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A new technique for continuation of the ground magnetic field caused by ionospheric currents to the ionosphere
in spherical geometry is presented that makes use of elementary ionospheric current systems, which were introduced
by Amm (1997) in extension of an earlier work by Fukushima (1976). The measured groundmagnetic disturbance is
expanded in terms of the ground magnetic effect of a spatial distribution of such elementary current systems. Using
a matrix inversion technique, the scaling factors for each elementary current system, and therefrom the ionospheric
equivalent currents are calculated. The technique can be applied to both global and local scales. Its advantages
compared to the common field continuation techniques with Fourier (local scale), spherical cap (local to medium
scale), or spherical (global scale) harmonic expansions are: 1) No fixed limitation of the spectral content has to be
given for the whole analysis area, as it has to be done for the other techniques by truncation of a series expansion.
2) The locations of the elementary current systems can be chosen freely, such that they are most suitable with
respect to the available measurement sites or the type of current system to be analysed. Results of the new technique
are discussed in comparison to results of the spherical cap harmonic expansion method for a model of a Cowling
channel.

1. Introduction
Being introduced as early as by Gauß (1836), continuation

of themagnetic field disturbance due to external sources from
the ground to the ionosphere remains a crucial step in using
ground magnetometer data in ionospheric-magnetospheric
research (e.g., Untiedt and Baumjohann, 1993, and refer-
ences therein). While the groundmagnetic field or the ground
equivalent currents by themselves can only be used qual-
itatively for the estimation of ionospheric electrodynamic
parameters, the height-continued equivalent currents at the
ionospheric level can be combined with information of the
ionospheric electric field via Ohm’s law to spatially obtain
quantitative results on ionospheric conductances, true iono-
spheric currents, and field-aligned currents (e.g., Richmond
and Baumjohann, 1983; Inhester et al., 1992; Amm, 1998).
Field continuation in general (not only from the ground to
the ionosphere) is also an important tool for the construc-
tion of three-dimension geomagnetic reference models (e.g.,
Haines, 1985a, Torta et al., 1992, De Santis et al., 1997), or
for geological applications such as to study crustal magnetic
anomalies by means of satellite data (e.g., De Santis et al.,
1989), or the Earth’s conductivity structure (e.g., Torta and
De Santis, 1996). As we shall see, the technique described
in this paper can be applied to such problems as well with
small modifications.
The common technique for field continuation in spherical

geometry is the expansion of a magnetic potential � into a
series of spherical harmonics, each of which is a solution
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of Laplace’s equation �� = 0 that holds in areas free of
currents (e.g., Chapman and Bartels, 1940):
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where RE is the Earth’s radius, n and m the integer degree
and order of the associated Legendre function Pm

n , (r, ϑ, ϕ)
the coordinates of a spherical coordinate system, and gmn and
hmn the spherical harmonic coefficients to be determined from
the measurements, usually by means of a least-square errors
method. The first sum in (1) corresponds to the part of the
magnetic potential caused by internal sources, the second one
to that caused by external currents (marked with superscripts
‘i’ and ‘e’ for the coefficients, respectively). Once the har-
monic coeffients are determined, the magnetic potential can
be continued to any radius RC inside the current-free area by
setting r = RC in (1).
While this traditional spherical harmonic analysis (SHA)

is well suited for global studies, problems appear if the area
of interest and of measurements is confined to a part of the
Earth’s surface only: The SHA coefficients will then be
poorly defined, or ‘virtual’ data points have to be added.
A way out of these problems is provided by spherical cap
harmonic analysis (SCHA; Haines, 1985b). Let us assume
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that a given data set can be covered by a spherical cap with
midpoint (ϑp, ϕp) (in geographical coordinates) and a half-
angle ϑ0 of the cap. The SCHA expansion of the magnetic
potential � in the current-free region in the spherical coor-
dinate system with the midpoint of the cap as the northern
pole is (Haines, 1985b):
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The structure of Eq. (2) is similar to Eq. (1) of SHA, but
to yield appropriate basis functions on the cap, the SHA
integral degree n has to be replaced by a SCHA non-integral
degree nk(m) where k is an integer index. The nk(m) are
determined by the boundary conditions for the associated
Legendre functions Pm

