LETTER

Earth Planets Space, 52, 993-997, 2000
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Historical geodetic measurements have been used to infer on the displacement and strain states locally or regionally.
They are also often used to invert for other geophysical parameters. However, historical geodetic measurements have
been known to contain significant scaling and orientation errors, which may even be different in different parts of a
network. These significant error sources may result in producing a wrong (or at least, a misleading) displacement
or strain field. When such a displacement or strain field is further used to invert certain geophysical parameters,
mis-interpretations may be expected. Thus, in this paper, we will perform a theoretical analysis to answer the
following three questions: (i) are displacements obtainable from historical geodetic data? (ii) are strains obtainable
from historical geodetic data? and (iii) what geodynamical value do historical geodetic data have?

1. Introduction

Although modern space geodetic techniques are very pre-
cise for a variety of geodynamical purposes, they were rou-
tinely operational only in the last one or two decades. In
order to understand immediate or long term geodynamical
processes locally or regionally, we have to deal with histori-
cal geodetic data (see, e.g. Bibby, 1975; Brunner et al., 1981,
Frank, 1966; Fujii and Nakane, 1983; Gu and Prescott, 1986;
Komaki, 1993a, b; Prescott, 1981; Savage and Burford, 1970;
Savage et al., 1981a, b; Shen et al., 1996; Thatcher, 1979;
Welsch, 1983). In Japan, the first order national triangu-
lation network was started in 1882 and completed around
1909, which was then readjusted and the results were reported
in Komaki (1985). These historical geodetic measurements
have played an important role in understanding, inferring and
inverting the geodynamical processes (earthquakes, for ex-
ample) in Japan. However, one should exercise great care
in using and interpreting the geodynamical information de-
rived from the historical geodetic measurements geophysi-
cally. The historical geodetic measurements were inherently
contaminated by three significant problems: (i) unknown
scalings and orientations can be different in different parts of
a network; (ii) unknown scalings and orientations can be dif-
ferent at different epochs of geodetic measurements; and (iii)
the historical geodetic data are generally of poor accuracy.
For the first order triangulation networks, different scaling er-
rors of up to 37 ppm have been found by directly comparing
the baselines of the 1883 triangulation network with mod-
ern precise distance measurements (see, e.g. Komaki, 1985;
Nakane, 1991). A scaling error at this level can certainly not
result in any meaningful or robust estimates of strains. In
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this paper, for simplicity, we only discuss a simplified case
by assuming: (i) that a set of datum conditions is valid for the
whole network but unknown; and (ii) that different epochs of
measurements have a different set of unknown datum condi-
tions. In other words, there exists no referential connection
between any two epochs of measurements.

Given two epochs of geodetic measurements, the displace-
ments of the network points have been almost always com-
puted by

VX, = NjJAIPy, — NFATPy,, (1)
where N| = AlTPlAl and N, = —A2T P, A, are the normal
matrices at epochs 1 and 2. 4 stands for the Moore-Penrose
inverse of a matrix. Other notations will be explained later
in (3). Taking the problems of historical geodetic measure-
ments described in the above, one has a right reason to ask:
(i) how accurate and reliable the displacements (1) are; and
(ii) if the historical geodetic measurements are contaminated
by a set of unknown but significant datum conditions, what
the formula (1) actually produces? Does it produce a phys-
ically meaningful displacement field? In this paper, we are
only concerned with the second question. Our answer to
this question is that (1) does not mathematically produce a
physical displacement field. This explains why we used the
notation VX, instead of a commonly used notation for a
displacement vector. If (1) is not a displacement field from
historical geodetic data, then any use of it for inferring on
geodynamical processes or inverting geodynamical parame-
ters may result in significant implications.

