LETTER

Earth Planets Space, 52, 857-862, 2000

Minimal Detectable Biases of GPS observations for a weighted ionosphere
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The theory and application of statistical quality control is well established in precise positioning, navigation and
geodesy. Quality control is made up of several contributing factors, one of which is internal reliability. Internal
reliability describes the ability to find biases in observational data and is represented by the Minimal Detectable Bias
(MDB). The MDB provides a diagnostic tool to infer the strength with which positioning models can be validated.
In this contribution closed-form expressions will be given for the MDBs of GPS code and carrier observations for
three different baseline models: the geometry-free model and two variants of the geometry-based model. These
expressions apply to any number of carrier frequencies. The expressions take into account the presence of ionospheric
disturbances by weighting these effects. As such, they are applicable to baselines of any length.

1. Introduction

Minimal Detectable Biases (MDBs) as introduced by
Baarda (1967, 1968) are important diagnostic tools for in-
ferring the strength of model validation. They are said to
describe the internal reliability of a system. MDBs can also
be used to study the strength of the various GPS positioning
models (single receiver, baseline and network). In de Jong
(1999) analytic expressions are given for the MDBs of out-
liers and cycle slips in GPS code and carrier observations for
a single baseline. In deriving these expressions, it was as-
sumed that ionospheric effects may not always be eliminated
when differencing between receivers. Since the influence of
the ionosphere will increase with increasing baseline length,
an ionospheric weighting factor was introduced to account
for the ionospheric effects. Setting this factor to zero cor-
responds to the short baseline case. The MDBs for short
baselines were already derived in Teunissen (1998). In this
paper, simplified expressions, which are easy to implement,
will be given for the code and carrier MDBs for three dif-
ferent baseline models. These expressions are valid not only
for single- and dual-frequency data, but for any number of
carrier frequencies.

In Section 2 a brief review is given of the concept of in-
ternal reliability. Section 3 gives a summary of the measure-
ment models for the three single-baseline models, introduced
in Teunissen (1998), together with their stochastic model. In
the last two sections the simplified expressions for the MDBs
of code and carrier observations are given.

2. Internal Reliability

Internal reliability, as represented by the MDBs, describes
the size of the model errors that can just be detected using
the appropriate test statistics. For more details, the reader is

referred to, for example, Baarda (1968) or Teunissen (1985).
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The null hypothesis Hy describes the case model errors
are absent. The alternative hypothesis H, considered here
assumes there is a bias in one of the observations. These two
hypotheses are defined as

Hy : E{y} = Ax, D{y} = 0,,
Ha:E{y}:Ax+va D{y}ZQ},

ey
@

where E{.} and D{.} are the expectation and dispersion op-
erators, respectively, y the m-vector of observations, x the
n-vector of unknown parameters, A the mxn design matrix,
¢ aknown m-vector, which specifies the type of model error,
and V its unknown size. The uniformly most powerful test
statistic for testing Hy against H, is given as

_ TPy )
cT Q;le‘c
where the projector P;- is defined as
Py =1—AA"Q;'A)71AT QT 4)

The test statistic 7 has a Chi-squared distribution, which
is central under H; and non-central under H,. The non-
centrality parameter A is a measure of the distance between
Hy and H,. This non-centrality parameter can be computed
once reference values are chosen for the level of significance
(the probability of rejecting Hy when it is true) and the detec-
tion power (the probability of rejecting Hy when H,, is true).
Once the parameter is known, the corresponding size of the
bias that can just be detected is given as

Ao
IVI=ZoTpi.
c' Oy Pyc

This is the Minimal Detectable Bias. For most practical
applications, ap = 0.001 and yy = 0.80, resulting in a non-
centrality parameter A g = 17. As can be seen from (5),
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the MDB not only depends on ¢ and yy, but also on the
functional and stochastic model, through the design matrix A
and the covariance matrix Q,, and the alternative hypothesis
considered, as represented by the vector ¢. The alternative
hypotheses considered here consist of outliers and cycle slips
in GPS code and carrier observations, respectively.

3. Baseline Models

The double difference (DD) measurement model for two
receivers each tracking the satellites r and s at an epoch ¢,
can be written as

pit @) = p" () + w17 (1) +n) (@),
¢ (1) = p" () — i 1™ (1) + AN +ny (1) (6)
i=1---f

where f is the number of frequencies, p;* and ¢;° are the
DD code and carrier observations, expressed in meters, p"*
the unknown satellite-receiver DD range, N/* the DD car-
rier ambiguities, A; the carrier wavelengths, u; = (A; / A3,
" the DD ionospheric effect and n);’ and ny; the DD mea-
surement noise of code and carrier. It is assumed here that
tropospheric effects are either absent or accounted for using
the appropriate models. Introducing the ionospheric pseudo-
observable I p, with sample values taken e.g. from an external
ionospheric model, the ionospheric parameter can be elimi-
nated from (6), resulting in

pit @) = pi(t) — widp' (1)
=" (O + (1),
() = ¢ () + il (1)
= p" () + AN + g (1) ()
i=1---f

Using (7) the measurement model can be formulated for
the three baseline models, considered here.