nk (m)(cosϑ) at ϑ = ϑ0

dPm
nk (m)(cosϑ0)

dϑ
= 0 for k − m even,

Pm
nk (m)(cosϑ0) = 0 for k − m odd,

(3)

i.e., for a given m and ϑ0, those Legendre functions which
fulfill Eq. (2) are searched with increasing nk(m) and are
indexed by k. Accordingly, a definition of the Legendre
functions is needed that does not rely on an integer degree n
(Hobson, 1931; Haines, 1985b):
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2

)
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where F(α; β; γ ; x) is the hypergeometric function and Km
n

are normalisation factors (in geophysics usually Schmidt
normalisation, e.g., Chapman and Bartels, 1940). Since
nk(m) ≥ k, with the same number of coefficients, SCHA
uses higher degree Legendre functions than SHA, and there-
fore obtains a better spectral resolution. SCHA is suitable
for local to medium scale studies, with scale lengths in the
order of magnitude of 1000 km × 1000 km.
Anothermethod forfield continuation on local scaleswhen

the curvature of the Earth’s surface can be neglected will
briefly be mentioned: Be �̃(kx , ky) the Fourier transform of
a magnetic potential �(x, y), with x and y denoting carte-
sian coordinate axes, and kx and ky the corresponding wave
numbers. Then, for external sources (as we are mainly con-
cerned with in this paper), the Fourier transformed potential
on the ground at z = 0 relates to the Fourier transformed
potential on another height z = zC as

�̃(kx , ky, zC) = �̃(kx , ky, 0) · e−kz zC (5)

with kz =
√
k2x + k2y and z positive downwards (cf., e.g.,

Untiedt and Baumjohann, 1993).

For all of the methods discussed, a minimum wavelength
that can be resolved in the analysis has to be chosen glob-
ally, i.e., for the whole analysis area. For SHA, this wave-
length is λmin = (2πRE )/nmax, for SCHA it is λmin =
(2πRE )/nk(m)max, and for the Fourier transform method it
becomes λmin = 2π/kz,max, with the subscript ‘max’ denotes
the highest value of n, nk(m), or kz used in the analysis, re-
spectively. As shown in the application example below, the
duty to choose this resolution boundary globally can lead to
problems in the field continuation procedure if the spectral
content of the field to be analysed is highly varying, or if the
density of the measurement sites is. If the resolution bound-
ary is adopted to the part of the analysis area with the highest
spectral content of the field or the most dense measurements,
the higher spherical harmonic or Fourier coefficients might
become erratic due to lack of data in the remaining parts. If it
is set lower, the analysis might be unable to reproduce details
of the field in the former area.
In this paper, we present amethod forfield continution that

is not based on spectral decomposition as the ones above.
It expands the measured ground magnetic field into a sum
of the magnetic field effect of spherical elementary current
systems (SECS) placed in the ionosphere. The centers of
these elementary current systems (called ‘poles’ here) can
be placed freely, such that their locations are most suitable
with respect to the density of the measurement sites or to the
type of the magnetic field disturbance to be analysed.

2. Spherical Elementary Current Systems
Two types of spherical elementary (sheet) current sys-

tems have been defined by Amm (1997), one ( �Jd f,el) be-
ing divergence-free and the other ( �Jcf,el) curl-free. Written
in a spherical coordinate system (r ′, ϑ ′, ϕ′) with unit vec-
tors (er ′ , eϑ ′ , eϕ′) that has its northern pole in the center (or
the ‘pole’) of the elementary system (compare the sketch in
Fig. 1), their definition is