Very often, one will then use the results of (1) to compute
the strain/stress field in the network area. Instead of first
computing the solution for each epoch and then the coor-
dinate differences of the common network points, one can



994 P. XU et al.: GEODYNAMICAL VALUE OF GEODETIC MEASUREMENTS

directly compute the coordinate differences as in (1) from
the measurements of two epochs (see, e.g. Yu and Segall,
1996). However, these methods are mathematically essen-
tially equivalent, which can be readily proved by using the
theorem of equivalent measurements in linear models. Bas-
ing our paper on (1) thus does not lose any generality. Since
a geodetic network can only provide pointwise values, a cer-
tain approximation has to be assumed in order to make the
computation of strain/stress possible. Generally, a first order
linear approximation is adopted. Thus the strains in the net-
work have been computed by using the following system of
linear equations:

VX, = E,X — QX + u, ©)

where E; is the strain tensor to be determined. In the three-
dimensional (3D) case, E; has six independent elements. €2
is the anti-symmetric tensor, which has three independent
elements and describes the rigid rotation of the network. ug
is a constant vector and describes the rigid movement of the
whole network. If VX, of (1) is not a displacement field
from historical geodetic data, as was pointed out earlier, then
we also have a good reason to ask whether the computed E;
is a physical strain tensor. The answer to this question is the-
oretically negative, unfortunately. It is noted that a less gen-
eral and not optimal method to compute shear from repeated
geodetic measurements was proposed by Frank (1966).

So far, we have outlined the three major motivations for
this paper and provided our answers to some posed questions
without a solid foundation. Before we outline the organiza-
tions of this paper, we expect that the reader may ask now that
if displacements and strains could not be derived from his-
torical geodetic data, what geodynamical information might
be obtained. Indeed, although historical geodetic data can-
not provide displacements and strains, they are still valuable
since they do contain valuable geodynamical information.
The paper is thus organized as follows. Section 2 will de-
velop a new observation model for historical geodetic data.
This model will be used in Section 3 to explain: (i) why (1) is
not a displacement field; (ii) why (2) is not a physical strain
field; and (iii) what geodynamical value historical geodetic
measurements may have. For some relevant analysis, the
reader is referred to Dermanis (1981, 1985, 1994), Bibby
(1982) and Chrzanowski ef al. (1983).

2. Models for Geometric Geodetic Measurements

Geometric geodetic observations, such as distance, direc-
tion and angle measurements, have been used to establish
local, national and continental control networks. The coor-
dinates of the benchmarks in a control network are referred
to a certain set of starting computation data, i.e. so-called
geodetic datum in geodesy, which is mathematically arbi-
trary. A geodetic datum usually includes the coordinates of
a fixed benchmark, a fixed distant length, and orientations of
the network, and uniquely determines the positions of all the
other control points of the network. If the selected geodetic
datum is supposed to remain unchanged over time, i.e. no
movement at the referred fixed point and no changes in the
selected distance and orientations over time, then geodetic
techniques can be used to derive the displacements of all the

other stations of the network, which was exactly a common
practice before the free network adjustment method was in-
vented by Meissl (1962, 1965, 1969).

If repeated geometric geodetic observations are used to
detect geodynamical deformation, in particular, of long term
nature, it is theoretically not acceptable that a geodynami-
cal process would have only displaced all the benchmarks
except for the pre-selected geodetic datum data. This argu-
ment invalidates the classical adjustment method with a fixed
geodetic datum for retrieval of crustal deformation informa-
tion. In order to overcome the deficiency of the classical
adjustment theory, Meissl (1962) first developed a new the-
ory to process geometric geodetic observations, which is well
known as free network adjustment. Now let us assume that
there exists no fixed geodetic datum for the geodetic network.
In other words, assume that all the benchmarks of a geodetic
network are located on a deformable body (part of the Earth
surface, for example) in the language of geodynamics. Then
geometric geodetic observations are linearized with respect
to a certain pre-selected geodetic coordinate system and can
be written as:

E(y) = AAX, y=AAX +¢

, 3
D(y) =P~'o? ®

where E (-) stands for the operator of mathematical expecta-
tion, y is the difference between the observation vector and
its approximation. A is the design matrix of order (n x t)
with rank (< t). AX is the coordinate correction vector in
the initial (arbitrary) coordinate system. ¢ is the observation
error vector with the weight matrix P and o the unknown
variance component of unit weight.

