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Prediction of recurrent geomagnetic disturbances by using adaptive filtering
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Recurrent geomagnetic disturbances are an important part of geomagnetic activities, which are associated with
the neutral sheet structure in the heliosphere and the activities of long lived solar coronal holes. Another significant
character is the periodic activities recorded by geomagnetic indices. In this paper an algorithm—Adaptive Filtering
(AF), is introduced to forecast recurrent geomagnetic events based on the geomagnetic K index. Adaptive filtering
can deal with nonstationary data and can adapt to changes in the data pattern. Therefore itis a very helpful method for
forecasting the geomagnetic disturbances and the disturbances in the interplanetary space. By using AF technique a
prediction for whole Bartels rotation can be obtained when output length is taken as 27-point. For recurrent periods
the prediction efficiency is about 30%, the correlation coefficient is 0.55. For nonrecurrent periods the prediction
efficiency and correlation coefficient decrease obviously, but the standard variance does not change very much.

1. Introduction
The prediction of geomagnetic disturbance is a present-
day matter of significant importance to the many scientific
investigations, military affairs and commercial concerns.
Great efforts have been made by many scientific institutes and
services in this area for long time (Joselyn, 1986; Marubashi,
1989). Some prediction techniques including numerical sim-
ulation (Akasofu and Fry, 1986), filtering (Iyemori et al.,
1979; Clauer et al., 1983; McPherron et al., 1984) and arti-
ficial intelligence (Lundstedt, 1989, 1992; Freeman et al.,
1993; Wu and Lundstedt, 1996) have been developed or
are developing. These methods are mainly based on the
fact that the magnetosphere would respond to the disturbed
solar wind environment or solar activity. From the point
of view of prediction, the geomagnetic disturbances can be
divided into two catalogues: transient event and recurrent
event. The transient geomagnetic disturbance results from
the transient solar activity; this kind of solar activity can re-
sult in the solar wind disturbance, such as magnetic cloud,
interplanetary shock and discontinuity (Gosling et al., 1975;
Schwenn, 1986; Wilson and Hildner, 1986; Tang et al., 1989
and Eselevich, 1990) which can lead to the transient geo-
magnetic disturbance (Chao and Lepping, 1974; Smith et
al., 1986; Wilson, 1987; Gosling et al., 1990; Tsurutani et
al., 1990 and Jacobsen et al., 1991). This can be seen as
a spatial variation of a disturbance initiated at the Sun then
propagating to the Earth through interplanetary space. Atdif-
ferent positions this disturbance appears with different prop-
erties and characters because of its interaction with the local
environment. A typical and well identified solar-terrestrial
transient event is the recent Jan 6-11, 1997 event.

On the other hand the recurrent geomagnetic disturbance is
associated with the long-lived solar coronal hole and the he-
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liospheric current sheet structure (Neupert and Pizzo, 1974,
Hansen et al., 1976; Sheeley et al., 1976; Burlaga and
Lepping, 1977). And recently it is refined by emphasiz-
ing the importance of stream-stream interaction and coronal
mass ejection (Crooker and Cliver, 1994). This recurrence
is an evidence for the fact that geomagnetic activity reflects
the solar rotation period of approximately 27 days (Bartels,
1932, 1934), or the existence of a two stream structure in
the solar wind with 13.5 day periodicity (Bame et al., 1976;
Fenimore et al., 1978; Mursula and Zieger, 1996). No mater
how long the recurrent period, the recurrence is a temporal
character of geomagnetic activity. It can be seen as a histor-
ical variation of geomagnetic indices, such as in C9 and K
etc. A very significant recurrent period is from December
1993 to June 1994, which maintained about eight Bartels ro-
tations. Sargent (1986) introduced a 27-day recurrent index
by comparing aa index of two successive Bartels rotations.
He found that although the recurrence does not always ex-
ist, there is apparently a long recurrent period during each
sunspot cycle especially at the decline and minimum phase.
Therefore during this interval the recurrence provides the
possibilities for analyzing and predicting this kind of geo-
magnetic disturbance.

The prediction of the transient geomagnetic disturbance
is mainly based on how the magnetosphere responds to the
solar wind disturbance and how the solar wind couples with
magnetosphere. The inputs and outputs of prediction models
are different parameters describing the different disturbed
characters at corresponding spatial position. For example,
in the prediction of a magnetic storm by using the Elman
networks (Wu and Lundstedt, 1996), solar wind parameters
are used as inputs and Dst index is the output. For the
recurrent geomagnetic disturbance, the prediction is focused
on when the recurrence can work as a forecasting tool, how to
identify the recurrent character and how to extract the period
of the recurrent activity. At this point, the input and output
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are the same parameter, but corresponding to different time.
Generally the historical record before time ¢ for a parameter
isused as input. The output is the value of the same parameter
atr+i,i=1,2,....

