole position. In this paper only small-scale free
MR-waves (m = 5) with corresponding free periods, ~3 yr,
are considered using a simple plane model. An interaction of
fluid flow in the SOC with the mantle topography also is
considered for the bumps of the same small scale. To
investigate large-scale MR-waves and an interaction with
large-scale topography one should make cumbersome nu-
merical calculations.

Braginsky (1987a) demonstrated that a steady oscillation
with the period about 30 yr can be isolated from the data of
the length of day variations, along with the decaying 65 yr
oscillation. Yokoyama (1993) found the 30 yr period in
variations of the geomagnetic Gauss coefficients. The period
about 30 yr revealed also in the variation of the Earth’s
rotation pole position, see e.g. Lambeck (1980), Hulot et al.
(1996). A simple extrapolation of (35a) and (39a) shows that
the period ~30 yr may be expected for a global-scale MR-
waves, with m ~ 1, 2. The axisymmetric MAC-oscillations
in the SOC and torsional oscillations in the bulk of the core
also can have periods ~30 yr (Braginsky, 1993). Further
investigations are necessary to understand the complicated
mechanism of 30 yr variations, including the global-scale
MR-waves, their generation, and their interaction with MAC-
oscillations and with the bulk of the core. Results of such
investigations will be helpful in understanding the nature of
the secular variations, and in improving our knowledge of
the SOC parameters.
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