�Jd f,el(�r ′) = I0,d f
4πRI

cot(ϑ ′/2)eϕ′ (6)

and
�Jcf,el(�r ′) = I0,c f

4πRI
cot(ϑ ′/2)eϑ ′ (7)

where RI is the radius of the ionosphere, assumed to be
an infinitely thin layer at 100 km above the Earth’s surface
throughout this paper, and I

0,
{

d f
c f

} are called the scaling fac-

tors of the elementary systems. The curl-free elementary
system (7) is associated with a field-aligned current (i.e., a
divergence of �Jcf,el) of magnitude I0,c f at its pole, and uni-
form, oppositely directed FACs of magnitude - I0,c f /4πR2

I
on the rest of the ionosphere, so that the net FAC over the
whole ionosphere is zero. This curl-free elementary system
is the same that Fukushima (1976) attributed to Pedersen cur-
rents in an uniformly conducting ionosphere. However, as
shown by Amm (1997), for the following it is not necessary
to consider how the current was actually produced.
By using Helmholtz’s theorem, Amm (1997) showed that

any ionospheric current density �J can be uniquely con-
structed by a superposition of (6) and (7), placing poles of
elementary systems all over the ionosphere. In fact, the ele-
mentary systems as defined above can be used to expand any
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Fig. 1. Sketch of spherical elementary current systems (SECS); Left side: curl-free elementary system associated with a field-aligned current (FAC) at its
pole at ϑ ′ = 0, and oppositely directed small FACs of constant magnitude on the rest of the sphere. This system does not produce any magnetic effect
below the ionosphere and is not needed to expand equivalent currents; Right side: Divergence-free elementary system.

continuosly differentiable vector field on a sphere. When
we are dealing with the continuation of the ground mag-
netic field disturbance to the ionosphere, we need to have in
mind that we cannot reconstruct the total or actual current
density �J from it. We only obtain the equivalent currents
�Jeq,I on which are those horizontal currents flowing in the
ionosphere that produce the same magnetic effect below the
ionosphere than the actual, three-dimensional current system
consisting of horizontal currents and FACs (e.g., Untiedt and
Baumjohann, 1993). �Jeq,I on is divergence-free because the
curl-free part of the actual current system, like the curl-free
elementary current system (7), does not produce any mag-
netic effect below the ionosphere, as has also been shown by
Fukushima (1976).
Hence, for the purpose of our paper, i.e., the upward con-

tinuation of the ground magnetic field to the ionosphere
and its representation in terms of �Jeq,I on , we only need the
divergence-free elementary system (6) to expand

�Jeq,I on(�r) =
∫∫

Ionosph.

[curl �J (�r ′)]r
4πRI

cot(ϑ̃/2)eϕ̃d
2r ′ (8)

where ϑ̃ and ϕ̃ denote the coordinates of �r in the spherical
coordinate system with its pole at �r ′, and eϑ̃ and eϕ̃ are the
unit vectors according to this coordinate system. The ϕ = 0
direction for each coordinate system can be defined freely,
but fixed. For (8), we made use of Stokes laws to yield∫∫

Kr ,r→0[curl �J (�r ′)]r d2r ′ = I0,d f (�r) (where Kr is a circular
ionospheric area with radius r around �r , and I0,d f (�r) denotes
the scaling factor of the elementary current systemswith pole
at �r ).
In case of a discrete grid representation, the integral in

(8) divides into a sum over discrete (grid) points. Assuming
[curl �J (�r ′)]r = CG to be constant over a gridpoint area FG ,

the scaling factor of the elementary current system at each
gridpoint �rG is approximated to I0,d f (�rG) = CG · FG .
We briefly note that a similar set of elementary current

systems for the planar geometry has been given in Amm
(1997), equation (4). Due to a misprint in that equation, 4π
has to be replaced by 2π in the denominator. The proce-
dures described in this paper can be used analogously in the
planar geometry by using the divergence-free one of these
elementary systems instead of (6).

