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Autoregressive modeling of transfer functions in frequency domain to determine
complex travel times
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We present a method to determine the complex travel times of impulses in the time domain on the basis of an
autoregressive (AR) modeling of superimposed sinusoids in a finite complex series in the frequency domain. We
assume that the complex frequency series consists of signals represented by a complex AR equation with additional
noise. The ARmodel in the frequency domain corresponds to a complex Lorentzian in the time domain. In a similar
way to the Sompi or extended Prony method, the complex travel times are given by solutions of a characteristic
equation of complex AR coefficients, which are obtained as the eigenvector corresponding to a minimum eigenvalue
in an eigenvalue problem of non-Toeplitz autocovariance matrix of the complex series. Our method is tested for
synthetic frequency series of transfer functions, which show that (1) the complex travel times of closely adjacent
pulses in the time domain are clearly resolved, and that (2) the frequency dependence of the complex travel times for
physical and structural dispersions is precisely determined by the analysis within a narrow frequency window. These
results demonstrate the usefulness of our method with high resolvability and accuracy in the analysis of impulse
sequences.

1. Introduction
The conversion of superimposed sinusoids in the time do-

main to a set of spectral peaks in the frequency domain is
usually called the spectral analysis. There are two types of
approach for spectral analysis: one is transformation such as
theFourier transform, and theother is amodeling inwhich the
input data is fitted to an a priori model such as the autoregres-
sive (AR) or autoregressive and moving average (ARMA)
model. There are many different spectral analysis methods
based on modeling (see e.g. Kay and Marple, 1981).
Our present concern is the conversion by a modeling of

superimposed sinusoids in the frequency domain to a set of
peaks indicating events such as the arrival of pulses in the
time domain. A proposed approach in this paper is based
on the AR process model represented by the Prony’s rela-
tion (see Hildebrand, 1956). Among many different types
of the extension (Pisarenko, 1972; Price, 1979; Chao and
Gilbert, 1980, etc.), we use the particular one called the
Sompi method (e.g. Hori et al., 1989; Kumazawa et al.,
1990), in which unbias estimations of model parameters are
made by using an eigenvalue problem of non-Toeplitz au-
tocovariance. Our approach determines a set of oscillation
“frequency” in the complex frequency series of transfer func-
tion. The oscillation “frequency” represents the arrival time
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of impulse waves (Fig. 1). We assume that the complex dis-
crete frequency series consists of signal and noise, where the
signal is represented by a complex AR equation. The travel
time is defined as a complex value whose real and imaginary
parts correspond to the time delay and pulse width, respec-
tively. The complex travel time is determined in a similar
way to the Sompi method. Accordingly, we introduce con-
cepts of the complex time and the aliasing in the time domain
for our analysis.
The concept of converting frequency sequence to a set

of time-localized events has been already popular in terms
of “cepstrum” for echo analysis (Bogart et al., 1963), and
extensive studies have been made (see e.g. Childers et al.,
1977). As far as this point is concerned, our method is a kind
of the cepstrum modeling approach. Whereas the cepstrum
analysis appears merely as an inverse operation to spectrum
analysis, historical development of the cepstrum theory fol-
lowed a considerably different way: The cepstrum has been
a theoretically well established concept categorized as one
of the homomorphic transformations in widely known text-
books (e.g. Oppenheim and Schafer, 1975).
The present method is developed for analyzing a finite dis-

crete frequency series data of the transfer function acquired
by a new structural exploration system named ACROSS
(Accurately-Controlled Routinely-Operated Signal System,
e.g. Kumazawa and Takei, 1994) and by laboratory studies
for the measurement of sound velocities in the frequency
domain (e.g. Shankland et al., 1993). Whereas the inverse
Fourier transform was used in Shankland et al. (1993), we
introduce the AR modeling approach as a better alternative.
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Fig. 1. The impulse response functions (left) and the corresponding transfer
functions in the frequency domain (right) for a non-dispersive medium
without attenuation ((a) and (b)) and with attenuation ((c) and (d)). The
impulse response functions in (c) and (d) is the real part of the complex
Lorentzianwithφ = 0 for (c) andφ = π/4 for (d) in Eq. (8), respectively.