The model (3) has been proved to be valid only within the
initially (arbitrarily) pre-selected geodetic coordinate system
(Xu, 1994, 1997). If a set of geodetically meaningful datum
conditions is applied to (3), or equivalently, if a generalized
inverse of the matrix A is used, one can derive a general
solution, say, X;,, where the subscript is annotates the ini-
tially pre-selected coordinate system to the solution of the
model (3). Itis well known that triangulation and trilateration
are invariant with respect to rotation and translation (see e.g.
Baarda, 1973; Grafarend and Schaffrin, 1976; Dermanis and
Grafarend, 1981; Bibby, 1982; Segall and Matthews, 1988).
However, the general solution X, to (3) does not reflect this
important observation of invariance. This is obviously not
theoretically acceptable, and should indicate that the start-
ing model (3) for free network adjustment is not sufficiently
general mathematically. The fact that a free network adjust-
ment model (3) for geometric geodetic observations loses
generality might have been hinted at in the literature (see
e.g. Baarda, 1973; Dermanis and Grafarend, 1981; Bibby,
1982; Segall and Matthews, 1988). No implications of such
a loss of generality on geodynamical practice such as com-
puting (so-called) displacements and strains from geodetic
observations have been investigated, which partly motivates
this paper. A most general model for free network adjust-
ment was only recently proposed by Xu (1993, 1994, 1997)
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however, and is rewritten as follows:
1o

1
y= XAU”AXAR +e(° )
D(y) =P 'o?

where AX 4 is the coordinate correction vector within a gen-
eral Euclidean three-dimensional coordinate system Sag. A
is any positive number and represents a scaling for a partic-
ular solution to the model (4). A and P are defined as in (3).
U is a rotation matrix and is given by

U= (I® Vo),

Uy =U.U,U,,

where ® is the operation of Kronecker product of matrices,
and Uy, U, and U, respectively defined by

1 0 0
0 cos6, sinb, |,

0 —sinf, cos b,

cosf, 0 sin6,
U, = 0 1 0 ,
—sinéy, 0 cos 6,

cosf, sinf, 0
—sin#, cos6, 0

0 0 1

Here 6y, 6, and 6, are three rotation angles. The model (4) is
general for triangulation networks. For trilateration networks
and/or mixing of triangulation and trilateration networks, the
scaling parameter A is fixed and can often take on unity.

The total geometric information contained in the geomet-
ric geodetic observations y can be summarized in the follow-
ing theorem.

Theorem 1 (Xu, 1997): If N~ is a generalized inverse
ofthe normal matrix N = (AT PA), then the geometric geode-
tic observation model (4) has a geodetically general solution
of coordinates:

X, = AUN"A"Py + AUX) + (1 ® Z)), )

where X, is the coordinate representation of the geometric
geodetic observations, X is the approximate values of coor-
dinates in the initially selected coordinate system, 1 is a vec-
tor with all its elements equal to unity. Z; = (Z;x, sy, 27,
three free translation elements.

The solution (5) is a general coordinate representation of
the total geometric information in the observations within
any Euclidean coordinate system. As a simple consequence,
the least squares (LS) minimum norm (LSMN) or Moore-
Penrose generalized inverse solution to the model (3) or (4) is
a particular solution of (5), although the LSMN solution was
shown to result in the minimum trace among the generalized
inverses of (ATPA). From the point of view of invariant
geometric information, the LSMN solution is not better nor

worse than any other particular one that can be derived from
5).