3. Ground Magnetic Field Disturbance of
Divergence-free Spherical Elementary Current
System

As mentioned above, the magnetic field effect of the curl-
free elementary current system (7) vanishes below the iono-
sphere (cf. Fukushima, 1976). To calculate the ground mag-
netic field effect of �Jd f,el (Eq. (6)), we derived its vector
potential �A(�r ′) below the ionosphere by expanding the dis-
tance between the source current filaments in the ionosphere
and the point where �A is evaluated in spherical harmonics.
Using the generating function for the associated Legendre
functions, we can write �A in a closed-form expression and
finally obtain �B = rot �A. Details of this calculation are given
in the appendix.
For a point with radius r < RI and pole angle ϑ ′ from

the pole of the elementary current system, the magnetic field
effect of a divergence-free elementary current system �Jd f,el
with scaling factor I0, flowing at r = RI , is

Br ′(r, ϑ ′) = μ0 I0
4πr

⎛
⎜⎜⎝ 1√

1 − 2r cosϑ ′
RI

+
(

r
RI

)2
− 1

⎞
⎟⎟⎠ (9)
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Fig. 2. Ground magnetic effect of a divergence-free elementary current system with a scaling factor 10000 A, in the spherical coordinate system with the
pole of the elementary system as the north pole, as a function of the ground distance from this pole; Bϕ′ is zero.

and
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Bϕ′ is zero and there is no ϕ′ dependence, as can be immedi-
ately seen from the symmetry. Figure 2 shows the resulting
magnetic disturbances Br ′ and Bϑ ′ at r = RE , for an elemen-
tary current system with a scaling factor of I0,d f = 10000 A,
as a function of the ground distance from the pole of the el-
ementary current system. As expected, Br ′ reaches a maxi-
mum (of exactly 10 nT for RI − r = 100 km) below the
pole and decreases rapidly with increasing distance from it.
Bϑ ′ is zero directly below the pole, then shows a minimum
at about 127 km distance from it, and decreases slowly with
further increasing distance. The equations for the magnetic
effect of �Jd f,el at r > RI are given in the appendix.

4. Matrix Formulation of Expansion of Ground
Magnetic Disturbance into Disturbances of
Elementary Current Systems

With the previous, the matrix formulation of the field con-
tinuation is straightforward: Let us assume that the ground
magnetic field disturbance �Zk has been measured at points
�rk,obs = (ϑk,obs, ϕk,obs), k = 1, . . . , nobs which are usually
irregularly spaced. Poles of elementary current systems are
placed at points �rl,el = (ϑl,el , ϕl,el), l = 1, . . . , nel , which
may be but do not have to be located on a regular grid. We can
then determine the scaling factors of the elementary current
systems that fit best to the ground magnetic field observation
by solving

T · I = Z (11)

where

Z =

⎛
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is the vector of observations,
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...
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⎞
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is the vector of the scaling factors for the elementary current
systems, and

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

T11,ϑ T12,ϑ · · · T1nel ,ϑ
T11,ϕ T12,ϕ · · · T1nel ,ϕ
T21,ϑ T22,ϑ · · · T2nel ,ϑ
T21,ϕ T22,ϕ · · · T2nel ,ϕ

...
...

Tnobs1,ϕ Tnobs2,ϕ · · · Tnobsnel ,ϕ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

Here, the T
k,l,

{
ϑ

ϕ

} denote the ϑ or ϕ component of the ground

magnetic effect of an elementary current system with a scal-
ing factor of 1 A and its pole at �rl at the observation point �rk ,
expressed in the same coordinate system as the observations
(usually geographic). In practice, they are easily obtained
by calculating the ground magnetic effect of the elementary
system using the equations as given in the Appendix, and
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(a)

(b) (c)

Fig. 3. Model of a Cowling channel (details see text and Amm (1997)); (a) Actual ionospheric currents and FACs (crossed circles mark downward, dotted
ones upward flowing FACs).; (b) True equivalent currents; (c) By 90 degrees clockwise rotated ground magnetic disturbance.

converting it from the spherical coordinate system of the el-
ementary system into that of the measurements.
Asmentioned above, the expansionof anygiven equivalent

current systems into a superposition of spherical elementary
current systems as given in Eq. (6) is analytically unique.
Since the relation between the elementary current systems
and their groundmagnetic effect is bijective, our expansion of
the ground magnetic disturbance in terms of the elementary
current system disturbances is also unique. The resulting
scaling factors I are identical with those of the expansion

of �Jeq,I on in the discrete form of Eq. (8), thus allowing to
calculate �Jeq,I on .

