
Earth Planets Space, 52, 1207–1211, 2000

An estimate of the errors of the IGRF/DGRF fields 1945–2000
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The IGRF coefficients inevitably differ from the true values. Estimates are made of the their uncertainties by
comparing IGRF and DGRF models with ones produced later. For simplicity, the uncertainties are summarized
in terms of the corresponding root-mean-square vector uncertainty of the field at the Earth’s surface; these rms
uncertainties vary from a few hundred to a few nanotesla. (It is assumed that the IGRF is meant to model the
long-wavelength long-period field of internal origin, with no attempt to separate the long-wavelength fields of core
and crustal origin; the models are meant for users interested in the field near and outside the Earth’s surface, not for
core-field theoreticians.) So far we have rounded the main-field coefficients to 1 nT; this contributes an rms vector
error of about 10 nT. If we do in fact get a succession of vector magnetic field satellites then we should reconsider
this rounding level. Similarly, for future DGRF models we would probably be justified in extending the truncation
from n = 10 to n = 12. On the other hand, the rounding of the secular variation coefficients to 0.1 nT could give a
false impression of accuracy.

1. Introduction
The IGRF/DGRF is a series of numerical models which

approximates the long-wavelength part of the main geomag-
netic field B of internal origin as it varies with time. It uses
a truncated spherical harmonic series to represent the corre-
sponding scalar potential V :

B = −gradV

with V (r, θ, φ) =
10∑
n=1

n∑
m=0

(a/r)n+1Pmn (cos θ)

· (
gmn cosφ + hmn sinφ

) ; (1)

here (r, θ, φ) are the usual geocentric spherical polar coordi-
nates, a is a reference radius (taken to be the mean radius of
the Earth), the Pmn (cos θ) are Schmidt semi-normalized as-
sociated Legendre polynomials, and there are 120 numerical
Gauss coefficients gmn and hmn . (Strictly, it is the magnetic
fieldH, unit A/m, which in a source-free region can be repre-
sented as the gradient of a scalar potential. However, because
all our measurements are in air and water, which have per-
meability μ very close to μ0, it is conventional to apply (1)
to the magnetic flux density B, unit T; in practice we give the
gmn and hmn in units of nT.)
Because the geomagnetic field changes with time—the

secular variation—a set of coefficients is specified every 5
years, with linear interpolation used for intermediate times.
Because of this secular variation, to derive accurate coef-
ficients we need global data coverage for all the relevant
epochs. In the absence of such ideal data, the coefficients we
estimate are inevitably in error, with the errors being larger
at epochs for which the data coverage is poorer.
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This paper discusses howwell these numerical coefficients
estimate the true values corresponding to the total field of in-
ternal origin. It is not concerned with the question of how
much of this n ≤ 10 internal field comes from crustal mag-
netization as opposed to electric currents in the core. Note
that the uncertainties quoted by Langel et al. (1989) did in-
clude an estimate of the crustal contribution (Sabaka, per-
sonal communication, 1997); in effect they treated the IGRF
as an estimate of the core field, which the present author
thinks was wrong.
What we are really interested in is not the errors in the 120

individual coefficients, but the error δB in the corresponding
magnetic fieldB, where δB is given by the vector subtraction
δB = BEarth − BIGRF. We will never know δB; the best we
can hope for is to estimate its magnitude. For a scalar it
is usual to express an uncertainty as the root-mean-square
error (the standard deviation) to be expected if the analysis
were repeatedmany times using data sets having independent
random errors; this concept is easily extended to a vector.
However in our case we have the extra complication that

δB(r, θ, φ) varies in space, as does its standard deviation.
Here we will consider the variation only over the Earth’s
surface, and quote a single valuewhich is a global root-mean-
square vector error, where the mean is taken over r = a.
From e.g. Lowes (1966) this is given by taking the square
root of

〈δB · δB〉 = 〈
δX2 + δY 2 + δZ2

〉

=
∑
n,m

[
(δgmn )2 + (δhmn )2

]
, (2)

where δgmn and δhmn are the errors in the gmn and hmn , and 〈x〉
denotes the mean of x taken over the sphere r = a. In this
paper we will apply (2), using estimates of the standard de-
viations of the gmn and hmn to give the expected rms deviation
of B. But it is important to note that this is an average over
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Table 1. Global root-mean-square vector differences between pairs of different models. The second and third columns give the rms differences between
the original IGRF and the later DGRF. The fourth and fifth columns give the differences between the DGRF and the continuous spline model of Sabaka
et al. (1997). The last column gives the values suggested by Lowes in the IGRF Health Warning (see text).