The solution (5) is most general for any geometric geode-
tic observations. We will show two examples of (5) in the
following. If all the geometric observations are of levelling
type, the heights of the benchmarks in a levelling network
can be written from (5) as:

H, = N"A"Py + H, + zu 1,

if the scaling is assumed fixed. Here H, is the height vector,
Hj is the initially selected height vector, and z;, is an arbitrary
constant. For GPS-derived baseline vectors, the solution (5)
becomes:

X, =N"A"Py+Xo+ (1®Z),

if the GPS-derived baseline vectors are assumed to have a
fixed scaling and orientations.

3. Geodynamical Information in Historical
Geodetic Measurements

In this section, we assume that all the network stations are
located on a deformable body and are all influenced by some
geodynamical processes in an immediate or long term. We
also assume that each epoch of measurements corresponds
to one set of unknown datum conditions. These assumptions
are justified, since the errors of scalings and orientations in
historical geodetic data are generally very large. Based on
these conditions, we would like to investigate three issues:
(i) whether displacements can or cannot be obtained from
historical geodetic data; (ii) whether strains can or cannot be
obtained from historical geodetic data; and (iii) what geody-
namical value historical geodetic data may have.
3.1 Are displacements derivable from historical geode-

tic data

Given two epochs of historical geodetic data as modeled
by (4), we have two sets of unknown datum conditions ac-
cordingly. The coordinate difference, or more precisely, the
difference of the two general solutions, can be computed by
using (5) as follows:

VX, = X, — X1
= )LzUzNz_”AgPQyz — A.]U[NI_IA]Tlle]
+ U X — AU Xo + (1 ®Zs1p),  (6)

where Z;1, = Z,, — Z,,. Since (5) represents the measured
data in the manner of an arbitrarily selected coordinate sys-
tem, VX, can also be properly called the difference between
the two representations of coordinates at the time epochs #;
and 1,.

Due to the space limit, we will not be able to discuss (6)
in detail. Instead, we will simply summarize some major
observations on (6). The interested reader is asked to refer
to Xu et al. (2000) for more details.

Important observations on (6) are listed as follows:

e VX, contains all the geometric information in y,; and
y2, since (5) fully represents all the information for each
epoch of measurements;
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e VX, is the mix of y;, y, and all the datum-related data
such as A, U and (different) generalized inverses of the
normal matrices;

e because of Observation 2, VX, is not a displacement
field;

e the concept of relative displacement is not valid with
historical geodetic data either, because

1. historical geodetic data are inherently influenced
by different (unknown but significant) scalings
and orientations in different parts of the network;
and

2. even if the two sets of A, U and Z; are identical,
different types of generalized inverses are mathe-
matically applicable and equivalent in represent-
ing the geodetic data.

From these observations, we can readily conclude that the
concept of displacement does not exist here with problematic
historical geodetic data for detecting a geodynamical process
that affect all the network stations in a long term. In this case,
VX, may be more properly called misplacement (coined by
Prof. E. Grafarend during one of the discussions with PX on
geodetic deformation analysis in his Stuttgart office). There-
fore, use of (6) must be exercised with great care, and any
attempt to explain the results from using (6) geophysically
is not without doubt. In fact, by assigning different datum
data to (6), one can obtain up to an infinite number of dis-
placement fields. It is expected that if a particular solution
of (6), or so called displacement field, is used to invert for
some geophysical parameters, then the inverted parameters
are not free from the datum conditions. In other words, one
can also obtain up to an infinite number of geophysical pa-
rameter sets. Which set of the inverted parameters is correct?
This question cannot be answered from geometric geodetic
data, unfortunately. However, we have to note that it is still
possible to detect deformation or displacements of network
points for a suddenly occurring, localized event. In this situ-
ation, we can safely assume that the two epochs of geodetic
data share the same, determinable datum conditions.

3.2 Are strains derivable from historic geodetic data

A geodetic network can, at the very best, provide discrete
deformation information in the network area. In order to infer
on the strain state from geodetic data, a certain assumption
on the deformation state has to be made. Very often, the
following linear approximation of a 3D displacement field
has been used, namely,

u=EX— QX+ u, (7)

where u is the displacement vector at the point X, E; is the
strain tensor, €2 is the anti-symmetric tensor, and u, is a
constant vector.