5. Matrix Equation Solving Technique
To solve Eq. (11) for I , in principle any matrix solving

technique could be used. However, in practise our prob-
lem will most often be highly underdetermined, because
the amount of data points nobs where magnetometers have
measured the ground magnetic disturbance is typically much
smaller than the desired number of elementary current sys-
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tems nel to obtain a good representation of �Jeq,I on in the
ionospheric plane. In this case, T will be badly conditioned,
and the solution space of (11) will contain a nullspace.
A recommendable solving technique for such a case is the

singular value decomposition method (SVD, e.g., Press et
al., 1992): The matrix T is decomposed into

T = U w V T (15)

whereU and V T are orthogonal matrices, i.e. the columns of

U and the rows of V T are bases for the nel-dimensional space
of all possible combinations of the nel elementary systems. w

is diagonal, and its diagonal elements wmm , m = 1, . . . , nel ,
are called the ‘singular values’ of T . If nel > nobs , those
nel − nobs singular values that are connected with the basis
of the nullspace of T in U and V T are zero. The decisive
point in SVD is now that it allows to separate out other badly
conditioned parts of T as well, since they are connected with
nonzero, but small singular values. This is done by setting
all wmm with wmm ≤ ε · Max.{wmm} to zero. Typical values
for ε range between 0.01 and 0.1. After that, (11) can be
solved by

I = V (diag(w̃mm))UT Z (16)

where

w̃mm =
{

w−1
mm for wmm 
= 0,

0 for wmm = 0.
(17)

For an underdetermined system of equations, this procedure
will pick the solution with minimum |I |2 from the total so-
lution space (Press et al., 1992). With the solution for I ,
the ionospheric equivalent currents �Jeq,I on can be obtained
at any ionospheric point using (8) and the remarks for the
discrete formulation after that equation.
The larger ε is chosen, the smoother the solution for �Jeq,I on

will be in general. However, it should be noted that the choice
of ε does not invoke a spectral resolution boundary, but a
separation with respect to well and badly conditioned parts
of our linear system of equations.

6. Application Example
Finally, we test the SECS method of upward field contin-

uation from the ground to the ionosphere in a model exam-
ple of a Cowling channel and compare its results to those
of the spherical cap harmonic analysis (SCHA). We choose
SCHA for the comparison since on the scales of typically
1000 km × 1000 km that are most interesting and applica-
ble for upward continuation in ionospheric-magnetospheric
physics (e.g., Richmond and Baumjohann, 1983; Walker et
al., 1997; Amm, 1998), it is probably the most advanced
existing technique (compare, e.g., Haines, 1990).
A Cowling channel is a confined ionospheric area with

an enhanced conductance, leading to horizontal ionospheric
currents with magnitudes that are enhanced compared to the
background. The channel usually has a larger extent in the
direction of the current flow (called ‘channel direction’) than
perpendicular to it. At the edges of the Cowling channel
in the channel direction, field-aligned currents (FACs) are
present to feed or diverge the enhanced horizontal currents,
respectively (e.g., Boström, 1974, Baumjohann et al., 1981).
We will not discuss the details of this model here, since we

(a)

(b)

Fig. 4. Spherical cap harmonic analysis (SCHA) results of upward con-
tinuation; (a) With Ke = 10; (b) Increasing to Ke = 12 leads to erratic
vectors.