Geometry-free. For the geometry-free (GF) model the ob-
servation equations remain parametrized in terms of the un-
known DD receiver-satellite ranges. As a result, they remain
linear and the receiver-satellite geometry is not explicitly
present in the measurement model. This means that the re-
ceivers may either be stationary or moving. This model has
been studied in particular for carrier phase ambiguity reso-
lution (Euler and Goad, 1991; Teunissen, 1996; Jonkman,
1998), and validation of GPS code and carrier observations
(de Jong, 1996, 1997, 1998).

Thus, when m satellites are tracked, there are 2(m — 1)
DD measurements per frequency for each epoch. The redun-
dancy of the model equals (m — 1)((2f — 1)k — f), where k
denotes the number of observation epochs. In order to have
redundancy, at least two satellites should be observed and the
number of epochs k should be greater than f/(2 f — 1). For
f =1, this means k should be greater than one, for all other
(multi-frequency) cases, k should at least be equal to one.

Roving receiver. For the roving receiver (RR) model, one
receiver is stationary, whereas the other one is moving. The
DD observation equations are parametrized in terms of the
unknown baseline components. For each observation epoch,
a new baseline is introduced. The RR model is a geometry-
based model, since the receiver-satellite geometry appears in

the observation equations through the linearized (in terms of
the baseline components) DD ranges. For a single epoch the
linearized expression for p (f) (containing the DD ranges for
m — 1 satellite pairs) is given by

Ap(t) = p(1) — p(1)o = G(1) Ab(1) ®)

where p(t)o denotes the DD range, computed at some initial
value, Ab(t) the corrections to the initial baseline vector b(z)g
atepoch ¢ and G(¢) the (m — 1)x3 DD design matrix, which
takes into account the relative receiver-satellite geometry.
This geometry changes only slowly with time, due to the
high altitude of the GPS satellites. In our further analysis we
will consider only short observation time spans. Therefore
G (1) will be assumed time-invariant, i.e., G(t) = G for all
k epochs.

The redundancy for this model equals f(m — 1)(2k —
1) — 3k. For the baseline components to be estimable, the
minimum value of m is four. Ifk = 1 and f = 1, redundancy
exists if m > 4; for all other cases, m should at least be equal
to four.

Stationary receiver. This is also a geometry-based model.
For the stationary receiver (SR) model, both receivers are
stationary.  The DD observation equations are again
parametrized in terms of the baseline components. For this
model, the baseline is the same for all observation epochs.
As a consequence, the redundancy, compared to the rov-
ing receiver model, is increased by 3(k — 1) and equal to
fm—1)2k—1)—3.

It follows from (5) that in order to compute MDBs, the
stochastic model of the observations is required. In Teunissen
(1998) and de Jong (1999) the MDBs are derived for a very
general model, which allows for correlation between obser-
vations and a different precision for each frequency. Here
we will consider only a very simple stochastic model, which
is widely used in practice.

The stochastic model for the single-differenced code, car-
rier and ionospheric observations to a particular satellite s,
is assumed to be given by

C;¢ = wy - diag(cf,lf célf) ,

of, = w, - s* ©

where wy is a satellite-dependent weighting factor and / the
fxf identity matrix. Through the weighting factor it is pos-
sible to assign different weights to each satellite, for example,
depending on their elevation. In that case the weighting fac-
tor becomes time-dependent. However, as was done for the
geometry, for short observation time spans it is taken as a
constant.

Eliminating the ionospheric parameters using the observ-
able Ip results in the covariance matrix C);; of the observa-
tions

(10)
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where 4 = (u1...us)". If the ionosphere is absent or
assumed known, s> = 0; if the ionospheric behavior is com-
pletely unknown, s> — oo. Adding a pseudo-observable
with infinite variance is equivalent to introducing an addi-
tional parameter. Therefore, the redundancy of each of the
three baseline models decreases by k(m — 1). The two ex-
treme cases are generally referred to as ionosphere fixed and
ionosphere float. In practice s> may often vary between
these two extreme values, depending on the baseline length
(Schaffrin and Bock, 1988).

4. Code Outlier MDBs

The MDBs for outliers in code data will be given, based
on the derivations in de Jong (1999) and Teunissen (1998)
for the single difference (SD) observables. The carrier-to-
code variance ratio, which in practice is of the order of 1074,
can be neglected here. Together with the assumptions of
constant receiver-satellite geometry and constant weighting
factors, this results in relatively simple expressions.