In this paper, we present (1) the basic concept and theory
of our method, and (2) results of numerical tests based on
synthetic frequency series of transfer functions. In these
tests, we show that our method determines arrival time as
well as pulse width with high accuracy and resolvability,
which is particularly powerful for dispersion analysis.

2. Theory
2.1 Model of a sequence of impulses
Suppose that a time-localized signal (impulse) f0(t) lo-

cated at x = 0 and t = 0 is propagated through a certain
medium to a certain observation point. The original impulse
may split into different modes of waves, each of them prop-
agating in different paths to reach the observation point, and
the observed signal f (t) may consist of a finite number of
modified impulses or wavelets due to propagation;

f (t) =
∑
l

αl f0(t − ql), (1)

where αl and ql are the amplitude and time delay of lth pulse,
respectively.
First, we discuss how the time delay ql is generated by

wave propagation in a homogeneous medium. The propaga-
tion of a wave with angular frequency ω from t = 0 to the
point located at the distance x is generally described as

αeiωt−ikx = αeiω(t−
k
ω
x),

whereα is the amplitude at theorigin and k is thewavenumber
for awave averaged over its propagation path. The time delay
q defined for a single frequency is given by

q = x

c
, (2)

where c = ω/k is the phase velocity given by the wave-
number k. When the medium is dissipative, the phase veloc-
ity is the complex value c̃ defined as

1

c̃
= 1

c

(
1 − i

2Q

)
,

where Q−1 is the attenuation factor. Accordingly, we define
q as the complex quantity,

q = τ + iυ, (3)

where

τ = x

c

υ = − x

2cQ
.

Our primary model for an impulse sequence is f (t) in
Eq. (1), which is generated from a single impulse f0(t) con-
taining different frequency components. The Fourier trans-
form of Eq. (1) is written as

F(ω) = F0(ω)
∑
l

αl e
−iqlω, (4)

where F0(ω) is the Fourier transform of f0(t). The transfer
function in the frequency domain is defined by

H(ω) = F(ω)

F0(ω)
=

∑
l

αl e
−iqlω. (5)

Here, we propose an impulse model corresponding to
Eq. (5). The inverse Fourier transform of H(ω) in Eq. (5)
leads to

h(t) = 1

π

∑
l

Re
[

iαl

t − ql

]
= 1

π

∑
l

Re [Ll(t)] , (6)

which describes a set of poles ql located in the complex t
space. The real part of ql represents the arrival time, and the
imaginary part is related to the pulse width wl through the
relation,

wl = −2υl . (7)

The time-dependent function Ll(t) in Eq. (6) has central
importance in the present method, so that we examine its
property below. We refer to L(t) as a complex Lorentzian,
which is a function of complex time,

L(t) = iα

t − q
, (8)

where α is the complex amplitude defined as α = α0eiφ . The
real and imaginary parts of L(t) are written as

[
Re[L(t)]

Im[L(t)]

]

= α0

(t − τ)2 + υ2

[
cosφ − sinφ

sinφ cosφ

] [
−υ

t − τ

]
.

We note that the real part is the Lorentzian with a symmetric
bell-shaped peak of a height−α0/υ located at t = τ for φ =



Y. HASADA et al.: A METHOD TO DETERMINE COMPLEX TRAVEL TIMES 5

0, whereas the imaginary part is asymmetric function with
respect to t = τ . Either part is a linear combination of the
symmetric and asymmetric components for a general value
of φ (Fig. 1). Therefore, asymmetric factor is incorporated
into this impulse model. An asymptotic limit of L(t) is the
delta function at t = τ ;

lim
υ,φ→0

Re[L(t)] = α0δ(t − τ).