use the samemodel that has been described in detail by Amm
(1997), and since for the purpose of this paper only the total
current flow as sketched in Fig. 3(a) is relevant. In ourmodel,
the channel is limited to the area between 66 and 70 degrees
of latitude and 20 to 22 degrees of longitude. The channel
currents are flowing southward, being fed at the northern and
diverged at the southern end of the channel via FACs. Note
that the longitude onwhichwe place ourmodel has no special
physical meaning. It is merely for convenience adjusted to
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(a)

(b) (c)

Fig. 5. Results of the spherical elementary current system (SECS) method; (a) with poles of elementary systems on the grid points shown only; (b) Refined
grid in the area of loops of the by 90 degrees rotated ground magnetic field; (c) Result with poles of elementary systems on the refined grid.

Northern Fennoscandia.
The ionospheric equivalent currents �Jeq,I on that cause the

same magnetic effect below the ionosphere as the three-
dimensional currents of Fig. 3(a) are shown in Fig. 3(b).
As can be seen, besides the dominating southward currents
in the channel area, the effect of the FACs results into two
equivalent current loops at bothflanks of theCowling channel
perpendicular to the channel direction. The same structure,

somewhat smoothed out due to the distance from the source,
can still be seen in the by 90degrees clockwise rotated ground
magnetic disturbance as calculated with Biot-Savart’s law
from our model currents (Fig. 3(c)).
This ground magnetic disturbance is taken as the input for

the field continuationmethods, and the SECSmethod as well
as SCHA will be tested in how well they can reproduce the
model equivalent current pattern as presented in Fig. 3(b).
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Fig. 6. Longitudinal profile of the north component of the ionospheric equivalent currents; Solid line: true profile (see Fig. 3(b)); Dotted line: SCHA
upward continuation result with Ke = 10 (see Fig. 4(a)); Broken line: SECS method upward continuation result with poles of elementary systems on
refined grid (see Fig. 5(c)).

The SCHA algorithm used is the one of Haines (1988), with
slight modifications by the authors. The equations for the
equivalent currents in terms of the SCHA expansion can be
found in Haines and Torta (1994).
In Fig. 4(a), the SCHA result is shown for a spherical cap

half angle ofϑ0 = 12◦, and Ke = 10 in Eq. (2) (internal coef-
ficients are irrelevant in our model case). Since the SCHA fit
is subject to errors at the boundary of the spherical cap which
may continue inwards during the upward continuation, it is
necessary to select a somewhat larger ϑ0 than would be re-
quired solely by the area of data coverage (e.g., Torta and De
Santis, 1996). However, increasing ϑ0 to larger values than
the one selected here does not anymore improve the results.
Clearly, SCHA is able to reproduce the general pattern of
the true ionospheric equivalent currents well. However, if
the result is examined in more detail, it turns out that the
currents in the center of the channel are underestimated by
about 20 mA/m (i.e., by about 20%), whereas the equivalent
return flow at the flanks perpendicular to the channel direc-
tion is larger than in the model (compare Fig. 3(b)). The
smoothing of the real �Jeq,I on distribution that is present in
the SCHA result is most obvious from the comparison of the
north component of �Jeq,I on on a longitudinal profile at 68
degrees of latitude (Fig. 6): The SCHA result (dotted line)
is not able to follow the relatively narrow peak of the model
(‘true’) currents (solid line) in the center of the channel. The
natural remedy of this is to increase Ke for the SCHA ex-
pansion. As the result with Ke = 12 shows (Fig. 4(b)), this
leads to a better representation of the currents in the center of
the channel, but now a population of vectors at the flanks be-

come erratic (the same happens with Ke = 11, but we show
the Ke = 12 case for clearer illustration). The same effect
is observed if ϑ0 is decreased. The reason for this behaviour
is that the spectral components that are needed to represent
the peak in the center of the channel, are ill-determined at its
flanks and lead to a ‘swinging’ effect there.
The results of the SECS method is shown in Fig. 5. The