In this paper Adaptive Filtering (AF) is used for forecasting
the recurrent geomagnetic activities. The major advantages
of a AF technique over other methods of time series anal-
ysis are its conceptual and computational simplicity. The
objective of a filter, like most other time series methods, is
to separate the noise from the signal or pattern in order to
discover the true generating process. The equations used by
a AF in accomplishing this objective can be simply stated,
updated recursively, and are of infinite memory. The gener-
alized AF with its many attractive features and its favorable
performance, deserves consideration as a forecasting tech-
nique for a wide range of time series cases. A disadvantages
of AF during the iterative procedure is that it can be compu-
tationally time consuming, even though the basic sequence
is straight forward. But it can be corrected by the use of the
Yule-Walker equations (Box and Jenkins, 1976).

In this work, we focus on mid-term (one Bartels rotation
ahead) prediction of Kp and Beijing local K index. The
K index obtained from Beijing geomagnetic observatory at
Ming Tomb, here is abbreviated as Kp index. It is one of
the most common geomagnetic indices used in monitoring
and forecasting the geomagnetic activity in China. Kgg is
a summation of eight 3-hour Kp to describe daily level of
geomagnetic activities in Beijing area.

2. Adaptive Filtering Method

One of common time-series analysis methods—adaptive
filtering is used for the practical prediction of Kp and Kgg
indices. The objective of an adaptive filter is, going with
filtering, to estimate and rectify the model parameters (on-
line) continuously by means of the new observations, so that
predictions closely match the observed data. Therefore, the
error of state estimation can be decreased and the filtering
precision can be improved. Besides the major advantage of
conceptual and computational simplicity of this technique,
it also can separate the noise in the time series from the real
signal or pattern in order to discover the implied process
guiding the forecasting.

As methodology for time series forecasting, adaptive filter-
ing bases its forecast on a weighted sum of past observations,
viz.,

X, =¢uXio1 + ¢uXi2 +o O X, Fe,
t=p+1L,p+2,...,n.

(D

This equation represents an autoregressive (AR) model to
process. One major difference between adaptive filtering
and the AR models is that the parameters, ¢1;, ¢y, . . ., of the
latter models are fixed, while those of adaptive filtering are
not. This enables adaptive filtering to deal with nonstationary
data and to adapt to changes in the data pattern (by updating
the model parameters as new data become available) much
better than is possible for fixed parameter models.

Modification of the adaptive filtering parameters is done
with the following equation

bir = i + 2kef X7, 2

where i = 1,2,...,p, ¢/ and X, are the standardized

values used in Eq. (1), k is a learning constant (Makridakis
and Wheelwright, 1977).

This expression provides an easily understood and com-
putationally simple updating formula for the parameters of
Eq. (1). It also has the advantage of including a learning con-
stant, k, which determines the speed by which the parameters
of the model are adapted. Expression (2) can be interpreted
in a Bayesian sense, where ¢;,, the old information about the
AR process (1), is combined with new information (the resid-
ual or error of the most recent forecast) to form the updated
%,

The relationship stated in Eq. (2) can then be used to obtain
an improved set of weights as more information becomes
available. This is done by using Eq. (1) with the first p
data points to calculate )A(, and e¢;. These values and the
appropriate X; can be substituted in to Eq. (2) to determine
an improved set of weights, ®’. This sequence of steps can
then be repeated by dropping the first data point in the set of
pX values and adding the next data point, (p + 1).

The subjective feelings of the forecaster can be incorpo-
rated in the value of k. For example, when the user expects a
continuation of the basic data pattern, a “normal” value of k,
suchas 1/p, canbeused. Ifthe forecaster expects a change in
the data pattern, the value of k might be increased. Whereas
a change in the amount of randomness, but no basic change
in the pattern, might lead the forecaster to decrease the value
of k. This is executed by a parameter of weight L in the code.
When L is bigger, such as L = 60, less change in the data
pattern and an increased change in the amount of random-
ness. As L is decreased the opposite situation happened. In
our prediction experiment different L has been used to check
the output variations. But for routine prediction and all the
results shown in this paper, L is 30.

We use R, St and PE to describe the precision of a predic-
tion. They are defined as follows. The correlation coefficient

Z[(Xi — X)(Xi — )Ei)]
i1

R = =
\/ M- XY (R - %)’
i=l1 i=1

then the standard variation

1/2
— 1 -  — A. 2
St = (Z ;(Xl Xi) ) : 4)

The prediction efficiency PE = 1 — ARV, ARV is the av-
erage relative variance and defined as (Clauer et al., 1983):

i(xi - X

ARV =2 (5)

> X - X))
i=1

Wherg X; and X; are the observations and their average, X f

3)

and X; are the predictions and their average.