(IGRF–DGRF) (DGRF–SABAKA) FJL

n ≤ 8 10 8 10 10

1945 274 234 294 300

1950 269 188 241 230

1955 251 126 156 160

1960 122 145 99 117 100

1965 113 61 62 50

1970 184 51 56 50

1975 347 64 67 50

1980 16 19 11 13 10

1985 35 36 30 31 50

1990 35 37 43 45 50

1995 100

2000 50

the surface; inevitably, in some regions the actual error will
be less than the quoted figure, while in other regions it will
be more, sometimes considerably more. Local errors, par-
ticularly in regions with poor data coverage, for example the
South Pacific, may well be more than three times larger than
the quoted rms value.
We will never know the actual errors of any set of co-

efficients; this would involve knowing the true field! The
best we can do is to estimate some typical values. Some
modellers do try to estimate the standard deviations of their
coefficients, based on the lack of fit of their model to the data
used to produce model. Inevitably this involves a variety
of assumptions and interpretations, and in nearly all cases
where the proposed standard deviations have been tested in
retrospect their values have been found to be too small!
In the next two sections the comparisons between three

different sets of models are used to estimate the magnitudes
of the errors. The following two sections discuss the effect
on the DGRF of rounding errors in the coefficients, and of
the truncation, and Section 6 discusses the problem of the
secular variation.

2. Differences Between IGRF and DGRF Models
In most cases the model for a particular epoch is derived in

two stages. The production of an IGRF, for an epoch slightly
in the future, inevitably involves some forward extrapolation
of often inadequate data; we do the best we can, but accept
that it may not be very good. Then at a later stage, when
we think that we have obtained all the relevant data we are
likely to get spanning the epoch, we produce a DGRFmodel;
here the D stands for “definitive”, which does not mean that
it is perfect, but that we thought we were unlikely to do
significantly better in the future.
So a simple indication of the sorts of errors there were in

the IGRF models is to compare them with the correspond-
ing (retrospective) DGRF models. This is what is done in
columns 2 and 3 of Table 1. There is a complication in that

the earlier IGRFs were produced only up to n = 8, so the
second column gives the comparison up to n = 8, and the
third column gives the comparison up to n = 10 where this
is possible.
The large difference for 1975 is because at that time we

were feeling our way, and the 1965 IGRF plus secular varia-
tion was used for 10 years, rather than for the 5-year period
used for all the other epochs. Ignoring that value, we see that
the differences vary from about 300 nT rms at 1945 down to
about 15 nT at 1980, when at long last we had real global
vector data from theMAGSAT satellite; the IGRF 1980mod-
elling was done in 1981, so it included someMAGSAT data.
Of course not even the DGRF will be perfect; if the IGRF

and DGRF errors were independent, then the differences
given in the table would somewhat overestimate the error of
the IGRF. However, as much of the data is common to both
models, the errors of the models might well be correlated to
some extent, so thefigures are not necessarily over-estimates.

3. Comparison with a Cubic Spline Model
One problem, particularly for the IGRFmodels, but also to

some extent for the DGRF models, is that they were mostly
produced one at a time, so the sequence of models often
shows marked discontinuities from one model to the next. A
more recent model by Sabaka et al. (1997) is a continuous
model, using cubic splines to specify the time variation from
1900 to 1995. The modellers constrained the time varia-
tion to be fairly smooth, so, for example, the presence of the
MAGSAT data in 1980 will have a significant beneficial ef-
fect on the model coefficients for both earlier and later times.
So the second comparison I have made is between the DGRF
models and this continuous model. The resulting differences
are given in the fourth and fifth columns of Table 1. The
DGRF–SABAKA rms differences are of the order of half of
the IGRF–DGRF differences, becoming relatively smaller
for the later years when the DGRF models used MAGSAT
data. (Note that DGRF 1990 is an average, in which a weight
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of one third was given to the Sabaka et al. model.)
Of course this Sabaka et al. model has its defects. While

the spline constraint allows the good data of 1980 to influence
the model at other epochs, there is the possibility that poor
data at one epoch will somewhat mar the model elsewhere.
(And the covariance matrices for the 5-year epochs will
not be independent.) Also the constraint of smoothness in
timemeans that it cannot properly handle geomagnetic jerks.
However the Sabaka et al. model is likely to be considerably
better thanmost of the DGRFmodels. The figures of the fifth
columnofTable 1 are therefore taken as a reasonable estimate
of the likely accuracy of theDGRF. This is the basis onwhich
Lowes suggested in 2000 the rounded figures of the last col-
umn as working values in the “IGRF Health Warning”, pub-
lished on the IAGAweb site athttp://www.ngdc.noaa.
gov/IAGA/wg8/igrfhw.html.