value of ε used is 0.015 which was obtained in an optimi-
sation process as the Ke for SCHA. First, we allow poles
of spherical elementary systems on the grid points of our
model only. The upward continued �Jeq,I on essentially shows
the same problems as dicussed above for SCHA in this case,
as can be seen in Fig. 5(a). However, from the geometry of
the ground magnetic disturbance (see Fig. 3(c)), it is obvious
that the curl of the equivalent current system—and therefore
also the magnitude of the scaling factors of our elementary
current systems—peaks near the flanks of the channel per-
pendicular to the channel direction. Hence, in these areas
we refine the grid for the poles of the elementary current
systems as shown in Fig. 5(b). While no general “optimum
rule” for such a refinement exists, from our experience a
good choice is to decrease the grid spacing for the poles of
the elementary current systems in those areas to about one
third of the average spacing of the input data, i.e., here of
the grid spacing of our model. A refinement in areas where
the curl of the measured equivalent currents is small will not
improve the results. The result of the SECS method using
the refined grid is shown in Fig. 5(c). Although the improve-
ment is not easily visible on the first view from this vector
plot, it becomes obvious by a comparison of the �Jeq,I on,north
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profiles at 68 degrees of latitude (Fig. 6). The solution based
on elementary current (broken line) systems follows the true
profilemuch closer than the SCHA result (dotted line). Espe-
cially, it reproduces the minimum in the center of the channel
nearly exactly, and follows the narrow shape of the true pro-
file there closely. Such on the first view small differences
may become important if the upward continued equivalent
currents are used quantitatively in combination with, e.g.,
the ionospheric electric field to determine other ionospheric
electrodynamic parameters (e.g., Inhester et al., 1992; Amm,
1998).
This application example shows that the SECS method is

able to obtain at least as good, and with an appropriate grid
refinement even better results in upward continuation than
the already quite advanced SCHA method. In particular, a
refinement of the grid does not lead to numerical problems
as does the increase of spectral content by increasing Ke in
SCHA. Additionally, the SECS method can even provide
some information of equivalent current sources outside the
area ofmeasurements byplacingpoles of elementary currents
there and fitting their magnetic effect on the measurements.

7. Conclusions and Outlook
We have introduced a new method for field continuation,

worked out in this paper for the purpose of upward con-
tinuation of the ground magnetic field disturbance to the
ionosphere, and its representation as ionospheric equivalent
currents. In contrast to existing methods that rely on a spec-
tral decomposition of the magnetic potential, this method is
based on spherical elementary current systems (SECS) as in-
troduced in Amm (1997). Thus, no fixed boundary for the
minimum wavelength to be resolved has to be given over the
total analysis area like in the existing methods by terminat-
ing a series, but poles of elementary systems can freely be
placed as they are most suitable with respect to the density
of mesurements or the type of disturbance to be analysed.
The value of this advantage was demonstrated in the model
example of a Cowling channel where the new method, with
appropriately placed elementary systems, gained a better re-
construction of the true ionospheric equivalent currents than
the spherical cap harmonic analysis (SCHA). We have se-
lected the Cowling channel model with its relatively simple
geometry for this paper in order to illustrate the effects of the
different upward continuationmethodsmost clearly. The au-
thors have tested the SECS method also for current systems
of more complex geometry, and in all cases gained upward
continuation results of similar quality as shown in this paper.
The method presented in this paper can easily be adapted

to other field continuation problems than from the ground
to the ionosphere, just by placing similar spherical elemen-
tary currents like in (6) on the sphere(s) where the currents
that cause the field are assumed to flow and calculating the
magnetic field effect of the elementary current system with
scaling factor of 1 A on the sphere(s) where the measure-
ments were taken (of course, RI in Eq. (6) has to be replaced
by the respective radius of the sphere(s)). Likewise, sepa-
ration of the parts of a field caused by external and internal
sources can be carried out with the SECS method by placing
elementary current systems on two spheres, one representing
the external, the other the internal part. Typically, the outer