These are three complemental parameters describing com-
prehensively the goodness of a prediction result. R is the cor-
relation coefficient between the observed and the predicted
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Fig. 1. Comparison between daily summation of Ky and K p index.

values. But even for a complete correlated prediction, when
R = 1, there still might be a discrepancy between the ob-
servation and prediction. For example, two curves with the
same variance (R = 1) can be complete overlapped when
there is no distance between them (St = 0). While they are
separated when there is a distance between them (St > 0).
The quantity of the distance is described by Sz. The less of St
is, the better of the prediction. PE shows the ability to fore-
cast the variability of the observation. The best prediction
should have PE = 100% or approaches to this value.

3. Prediction Results and Discussions

Inthis work > © K p and Kgg (summation for daily eight K p
or Kp) are the predicted objects and also are inputs. Figure 1
is the comparison between > K p and Kgs. The upper panel
includes seven Bartels rotations near solar minimum of cycle
21, the bottom panel is at the peak of solar cycle 22. Itis clear
that the variation of Kgg is less than ) | K p. The difference,
perhaps, is due to the inherent weightage for night time in
deriving K p and the absence of the same in Kg.

Because a summation of each day’s 8 digits of Kp (or Kp)
has been made to describe active level of each day, an identi-
fication, for example, of 0000 0008 and 1111 1111 (with the
same summations) can not be given by Y Kp (or Kgs). But
actually most significant disturbances should have accompa-
nied premonitory variations. These premonitory variations
provide some possibility for the prediction. The mid-term
prediction in this paper is more emphasized on the predic-
tion of geomagnetic varying tendency during the near future.

Generally Y Kp (Kgs) index can be a good indicator for
this tendency as shown in our prediction results. As to the
extreme situation of 0000 0008, it, at very large extent, is
unpredictable.

The time periods used for the prediction experiment in
sunspot maximum, sunspot decline and minimum are shown
in Table 1. All rotation numbers are of Bartels rotation. The
length of input data is six rotations of Y Kp or Kgs. The
corresponding output prediction is one rotation, 27 days. R,
St and PE are calculated as comparing the predictions with
observations. The average prediction results of Y Kp and
Kgg are given by two histograms in Fig. 2. For both indices
although the average R decreases obviously from recurrent
to nonrecurrent periods, St does not change very much, even
St decreases for Kgs. That means for nonrecurrent periods
the one rotation ahead prediction of background variation
of the geomagnetic activity is almost the same with that of
recurrent periods. A typical example for this situation can be
seen from Fig. 3. Here R is low, even PE < 0, but St is also
very low. So the prediction shows very well the background
variation for the whole rotation.

According to Fig. 2, it is hard to say which prediction, for
> Kp or Kgs, is better because of the different varying of
the three parameters. For the prediction of Kpg, the low PE
and St is mainly because of the less variability of Kgg as
shown in Fig. 1. It can be inferred that the prediction for
Ap index by use AF technique should have larger PE and
St because of the larger varying amplitude in Ap index at
the disturbed time. While parameter R is not affected by the
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Table 1. Time periods used in the prediction experiment.

Index Sunspot maximum Sunspot decline and minimum
No. 2160-2166 No. 1921-1948 (Jan 14, 1974-Feb 8, 1976)
Kp (Sep 15, 1991-Mar 21, 1992) No. 2058-2077 (Mar 1, 1984—-Aug 22, 1985)
No. 2218-2231 (Dec 29, 1995-Jan 9, 1997)
Kas No. 2160-2166 No. 2063-2069 (Jul 14, 1984-Jan 18, 1985)

(Sep 15, 1991-Mar 21, 1992)

No. 2182-2231 (May 1, 1993-Feb 5, 1997)
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Fig. 2. (a) An average prediction result of Z Kp. (b) An average prediction result of Kps. Re: recurrent periods; Non-Re: nonrecurrent periods.
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Fig. 3. The comparison between observation and prediction of Kgg
(No. 2223: R = 0.3359, St = 3.16, PE < 0). The darker line is
for observation and the lighter line is for prediction. (It is the same in
Figs. 4 and 5).

varying amplitude very much.

The best and worst prediction results for Kgs and Y Kp
during the periods of recurrence and nonrecurrence are given
in Figs. 4 and 5 respectively. R, St and PE are shown in
figure captions. In this paper, recurrent period means that
the correlation coefficient of K index between the two suc-
ceeding rotations is higher than 0.5 and it can exist at least
two or more rotations continuously. From these figures we
can know the precision of this quantitative prediction more
clearly and more perceptually. For real-time prediction all

the predictions are made at the first day of a Bartels rotation,
and then R, St and PE of this rotation can be calculated at
the first day of next Bartels rotation.