4. Effect of Rounding Errors on DGRF Models
When the IGRF was introduced in 1968 it was correctly

thought that the accuracy available then did not justify quot-
ing the Gauss coefficients to better than the nearest 1 nT.
However this implies a rounding error of up to ±0.5 nT,
which contributes a standard deviation of 1/

√
12 = 0.3 nT

for each coefficient. For our n ≤ 10 models we see from (2)
that this contributes a global rms error of 9 nT. Until now
this has been negligible in comparison with the uncertainties
of the coefficients, except possibly for 1980 when we had
MAGSAT data; at that time the NASA modellers claimed
about 1 nT rms error for their n ≤ 10 model, though the
comparison of Table 1 suggests this was too optimistic.
But with the prospect of a succession of vector magne-

tometer satellites, such as Ørsted and Champ, we need to
think again. Once we have good data, it is perhaps feasible
that we can consistently achieve a global model error of a
few nT, so for future retrospective DGRF models there is a
strong argument that we should specify the coefficients to
the nearest 0.1 nT, so as to reduce the rounding error to about
1 nT for a n ≤ 10 model.

5. The Effect of Truncation
Another question that will arisewhenwe have consistently

good satellite data is whether the present truncation at n =
10 is still good enough. Table 2 gives rounded estimates
of the contribution of the higher harmonics to the present
main field. We see that omitting the n = 11 and 12 terms
corresponds to omitting about 35 nT rms, so it would be
worth including these terms if the resulting increased error
of prediction is significantly less than this value. If in fact
we can achieve a few nT vector error for an n ≤ 10 model,
then it is almost certain that this condition would be satisfied.
There is therefore a strong case for extending future DGRF
models to n = 12.
A referee, Dr. De Santis, has pointed out that for mod-

els obtained from a non-uniform data set by least squares,
and using only a truncated set of coefficients, changing the
truncation level could change the amount of higher-harmonic
power aliassed into the lower coefficients. However, in the
present context, which assumes good coverage of satellite
vector data, the actual least-squares’ solution is always taken
to a higher degree, usually at least n = 13; the truncation to

Table 2. Global rms field produced by harmonics of degree n. (Rounded
values based on the spectra of Cain et al. (1989), Langel and Estes (1982),
and Langel et al. (1989).)

n rms (nT)

9 120

10 50

11 30

12 15

obtain an IGRF occurs only after the analysis, so no change
of aliassing is involved.

6. The Problem of the Secular Variation
This is the perennial problem of geomagnetic modelling.

It has been suggested above that the improved accuracy we
can expect will justify changes in the specification of future
DGRF models, i.e. in retrospective models for which there
is by then good data spanning the relevant epoch. How-
ever for future, prospective, IGRF models, the situation is
more complicated. The Working Group is now committed
to producing such models ahead of time, so some forward
extrapolation is necessary, and to estimate the accompanying
secular variation will involve even more extrapolation.
The secular variation coefficients, which are applicable

for up to 5 years, are at present given to 0.1 nT, so as to give
consistency with the 1 nT rounding of the main-field coeffi-
cients. However, because we recognize the relatively larger
uncertainties involved, we truncate the secular variation co-
efficients at n = 8, so the consistency is more apparent than
real. In fact it is very doubtful if even the n = 7 and 8 coef-
ficients are significant at some epochs. For example, Table 3
gives a comparison of the n = 8 coefficients of the three sub-
missions for the IGRF 2000–2005 secular variation. (Note
that for ease of presentation, the coefficient values have been
multiplied by 10.) It is clear that for all the coefficients the
scatter is far larger than 0.1 nT; in fact in the majority of
cases even the average of the three values is not significantly
different from zero!
But let us put this into context. By looking at past fields

we can get some feel for the power spectrum of the secular
variation, and typical values are given in Table 4. We see that
the n = 7 and 8 terms between them contribute about 5 nT/yr
to the secular variation. It is likely that by using these, mostly
wrong, coefficients we are at present adding more error than
we would by making all the coefficients zero, which is what
truncating at n = 6 would imply. So for prospective secular
variation models based essentially only on surface data (as
the three models of Table 3 were) it would probably be more
logical to truncate the models at n = 6.
From Table 4 we also see that making the n = 9 and

