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On optimal geodetic network design for fault-mechanics studies
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This paper deals with the optimal design of GPS geodynamic geodetic networks. A simple strike-slip fault-model
is used to investigate the design of networks and to decide where to place geodetic stations in order to satisfy the
accuracy of fault-model parameter estimates, which sites should be selected from the initial mass of permissible
points which are bounded by topography and other conditions.

1. Introduction
As is well-known, with the development of advanced posi-

tioning techniques especially such as the Global Positioning
System (GPS) in the last two decades, the interest to the opti-
mal design of themonitoring schemes for investigation of the
deformation of earth’s crust and behavior of individual fault
strand has grown. A brief review the purposes and present
state of the art of network optimization for the last one is de-
picted by Johnson and Wyatt (1994). The main purposes of
geodetic network optimization are concerned with designing
a geodetic survey to achieve some desired level of accuracy
in positioning, high reliability and low cost (Schmitt, 1985;
Kuang, 1991; etc.). However, it should be noted that the
problem of geodetic network design was not fully solved.
There is no analytical method that solves the problem of how
many stations to include in the network. Nor is there amethod
that provides guidance as to which sites should be chosen to
provide the most information about fault mechanics or de-
formation on a nearby fault. The initial mass of permissible
points are bounded by topography and other conditions such
as the cost at erecting of monuments, driving, setting up the
instruments, etc. Excluding the papers Gerasimenko (1990,
1991, 1997), no previous works has been done towards the
solving of this problem. It is for reason that this report was
intended to solve this problem in a few degrees and indicate
the way for future research to optimize our understanding of
fault mechanics.

2. FormulationandSolutionof theOptimalDesign
Problem

Required precision, reliability and economy generally
characterize the quality of a geodetic network. Different
from the previous publications, this report deals with the
integer-programming problem how many stations should be
included into the network and which sites should be chosen
to optimize our understanding of fault mechanics. To facil-
itate the discussion, this report concentrates on a simplest
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strike-slip fault model in which the displacement parallel to
the fault is (Lisowski et al., 1991; Johnson and Wyatt, 1994;
etc.)

d(x) = −V

π
arctan

( x

H

)
(1)

where x is the distance perpendicular to the fault. The fault
plane extends from the surface of the half-space to infinite
depth, locked from the surface to H km, and freely slipping
below this depth at V meter per year. Uniform motion V
of two blocks relative to a fixed reference frame is positive
for right-lateral motion. Figure 1 show expected surface
deformation as a function of distance from the fault trace.
Model (1) is a one-dimensional two-parameter standard

strike-slip model of dislocation theory. The fault is long and
straight and deformation is uniform in the direction of fault
strike.
Such type of model is acceptable for example, to the

San Andreas fault system. We will assume that the space-
technique is able to determine fault parallel displacements
d(x) of the points, which resides on two blocks, with a stan-
dard deviation of md . We can include to the value md the
monument instability and another type of errors as well. It
is especially important because it acts to mask the tectonic
signals of interest.
From the practical point of view it is obviously that geode-

tic network can be realized in a most economical way. That
is why the first most important criterion to the network is the
cost requirement. A common cost criterion for optimization
can be stated as


 =
∑n

1
ci pi → min (2)

where

pi =
(

1

m2
di

or 0

)
(3)

is the weight of observation and ci is the suitably chosen
coefficient of profitableness for observable which take into
account the erecting of geodetic monument, driving to the
station, etc. Zero optimal weights pi = 0 mean that the cor-
responding observables do not contribute to the accuracy of
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Fig. 1. Expected surface deformation as a function of distance from the
fault trace.

fault parameters to be investigated and therefor these observ-
ables should be deleted from the final observational scheme.
To facilitate the solution of integer problem we change the

condition (3) by constraint

0 ≤ pi ≤ pi,max (4)

where

pi,max = 1

m2
di

(5)

is the maximum accessible weight. The constraint equa-
tion (4) means that the weights to be optimally solved for
should be non-negative and achievable with the given instru-
mentation.
Instead of target function (2) we can choose as well


1 =
∑n

1

1

ci pi
→ max (6)

but this criterion is not equivalent to the criterion (2) in math-
ematical sense. Moreover, it is not recommended because
numerical problem of solving will occur: when individual
weight pi → 0, the function 
1 → ∞.
Another most important criteria of the network are the

precision requirements. We can express its by constraint
equations for the precision of slip-rate

m2
V ≤ m2

V,max (7)

and precision of locking-depth

m2
H ≤ m2

H,max. (8)

Inequality constraints expressed by Eqs. (7)–(8) are ap-
plied to ensure that resulting accuracy mV and mH of the
parameters V and H are better or equal a certain boundary
values accuracy mV,max and mH,max. The values m2

V = QVV

andm2
H = QHH are the diagonal elements of the covariance

matrix

Q =
(
QVV QV H

QHV QHH

)
=
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∑
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The coefficients ai and bi comes from linearization of the
model (1) as

δd(xi ) = aiδV + biδH

where

ai = ∂d(xi )

∂V
= − 1

π
arctg

( xi
H

)
,

bi = ∂d(xi )

∂H
= V

π

xi
H 2 + x2i

.