As shown by expressions (3)—(5), R, St and PE describe
the goodness of the prediction from different aspects. PE de-
scribes the ability to predict the variation of the observation
and is affected by the varied amplitude of the observations.
For an extreme example, if the prediction is just the aver-
age of the observation, no matter how big of the varied am-
plitude, the prediction efficiency should be zero. However
for very small varied amplitude of the observation this pre-
diction should be a good prediction with very low standard
variance, even though the prediction efficiency is zero. So it
can not say they are bad prediction in rotation No. 2222 and
No. 2223 because of the small or negative PE. Also com-
paring Figs. 4(a) and 5(a), the prediction in Fig. 4(a) should
be better with higher R and lower St, but its PE is lower
than that of Fig. 5(a). This is because the variance of Kgg in
No. 2199 is smaller than that of K p in No. 1932.

The length of input data used in our prediction is 6 rota-
tions. Calculated result and experience have shown that the
updated data length can be chosen as 4 to 7 rotations. Too
short or too long input data will make the recurrent informa-
tion not clear. We use one Kpg or y . K p for each day. So the
output, the one rotation ahead prediction, is a 27-point data
series. Actually, according to the realistic requirement, the
prediction length may be chosen as 1 day, 13 days or even
one month. If prediction output is selected as 1 day, and
then using this 1 day prediction as input for next day predic-
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(a) The best prediction for recurrent period (No. 2199: R = 0.8242, St = 3.14, PE = 54.0%). (b) The worst prediction for recurrent period

(No.2210: R =0.3702, St = 8.56, PE < 0). (c) The best prediction for nonrecurrent period (No. 2222: R = 0.5319, St = 3.16, PE = 8.3%). (d) The
worst prediction for nonrecurrent period (No. 2205: R = —0.0780, St = 7.10, PE < 0).

tion etc., eventually one rotation ahead prediction also can
be obtained after this iterative procedure. But this should not
bring in higher prediction accuracy than one rotation predic-
tion directly given by a 27-point output. Because when you
use 1-point prediction output as input the error of this pre-
diction will be maintained or even enlarged. So we suggest
that for multi-point prediction, just directly select the output
number as long as the prediction length you need.

4. Conclusions

Sometimes the geomagnetic activity basically controlled
by the solar wind are recurrent. This recurrence can pro-
vide sufficient information for forecasting the geomagnetic
activities in near future. In this paper an Adaptive Filtering
technique is applied for this purpose. For both ) Kp and
K s during the recurrent periods the prediction efficiency are
about 30%, the correlation coefficient is 0.55.

During the nonrecurrent periods, R and PE are very low.
Basically we do not suggest to use this technique to predict
the geomagnetic activities without recurrency. But Fig. 2
shows a very interesting character, there is no big change
at St between the recurrent and nonrecurrent periods. That
means to a certain extent AF technique can predict the varia-
tion tendency of geomagnetism even during the nonrecurrent

interval. So if there is no big variations or disturbances dur-
ing a nonrecurrent period, AF can still be a good method to
predict the variation tendency of a whole rotation.

As AF technique is applied to the temporal variation of the
geomagnetic disturbances in this work, an improved predic-
tion can definitely be obtained when a prediction is super-
posed, which is based on the spatial variation. For instance
in Fig. 3, an unpredictable peak at 18th day can probably be
improved by superposing the prediction based on the spatial
variation, in which the controlling elements in the solar wind
are used as inputs.

Three parameters are used for describing a prediction re-
sult from differenct aspects. They are correlation coefficient
R and standard variation St and prediction efficiency PE. PE
brings a relative comprehensive efficiency of the prediction.
But none of them is a good single standard for the prediction
results.

Prediction of geomagnetic disturbance is all along a very
complicate problem on the physics and techniques. Various
prediction methods have been, are being or will be developed
based on different physical mechanism, algorithm techniques
and different indices. How to combine them together is still
an open question, although it is a well known future objective.
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(a) The best prediction for recurrent period (No. 1932: R = 0.8005, St = 6.38, PE = 61.6%). (b) The worst prediction for recurrent period

(No. 1930: R = 0.1868, St = 11.24, PE < 0). (c) The best prediction for nonrecurrent period (No. 2064: R = 0.3450, St = 9.11, PE = 10.6%).
(d) The worst prediction for nonrecurrent period (No. 2076: R = —0.3245, St = 11.14, PE < 0).
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