For an outlier at epoch [, 1 < [ < k, in the SD code
observable p,,r =1, ..., f,tosatellitei € {1, ..., m}, we
get for the geometry-free model

19,01 = o {20/ [(1 = HF ) Fa)

_ 1/2
+R@ONA - o)} an
and for the roving receiver model
19,1 = o { o[ (1 = FUF () Fae)
_ 1/2
+Bena-2o]} " a2

wj

Jj=1

Within the approximations used, the code outlier MDBs for
the roving and stationary receiver models are the same. The
quantities that appear in (11) and (12) are defined as

f
Fi(x) = ’x/(cg+5> ) ud).

(13)
j=1
f
F(x) = (1+x/(>Y ™", (14)
j=1
S
F(x) = (3 +° Y pjlu; — x))
j=1
,
/{f S+ 57y ud)
j=1
f
@& +52 )~ M), (15)
j=1
= % Z I, (16)
j=1
Pige,) = (Gen)(Gen) (Gen)] ' (Gen)',  (17)

where (G e,,) is the mx4 single difference design matrix. If
DT is the (m — 1)xm matrix which transforms single into
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Fig. 1. Dual- and triple-frequency geometry-free L1 code MDBs as function
of ionospheric variance; number of satellites is equal to five.

30.0 -

S Dual-frequency, 1 epoch

250 | |@Dual-frequency, 10epochs |
’ @ Triple-frequency, 1 epoch

2004 - .

L1 code MDB [m]
o
o

-
o
IS)

0 0.001  0.01 0.1 1 10 100

lonospheric variance [m?]

Infinity

Fig. 2. Dual- and triple-frequency geometry-based L1 code MDBs as
function of ionospheric variance; number of satellites is equal to five.

double differences, then G = DTG and D"e,, = 0. The
m-vector e, has all ones as its entries. If all satellites are
assigned the same weight, we get

1—w,~/iw_i=l—1/m (18)
j=1

a situation which is assumed by most software packages de-
veloped for processing GPS data. In that case the MDBs for
all satellites, for a particular frequency and baseline model,
are the same.

If m, the number of tracked satellites, equals four, the
design matrix (G e,,) is a square matrix and the projector
PG ., reduces to the identity matrix. As a result, the term
1 — ¢! Pge,)ci becomes zero and the MDBs for all three
baseline models become the same.

A further approximation is possible by realizing that
¢! PGe,ci is the i-th diagonal element of the projector
PG, and that the trace of this matrix is equal to its rank,
which is four. The average value of the diagonal elements
of this mxm matrix is therefore equal to 4/m, resulting in an
average value of 1 — ciT PiGe,ci = (m —4)/m.
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Fig. 3. Dual- and triple-frequency geometry-free L1 carrier MDBs as
function of ionospheric variance and for a slip window of one epoch;
number of satellites is equal to five.
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Fig. 4. Dual- and triple-frequency geometry-free L1 carrier MDBs as
function of ionospheric variance and for a slip window of one epoch;
number of epochs is equal to two.

Based on these simplifying assumptions, dual- and triple-
frequency geometry-free and geometry-based code outlier
MDBs were computed as a function of the ionospheric vari-
ance for k = 1 and k = 10. They are shown in Fig. 1 and 2.
For these and all other examples that follow, the non-
centrality parameter A, was set to 17 and the single differ-
ence standard deviations of code and carrier to 0.3 m and
0.003 m, respectively. For the dual-frequency geometry-free
ionosphere float case there is no redundancy and as a con-
sequence the MDB becomes infinite. Comparing the MDBs
of Fig. 1 and 2 we may conclude that when the number
of epochs increases, the dual- and triple-frequency MDBs
for both baseline models become more or less the same. In
other words, the number of epochs becomes the main con-
tributing factor to the redundancy.

5. Carrier Slip MDBs
Carrier slip MDBs will be expressed in units of range rather
than in units of cycles. Where appropriate, the carrier-to-
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Fig. 5. Dual- and triple-frequency roving-receiver L1 carrier MDBs as
function of ionospheric variance and for a slip window of one epoch;
number of epochs is equal to two.
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Fig. 6. Dual-frequency geometry-free ionosphere float L1 carrier MDBs
as function of number of observation epochs and size of slip window;
number of satellites is equal to four.

code variance ratio will be ignored. For a slip at epoch [,
1 <1 <k, in the SD carrier observable ¢,, r = 1, , f,to
satellite i € {1, ..., m}, we get for the three baseline mod-
els (geometry-free, roving receiver and stationary receiver,
respectively)