If we take into consideration the more complicated model
of the fault than themodel (1) withmore than two parameters
(see, for example, Matsu’ura et al., 1986), we can include to
a number of constraints the precision requirements to these
parameters. For simplicity we discuss here only precision
criteria. Other types of design criteria such as reliability
or the total number of redundant observables can be easily
incorporated to obtain a multi-objective optimal design. The
interested reader is referred to Gerasimenko (1990), Kuang
(1991), etc.
As a result at above mathematical model, a non-linear

programming problem can be formulated as


 =
∑n

1
ci pi → min, (9)

0 ≤ pi ≤ pi,max, (10)

m2
V ≤ m2

V,max, (11)

m2
H ≤ m2

H,max. (12)

This non-linear optimization problem can be solved by
well-known mathematical methods. We have used for this
purpose a gradient method with a penalty functions (see, for
example, Gerasimenko, 1992). It should be noted that an
iterative solution to the above mathematical model should be
applied since Taylor series of linear form is being used. The
iteration process stops when the solution ceases to change.
A FORTRAN-77 computer program has been written to

implement in practice the developedmethodology (it is avail-
able by request from the first author by e-mail: mdger@iam-
mail.febras.ru). The input information includes the coor-
dinates x of the initial mass of permissible points as ob-
tained from a field reconnaissance, the assumed values of
fault parameters V and H with theirs necessary precision,
and achievable accuracy of displacements to be measured.
The output information includes the optimal observational
weights for all observation points. Zero or close to zero op-
timal weights mean that these points do not contribute to the
accuracy of the fault parameters and should be deleted from
the final observational scheme.
To demonstrate the practical applications of the developed

optimization modeling, a few simplest numerical examples
are provided below. In all examples the parameter ci = 1,
i = 1, 2, . . . , n.

3. Numerical Examples
Example 1. Suppose, that 80 geodetic stations can be

equally spaced within 40 km of the fault trace over 1 km each
other. The fault-model parameters are chosen: the slip-rate is
taken to be 30mm/yr with precision not less thanmV,max = 2
mm/yr, and the locking-depth H = 10 km with mH,max = 2
km. The measurement technique is able to determine fault-
parallel displacements relative to afixed reference framewith
a standard deviation md = 1 mm/yr.

The result of optimization is (see Fig. 2): only 8 geodetic
stations must be fixed. 4 stations should be located in the
distance farthest from the fault trace, i.e. x = ±40 km and
x = ±37 km; 4 stations should be located in the points with
x = ±7 km and x = ±8 km.
Example 2. Different from the Example 1, here a points

can be fixed only on one side of the fault trace. That is why
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Fig. 2. Optimal station locations. From 80 geodetic stations were selected
only 8 stations contributing to accuracy of the fault parameters.

Fig. 3. Optimal station locations. Here points were fixed on one side of
the fault trace and initial number of permissible points equal 40. After
optimization were selected only 7 station.

Fig. 4. Optimal station locations. The input information is the same as in
Example 1, but slip-rate V = 10 mm/yr and mH = 2500 m. From 80
initial point’s mass were selected only 36 geodetic stations.

the initial number of permissible points equal 40. Another
input information is the same as in Example 1.
The result of optimization is (see Fig. 3): we must fix

geodetic stations in the points with coordinates x equal 6, 7,
8, 30, 38, 39 and 40 km.
Example 3. The input information is the same as in Ex-

ample 1 but the slip-rate V = 10 mm/yr. The result of
optimization is: all points being only provided a standard
deviationmH = 2200 m even though a valuemV = 0.8 mm.

If we take as input mH,max = 2500 m, the result is (see
Fig. 4): 34 stations must be fixed in the all points with coor-
dinates x from ±3 km to ±12 km and from ±34 km to ±40
km. The value mV = 1 mm.

4. Conclusion
As noted by Johnson and Wyatt (1994), it is the most

difficult question ofwhere best to locateGPS observing sites.
They investigated the situation when 20 geodetic stations
were evenly spaced. As well they applied the simulated

annealing algorithm proceeds toward the preferred station
locations for the case when the number of stations in the
network are fixed, but each geodetic station is allowed to
move from one iteration to the next one. We do not know
anyone previous investigation in this direction.
In this report we described the main idea of a more prac-

tical method for the optimal design of geodetic monitoring
schemes in order to estimate the fault-model parameters, slip-
rate and locking-depth, as accurately as possible. The results
of optimization enable us tomake decisionwhich sites should
be selected from the hundreds of available points and where
they should be located in order to estimate the unknown pa-
rameters and achieve the desired criteria of precision. Also
the numerical examples concludes that points at ∼ 0.75 and
∼ 4.0 fault depths are most useful. The smaller is a slip-rate
the more points must be included to the network especially
a nearby fault as well. These results confirms what many in-
vestigators would guess. The given examples demonstrated
clearly the beauty of and the benefits one may get from the
developed methodology.
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