10 coefficients zero is ignoring a contribution of only about
1 nT/yr, so probably does notmatter at present. It wouldmat-
ter only if we were able to very much improve the accuracy
of the n ≤ 8 coefficients.
We have no experience of using successive vector mag-

netometer satellites, or a long-lived satellite, to help in de-
termining the secular variation. However it is reasonable
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Table 3. Comparison of secular variation model coefficients. The third,
fourth, and fifth columns give the n = 8 coefficients of the candidate
models for IGRF 2000 SV proposed by Macmillan and Quinn (2000),
Langlais and Mandea (2000), and Golovkov et al. (2000), respectively.

n m BGS IPGP IZM

8 0 −4 −4 0 10−1 nT/yr

8 1 5 −1 3

8 1 −2 −6 12

8 2 −3 −5 −2

8 2 −2 1 1

8 3 4 0 7

8 3 −5 −2 6

8 4 −5 −14 −12

8 4 6 −1 5

8 5 2 0 6

8 5 −2 1 9

8 6 −2 −9 −5

8 6 −7 −9 3

8 7 −6 −9 −9

8 7 1 6 3

8 8 3 −1 2

8 8 4 −4 2

Table 4. Power spectrum of the secular variation. The table gives the total
global rms field produced by terms of degree n.

n rms (nT/yr)

5 11

6 9

7 4

8 2

9 1

10 0.3

to hope that such satellite data will reduce the errors of the
n = 7 and 8 coefficients, so as to make them significant in
future models.
But even if the satellite information greatly improves our

knowledge of the immediately past secular variation, there is
still the problemof extrapolation into the future, as the secular
variation itself changes with time at 2–3 nT/yr2, the secular
acceleration. In the past some modellers have used a Tay-
lor series in time, incorporating acceleration terms; however
these terms are very poorly known, and the series often gives
a very poor forecast. More recently, modellers have tried
other numerical extrapolation techniques which are perhaps
less poor, but it seems likely that the basic problem will re-
main until our understanding of fluid processes in the Earth’s
core allows us to apply some physical constraints to the ex-
trapolation.
So what about the prospective IGRF in the golden future

when we have plenty of data? Even if a retrospective model

can be determined to a few nT out to n = 12, an IGRF is
inevitably going to involve one to two years’ forward extrap-
olation, which involves using a prospective secular variation
model. This will severely degrade the forward-looking IGRF
after a few years.
So although the present paper recommends increasing the

truncation level for (retrospective) DGRFs to n = 12, there is
a strong case that, at least for the time being, for the prospec-
tive IGRF we should keep to the present truncation level of
n ≤ 10 (with coefficients rounded to 1 nT) for the main field,
and n ≤ 8 (with rounding to 0.1 nT) for the secular varia-
tion. The hope is that by doing this we avoid giving less
well-informed users too great a confidence in the numbers
they are using.
As noted above, the explicit (prospective) IGRF secular

variation model will not usually be a good model of the
actual time variation then. Similarly, the implicit secular
variation involved in the linear interpolation between the
(retrospective) 5-year main-field models will not necessar-
ily be a good model of the real secular variation then. These
“secular variation” models are there solely to allow extrap-
olation/interpolation of the main-field model. Theoreticians
should at present look elsewhere for models of the true sec-
ular variation.
It is perhaps fitting to end this Section by quoting the fol-

lowing, written by Norman Peddie, and presented to the
equivalent of Working Group V-8 at the IAGA meeting at
Seattle in 1977:
Here lies new IGRF,
Had trouble in every nation.
He died the way his father died,
Of secular variation.

7. Conclusions
This paper has attempted to quantify the magnitude of the

errors in the present sequence of IGRF/DGRF models. The
results for the current eighth generation IGRF/DGRFmodels
are summarized by the last column of Table 4.
With reasonable luck, in the near future there should be

a succession of vector magnetic survey satellites. The au-
thor suggests therefore that the rounding level applied to the
DGRF main-field coefficients should be reduced from 1.0 to
0.1 nT, and that the truncation level for the main field should
be increased from n = 10 to n = 12.

On the other hand, for the prospective secular variation the
current 0.1 nT/yr rounding, and n = 8 truncation, is almost
certainly too optimistic at present. The situation should be
somewhat better in the future, though we do not yet have
proper experience of determining the secular variation from
satellite data. However, because of the difficulty of forward
extrapolation, the author suggests that it is unlikely that the
rounding and truncation levels should be improved beyond
their present values.
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