In the model described above, each pulse has long tails
extending indefinitely to±∞ that appear to violate causality.
It is necessary for the dispersion in an attenuating medium
to satisfy causality (see e.g. Aki and Richards, 1980). This
problem will be discussed below.
2.2 Model of dispersive wave
Here, we consider a homogeneous dispersive medium, in

which the wavenumber is a frequency-dependent complex
value k̃(ω). The transfer function in Eq. (5) is expressed as

H(ω) =
∑
l

αl e
−i k̃l (ω)xl , (9)

where xl is the distance from the source. Although k̃l(ω)

is a function of the frequency for a dispersive medium, the
extent of frequency dependence is usually weak. Therefore,
k̃l(ω) can be expanded into a Taylor series around a particular
frequency ω = ω0 up to the first order,

k̃l(ω) = k̃l(ω0) + ∂ k̃l
∂ω

∣∣∣∣∣
ω=ω0

(ω − ω0). (10)

Inserting Eq. (10) into (9), we have

H(ω) =
∑
l

α′
l e

−iqg
l (ω0)(ω−ω0) (11)

where α′
l is the complex amplitude given by

α′
l = αl e

−i k̃l (ω0)xl

and qg
l is a complex group delay,

qg
l (ω0) = xl

ũl(ω0)

1

ũl(ω0)
= ∂ k̃l

∂ω

∣∣∣∣∣
ω=ω0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (12)

where ũl is a complex group velocity,

1

ũl(ω)
= 1

ul(ω)

(
1 − i

2Qg
l (ω)

)
, (13)

and Qg
l is the quality factor related to the group velocity.

Apparently, any time sequence consisting of delayed sig-
nals is represented by a superposition of sinusoids in the
frequency domain in a narrow frequency range, even if each
of the signals is no longer a time-localized wavelet. In other
words, Eq. (11) is applied even for long wave trains gener-
ated from an impulse after propagating in a highly dispersive
medium, for example. This is an important aspect in the
present method.

Here, we introduce H(ω0, ω) as the transfer function
within a narrow frequency band around ω0,

H(ω0, ω) =
∑
l

βl(ω0)e
−iqg

l (ω0)ω, (14)

where βl(ω0) is given by

βl(ω0) = α′
l e

iqg
l (ω0)ω0

= αl e
−i(ql (ω0)−qg

l (ω0))ω0 .

We have three expressions for a transfer function, Eqs. (5),
(11), and (14); Eq. (5) is a general expression in terms of
phase delay, whereas Eqs. (11) and (14) are general expres-
sions in terms of group delay at the frequency ω0. The phase
delay and group delay are equal for non-dispersive media,
and αl = βl(ω0). Taking the dispersion into account, the
impulse sequence model represented by the complex Lor-
entzian shown in Eq. (6) is considered as that viewed within
a narrow frequency band. Each of the poles in Eq. (6) is a
“wave element” characterized by two complex quantities, α
and q, both being a function of frequency f0 = ω0/2π . The
quantity q, referred to as “complex delay” in Kay andMarple
(1981), is defined as “complex travel time”: Its real part τ

gives the delay time or travel time of group velocity and the
imaginary part υ the attenuation characteristics for a wave
element within the narrow frequency band around f = f0.
2.3 Model of observed frequency series and determina-

tion of AR coefficients
We model a finite complex discrete series of H(ω) con-

sisting of the decaying (or growing) sinusoids in a similar
way to the Sompi or extended Prony method to determine a
set of complex travel times and amplitudes. We extend the
theory of the Sompi method to the analysis of the complex
series.
We assume that an observed finite discrete complex fre-

quency series {X j } consists of the signal {Hj }, which is a
finite complex discrete series of H(ω), and noise {E j } :

X j = Hj + E j ( j = 1, . . . , N ) (15)

where {E j } is a complex sequence of the Gaussian white
noise assumed to have zero mean and variance σ 2. The
signal {Hj } satisfies the following homogeneous complex
AR equation,

A(z)Hj = 0, (16)

where A(z) is a complex AR operator of order M ,

A(z) =
M∑
l=0

al z
−l . (17)

Here, al = arl +iail is a complexARcoefficient and z is a unit-
frequency-shift operator

(
zHj = Hj+1

)
, which is related to

the complex travel time q as,

z = e−i2πqΔ f (18)

where Δ f is the unit of frequency discretization.
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To determine the complex AR coefficients {al}, we mini-
mize the fitting error

F = 1

N − M

N∑
j=M+1

(
M∑
l=0

al X j−l

) (
M∑
l=0

al X j−l

)∗

(19)

with a constraint for obtaining non-zero al ,

M∑
l=0

ala
∗
l = 1, (20)

where * denotes the complex conjugate. The factor F defined
in Eq. (19) corresponds to the noise power,

F = 1

N − M

N∑
j=M+1

(
M∑
l=0

al E j−l

) (
M∑
l=0

al E j−l

)∗
.