shell would be the ionosphere, whereas the inner one might
be placed with respect to a ‘perfect conductor’ that is used to
approximately replace the real conductivity stucture of the
Earth (e.g., Baumjohann et al., 1981; Gustafsson et al., 1981,
Viljanen et al., 1995). It should, however, be noted that the
introduction of more elementary current systems for a given
amount of data will increase the underdetermination of the
system of linear equations in (11). Furthermore, to perform
the field separation, measurements of Br and corresponding
transfer functions have to be included into Eqs. (12) and (14),
respectively.
Finally, all of the upward continuationmethodsmentioned

in this paper can also be used to derive models of the mea-
sured quantities, and thereby to inter- or extrapolate �Jeq,I on ,
or the measured ground magnetic field disturbance, since the
determination of the SECS, SCHA, SHA, or Fourier coeffi-
cients allows in principle to calculate these quantities at any
place in the respective shells. Not surprisingly, the quality
of the result will depend on the data coverage near the point
where the quantities are to be interpolated. Also for this pur-
pose, the SECS method has shown to be more robust than
the spectral methods.
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Appendix
In this appendix, we outline the calculation of the mag-

netic field disturbance of a divergence-free elementary cur-
rent system �Jd f,el flowing in the ionosphere at radius RI . All
calculations are done in the coordinate system with the pole
of the elementary system at ϑ ′ = 0, i.e., at the north pole.
For simplicity, we omit the quotes used in the main text to
separate this coordinate system from the geographical one
here. We first show the derivation of Eqs. (9) and (10) for
r < RI , and then give similar equations for r > RI .

First we insert Eq. (6) into the expression of the vector
potential �A of the desiredmagneticfield disturbance to obtain

�A(�r) = μ0 I0
16π2RI

∫
d3r ′δ(r ′ − RI )

cotϑ ′/2
|�r − �r ′| eϕ′ . (A.1)

By expanding line |�r − �r ′|−1 into spherical harmonics and
using their orthogonality relations (e.g., Arfken, 1985) we
arrive at

�A(r, ϑ) = μ0 I0
4π

∞∑
n=1

1

n(n + 1)

(
r

RI

)n

P1
n (cosϑ)eϕ.

(A.2)
With the definitions λ := r/RI x := cosϑ , and

f (λ) :=
∞∑
n=1

1

n(n + 1)
λn+1P1

n (x) (A.3)

and consequently

f ′′(λ) = 1

λ

∞∑
n=1

λn P1
n (x) (A.4)



440 O. AMM AND A. VILJANEN: DISTURBANCE MAGNETIC FIELD CONTINUATION

we can use the generating function for the associated
Legendre polynomials Pm

n (x) for the special case m = 1
(e.g., Arfken, 1985)

∞∑
n=0

λn P1
n+1(x) = 1

λ

∞∑
n=1

λn P1
n (x)

=
√
1 − x2

(1 − 2xλ + λ2)3/2
(A.5)

to obtain a closed-form expression for �A after solving the
differential equation for f (λ):

�A(r, ϑ) = μ0 I0
4π

RI

r sinϑ

·
⎛
⎝

√
1− 2r cosϑ

RI
+

(
r

RI

)2

+ r cosϑ

RI
−1

⎞
⎠ eϕ.

(A.6)

From (A.6), we can directly derive (9) and (10) by using
�B = rot �A.
The equations for the magnetic effect of �Jd f,el for r > RI

can be derived analogously to the above. The results are

Br (r, ϑ) = μ0 I0
4π

RI

r2

⎛
⎝ 1√

1 − 2RI cosϑ
r + ( RI

r

)2 − 1

⎞
⎠
(A.7)

and

Bϑ(r, ϑ) = −μ0 I0
4π

1

r sinϑ

·
⎛
⎝ r − RI cosϑ√

r2 − 2r RI cosϑ + R2
I

− 1

⎞
⎠ . (A.8)

Of course, the ionospheric radius RI can be replaced in (A.7)
and (A.8) as well as in (9) and (10) by any other radius where
the elementary current system is assumed to flow.
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