Vgl = =1 ao/l(1 — ¥)(1 — 52—
Vgl = <ot = z
. 1/2
0= Fw) - ANl a9
V1 = o fr0/100 = DA = Fiuy)
r \/N k
F4(Mr)
FS(Mr))( Zw])
Fa(r) T
1 =l Peogeon] @0
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N 99 Ny -y,
|V¢;|—W{Ao/[(1 Ny (1 iwj)

j=1

1/2
(= Fiu)1 @1
where N is the slip window, i.e., the period for which the slip
is assumed present in the data, defined as N = k — [ + 1.
Functions F4 and Fjs are defined as

,
Fa0) = (e + 52 +0) D 2
j=1

j=

(22)

f
—(1—ex Zuj})z,
j=1

f
Fs(x) = (c; +s° Y _ u3)
=1

f
(f-a+orE+s20+0Y 1)
=1

J
f
—s2(1 = (Y up?) (23)
j=1

where ¢ is the carrier-to-code variance ratio. It appears that
this ratio is significant only for the geometry-free baseline
model for large values of s2; for the geometry-based models,
it can be ignored.

Note that if N = k the carrier slip MDBs become infinite.
In this case a slip cannot (and does not have to) be separated
from the carrier ambiguity. As a consequence, carrier MDBs
can only be computed for 1 < k < N.

Unlike the code outlier MDBs, the carrier slip MDBs for
the roving and stationary receiver are not the same. Like
the geometry-free carrier MDBSs, the stationary receiver car-
rier MDBs are independent of the receiver-satellite geome-
try. The geometry-free MDBs are larger than the stationary
receiver MDBs, since Fy(w,)/Fs(u,) > 0. The roving re-
ceiver MDBs are in between those of the geometry-free and
stationary receiver models. In this case additional redun-
dancy makes a difference with regard to internal reliability.
If the number of satellites m is equal to four, the geometry-
free and roving receiver MDBs become the same.

Shown in Fig. 3 are the dual- and triple-frequency L1 car-
rier MDBs, again as a function of the ionospheric variance,
for k = 2 and k = 10. The slip window N was set to
one. Even for the dual-frequency geometry-free ionosphere
float model there is redundancy when k = 2 and the MDBs
are finite. However, the dual-frequency carrier MDBs in-
crease rapidly to over one cycle with increasing ionospheric
variance. For the triple-frequency case, however, all MDBs
remain well below the single cycle level.

The geometry-free carrier MDBs were computed again,
this time not as a function of the number of epochs, but
as a function of the number of satellites. The results are
shown in Fig. 4, from which we may conclude that the dual-
frequency geometry-free carrier MDBs are of the same order
of magnitude as those of Fig 3. For comparison, the roving
receiver L1 carrier MDBs are shown in Fig 5. As already
mentioned, when the number of satellites is equal to four,

the geometry-free and roving-receiver MDBs are the same.
When, however, the number of satellites is increased from
four to five, we see a significant decrease in the size of the
MDBs. This decrease may be attributed to the influence
of the receiver-satellite geometry. The stationary-receiver
carrier MDBSs, not shown here, are of the order of a few cm
and are hardly affected by the number of frequencies, the
number of satellites and the ionospheric variance.

It is possible to decrease the size of the dual-frequency
geometry-free carrier MDBs to below the single cycle level.
This is accomplished by increasing both the number of
epochs k and the size of the slip window N. The dual-
frequency geometry-free ionosphere float carrier MDBs for
four satellites as a function of these two parameters are shown
in Fig 6. The MDBs are symmetric around k/2 and are al-
ready of the order of 0.15 m for k = 10 and N = 3 or
N=1.

6. Conclusions

Expressions were given for code and carrier outlier MDBs
for three different baseline models, which apply to any num-
ber of carrier frequencies. The expressions are valid for
baselines of any length, since ionospheric disturbances are
taken into account by weighting these effects.

The specific cases considered here applied to dual- and
triple-frequency data. If ionospheric effects cannot be ig-
nored, adding a third frequency is less important for reduc-
ing the size of the code MDBs than increasing the number
of epochs. Already when the number of epochs is equal
to ten, the ionosphere float MDBs are virtually the same as
their ionosphere fixed counterparts for all dual- and triple-
frequency baseline models.

For the geometry-free carrier MDBs adding a third fre-
quency does make a significant difference for longer base-
lines in case the slip window is equal to just a single epoch.
For dual-frequency observations the MDBs are always
greater than one cycle, whereas for the triple-frequency case
they are well below the single cycle level. The only way
to bring the dual-frequency geometry-free MDBs below this
level is by extending the slip window and increasing the num-
ber of epochs. For the geometry-based models, the carrier
MDBs are much smaller than one cycle for both dual- and
triple-frequency observations as long as the number of satel-
lites is greater than four. Thus, if the proper observation sce-
nario, which depends on the number of frequencies, satellites
and observation epochs and the size of the slip window, is
chosen, it is always possible to find even the smallest cycle
slip.
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