(21)

Minimization of Eq. (19) under the condition Eq. (20) is
solved by the Lagrangian undetermined multiplier λ,

∂

∂am

{
F − λ

(
M∑
l=0

ala
∗
l − 1

)}
= 0 (22)

or

∂

∂arm

{
F − λ

(
M∑
l=0

|al |2 − 1

)}
= 0

∂

∂aim

{
F − λ

(
M∑
l=0

|al |2 − 1

)}
= 0

This leads to the eigenvalue problem,

M∑
l=0

Pmlal = λam, (m = 0, . . . , M) (23)

where

Pml = 1

N − M

N∑
j=M+1

X j−l X
∗
j−m (24)

= P∗
lm (l,m = 0, . . . , M)

Here, note that Pml is a non-Toeplitz Hermitian autocovari-
ance matrix.
The complex AR coefficient al can be determined by solv-

ing the eigenvalue problem of Eq. (23). We obtain a set of
M + 1 eigenvalues and M + 1 eigenvectors. We use the
eigenvector {al} corresponding to the minimum eigenvalue
λmin, which gives the minimum fitting error of F and hence
the noise power. This is easily shown by substituting Eq. (24)
into Eq. (19).
2.4 Determination of the complex travel times and am-

plitudes
The non-trivial condition of {Hj } in Eq. (16) requires

A(z) =
M∑
l=0

al z
−l = 0, (25)

which is a characteristic equation having M independent so-
lutions z1, . . . , zM . Then we have M complex travel times

ql = τl + iυl = i ln zl
2πΔ f

. (26)

Then, the signal in the frequency domain is represented by
decaying (or growing) sinusoids as

Hj =
M∑
l=0

αl e
−i2πql jΔ f , (27)

so that the complex amplitude {αl} can be determined by
least squares fitting,

T =
N∑
j=1

∣∣X j − Hj

∣∣2 −→ min . (28)

To determine the optimum AR order and the number of
wave elements, we can apply the two-parameter Akaike’s
Information Criterion (AIC) proposed by Matsuura et al.
(1990) to our analysis. First, we sort M wave elements in
descending order of mean power density (MPD) defined by

MPDl = 1

N

N∑
j=1

∣∣αl e
−i2πql jΔ f

∣∣2 . (29)

Then, the complex amplitude for the first M0(≤ M) wave
elements are recalculated by the least square fitting, whose
mean square residual is

σ 2
MM0

= 1

N

N∑
j=1

∣∣X j − H ′
j (M, M0)

∣∣2 , (30)

where {H ′
j (M, M0)} is recalculated signal consisting of the

first M0(≤ M) wave elements in the descending order of
MPD. Therefore we obtain the two-parameter AIC as

AIC(M, M0) = 2N log σ 2
MM0

+ 2 · 4M0. (31)

We can determine a set of (M, M0) by searching the mini-
mum AIC(M, M0) for a certain range of both M and M0.
2.5 Bandpass filtering and alias folding
Similar to the Nyquist frequency for a discrete time series,

we define the Nyquist travel time for a complex discrete
frequency series as

τn = 1

2Δ f
. (32)

When the signal impulses are closely spaced within the
Nyquist time band [−τn, τn] or equivalently [0, 2τn], it is
usually difficult to resolve such signals. For such series, we
use the bandpass filtering and alias-folding technique of the
Sompi method to obtain a higher travel time resolution. We
can use exactly the same algorithm as described in Hori et al.
(1989) and Kumazawa et al. (1990). The algorithm consists
of three parts: (1) the bandpass filtering, (2) alias folding,
and (3) back folding. We briefly describe its algorithm for
the present analysis of the frequency series.
The observed complex frequency series is bandpassed for

the target arrival time band τ0 ± τc in the inverse Fourier
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transformed time series with use of the boxcar window. The
bandpassed complex frequency series is decimated with an
effective sampling interval sΔ f , where s is the maximum
integer satisfying the relations

2τ e
n = 1

sΔ f
,

p · 2τ e
n ≤ τ0 − τc, (33)