Collecting (7) at all the network points and replacing the
coordinate components of matrices B and C with X;, we
have the system of equations:

Uy = B.ves - Csw + (1 ® ll()) + €, (8)

for computing the strains by the least squares method, where
U = VXg = ng — Xgl
= 2 UuNy AT Py, — MU IN[ AT Py,
+ 2 UxXp2 — 11U Xo1 + (1 ® Zi12),

B, =[B!,B!,...,B']",
C, =[cl,c),....,c",
)C,'y,'Zl'OOO
B,’: Ox,-Oy,-z,-O N
00x,~0inj
0—z i
Ci: Zi O—X,- ,
-y x 0
and
e =[e e, ... €.

Again, due to the space limit, we can only summarize some
major observations on (8) as follows:

e U, cannot be separated from Z,,, and thus cannot be
determined;

e u, is the mix of y;, y; and all the datum-related data
such as A, U and (different) generalized inverses of the
normal matrices;

e because of Observation 2, E; cannot be uniquely deter-
mined from problematic historical geodetic data. If all
the issues in Observation 2 are incorrectly eliminated,
for instance, by simply assigning some datum and ref-
erential numbers to the corresponding formulas, as was
exactly done in Bibby (1982) (though implicitly and
likely without the knowledge of Bibby and others) and
the relevant literature, one obtains some numbers for the
tensor E;. In fact, when these authors claim the unbi-
asedness of the strain estimate, they implicitly assume
that there exists a known connection of the referentials
between two epochs of measurements. This implicit
assumption becomes obvious in the light of the new
general model (4) and contradicts with one of the basic
starting points of free adjustment, i.e. no known referen-
tial connection. After eliminating this assumption from
Bibby (1982), it becomes evident from the formulae in
this Subsection that the unbiasedness result by Bibby
(1982) is not correct in general. Therefore these num-
bers cannot be said to be a strain field physically, and
certainly cannot be unbiased under the framework of
free adjustment.

In order not to give the reader an impression that we cannot
compute any physical quantities from geometric geodetic
data, we would like to point out that if scaling and orienta-
tion errors are sufficiently small, the shear strain is almost
invariant or can be almost uniquely determined. For more
details, the reader is referred again to Xu ef al. (2000). We
also like to note that geodetic data are indeed able to produce
the strain field if they are collected right before and after
some localized events. In this case, we can safely assume
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that most of the network points are not influenced by such

localized events and can be used to construct the required

datum conditions.

3.3 What are derivable from historical geodetic data
Left-multiplying the rotation matrix U] and then the de-

sign matrix A to both sides of (8), we obtain:

AU{u; = A | U] Bye, — A U] Cio+ A (1Qup) +A, Ul e,
or equivalently,

e = [B{)A] Q. A1Byo] 'BlATQ;
- (kF@12)Lo — L), )

(see, Xu et al., 2000), where Q. is the variance-covariance
matrix,
qu = AlNz_”AgPZyz,

L1 = AN, Al Py,
Kk =XAy/A1,
e = v(UjE,Up),

F(0,>) is a matrix of the new rotations that actually represent
the relative rotations of UlT U,.

The space limit forces us to list some major observations
on (9) as follows:

e the six components of the strain tensor are represented
by three unknown relative rotations. Thus only three
functional relationships of the strain components may
be derivable;

e since the relative scaling « is unknown, the absolute
magnitidues of the strain components cannot be deter-
mined either. Thus, at most, only three relations of rel-
ative tensor components could be uniquely determined.

e also note that the rigid rotation and translation motions
are automatically cancelled out in the derivation of (9).
Thus they definitely cannot be determined from historic
geodetic data.

For more details, the reader is referred to Xu et al. (2000).
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