τ0 + τc ≤ (p + 1) · 2τ e
n ,

where τ e
n is an effective Nyquist travel time and p is an

integer. While signals in the target band is densely dis-
tributed in the z plane, the (p + 1)th folded arrival time
band [p · 2τ e

n , (p + 1) · 2τ e
n ] containing the target band is

mapped to [0, 2τ e
n ] in the z

s plane, in which signals are more
sparsely distributed and become more resolvable.
The fitting error F in this technique corresponding to

Eq. (19) becomes

F = 1

N − sM

N∑
j=sM+1

(
M∑
l=0

al X j−sl

) (
M∑
l=0

al X j−sl

)∗

(34)

and the matrix {Pml} in the eigenvalue problem is

Pml = 1

N − sM

N∑
j=sM+1

X j−sl X
∗
j−sm, (35)

in which all the decimated frequency series are stacked. The
resultant complex travel times are folded back to the original
arrival time band.

3. Numerical Tests
We perform three numerical experiments to test the fea-

sibility of our method using synthetic frequency series of
transfer function. In the first test, we use the simple decay-
ing sinusoids for the transfer function. This is used to test
whether the complex travel times and amplitudes are success-
fully recovered with our algorithm. In the second test, we
use a pulse satisfying causality to obtain the transfer function
with physical dispersion, and show that ourmethod applied to
the frequency series within a narrow frequency window suc-
cessfully recovers input dispersion relations (hereafter this
technique is referred to as the band-limited analysis). In the
third test, we apply our method with the band-limited analy-
sis for structural dispersion of surface waves.
3.1 Two simple examples using complex Lorentzian
We use synthesized complex frequency series consisting

of a superposition of simple decaying sinusoids and white
noise (Fig. 2(a)), which is equivalent to a superposition of the
complexLorentzianwith noise in the timedomain (Fig. 2(b)).
The frequency series is synthesized for a frequency between
0 and 40 with interval 0.2, whose Nyquist travel time is 2.5.
We apply the algorithm defined in the previous section

to this synthetic data. The trial AR order ranges from 1
to 9, and the two-parameter AIC is calculated to determine
the optimum number of wave elements for each AR order.
Figure 3 plots the determined complex travel times of wave
elements for all the trial AR orders in the similar way to
the frequency-growth rate (f-g) diagram (Hori et al., 1989)

Fig. 2. (a) The transfer function in the frequency domain consisting of a
superposition of two decaying sinusoids and Gaussian white noise. (b)
The corresponding impulse response function obtained by the inverse
Fourier transform of (a).

Fig. 3. Plots of the complex travel times for all the trial AR orders (1–9)
estimated from the frequency series in Fig. 2(a). The relation between
the real part of the complex travel time and arrival time due to the aliasing
in the the time domain is also illustrated. The clusters of points represent
clear signal, and scattered points represent incoherent noise.

in the Sompi method. The relation between the real part of
complex travel time and arrival time due to the aliasing in
the time domain is also illustrated in Fig. 3.
We canfind densely populated regions in Fig. 3, which rep-

resent the signals since the complex travel times are stably
determined for different AR orders, while largely scattered
points represent incoherent noise. Figure 4 plots the two-
parameter AIC against the number of wave elements as a
function of the AR order M . For most of AR orders, their lo-
cal minimum of AIC is given at M0 = 2, although the global
minimum is obtained for M0 = 3 for M = 5. Compari-
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Fig. 4. Plots of the two-parameter AIC against the number of wave elements
as a function of the AR order greater than 2.

Fig. 5. Comparison of the determined complex travel times and ampli-
tudes with input values: (a) the real part of complex travel time, (b) the
imaginary part of complex travel time, (c) the absolute value of complex
amplitude, and (d) the phase of complex amplitude. Open circles are
determined values plotted against the AR order. Solid and dotted lines
represent input values of the first and the second pulses, respectively.

son of the determined complex travel times and amplitudes
with input values is shown in Fig. 5, where we plot deter-
mined values against the AR order. We can see a successful
recovery of input signals for the AR orders larger than 2.
We also synthesized an impulse sequence consisting of the

same two impulses as in Fig. 2, but much closer and hardly
resolvable in time as shown in Figs. 6(a) and (b). Fig. 6(c)
gives an expanded view of the two impulses. We use the
bandpass filtering and alias-folding technique to analyze this
series with a box car time window of 1.25 ± 0.25. The
determined complex travel times of wave elements are then
plotted in Fig. 6(d) for all the trial AR orders (M = 1 ∼
9), in which we find two densely populated regions very

Fig. 6. (a) The transfer function in the frequency domain consisting of
a superposition of two decaying sinusoids, whose complex travel times
are very close to each other, and Gaussian white noise. (b) The impulse
response function obtained by the inverse Fourier transform of (a). (c)
An enlargement of the pulse in (b), which consists of two closely spaced
pulses (dashed and dotted lines). (d) Plots of complex travel times for all
the trial AR orders (1–9) estimated for the frequency series in (b) with
the bandpass filtering and alias folding technique. Crosses in (d) indicate
input values of the complex travel times. A cluster denoted by B at the
window edge is spurious as originated from the filtering.

close to input values. Thus, our method with the bandpass
filtering and alias-folding technique successfully resolved the
two pulses. These are clearly distinguished by the difference
of the real as well as imaginary part of complex travel times
in Fig. 6(d).
3.2 Dispersive wave with physical dispersion
We synthesize a causal model of dispersive elastic wave

with attenuation based on a theory of Azimi et al. (1968), in
which the complex wavenumber is given by

Re[k̃(ω)] = ω

c∞
+ 2α0ω

π(1 − α2
1ω

2)
ln

1

α1ω
, (36)

Im[k̃(ω)] = α0ω

1 + α1ω
(37)

where c∞ is the limit of c(ω) as ω → ∞, and α0 and α1

are constants. We use c∞ = 5, α0 = α1 = 0.001. The
phase velocity c(ω) and Q(ω) for these parameter values
are shown in Figs. 7(b) and (c), respectively. Substituting
this complex wavenumber into Eq. (9) between f = 0 and
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Fig. 7. A synthesized impulse response function (a), which shows asym-
metric shape satisfying the causality. Estimated velocities (b) and quality
factors (c) are indicated by circleswith the theoretical curves for the group
velocity u and the related quality factor Qg (solid lines) and the phase
velocity c and the related quality factor Q (dashed lines).

100 with x = 12.5, we obtain the transfer function, whose
inverse Fourier transform is shown in Fig. 7(a). The pulse
shows an asymmetric shape satisfying causality: a sharp rise
at the onset time with a trailing tail.
We use the noise-free frequency series of transfer function

and the AR order corresponding to the number of input pulse
to test whether our method with the band-limited analysis
provides unbiased estimates of the complex travel times for
the dispersive wave. We use a successive frequency band of
10 between 0 and 100. For the determined complex travel
time in each frequency band, the velocity is calculated as the
travel distance divided by the arrival time and Q is calculated
from

Q(ω0) = − τ(ω0)

2υ(ω0)
. (38)

Fig. 8. (a) Estimated dimensionless velocities of the Rayleigh waves (cir-
cles) with the theoretical dimensionless group velocity calculated by
the Thomson-Haskell’s method (solid lines). See text for details. (b)
Multi-filter analysis of the Rayleigh waves for the same waveform data
as in (a). Gray scale indicates the common logarithm of the amplitude
normalized by a maximum amplitude in each frequency band.

We plot the estimated velocities with the theoretical phase
and group velocities in Fig. 7(b), and estimated Q with the
theoretical Q and Qg in Fig. 7(c) against frequency. Except
for the lowest frequency band, in which theoretical velocity
changes abruptly against frequency, the estimated velocity
and Q are in excellent agreement with the theoretical group
velocity and Qg .
3.3 Surface wave with structural dispersion
We apply our algorithm to structural dispersion analysis of

a Rayleigh wave. As a simple example, we use a two-layer
model for which the synthetic transfer function of the surface
displacement in the radial direction due to a vertical point
force on the surface is calculated using the reflectivitymethod
(Koketsu, 1985). The S wave velocities of the two layers are
relatedbyVS2 = 1.43VS1, while the P wavevelocities are

√
3

times larger. We use dimensionless frequency normalized by
the reference frequency f0 = VS1/h, where h denotes the
thickness of the upper layer, and dimensionless velocities
normalized by VS1. The material attenuation and dispersion
are not included in this calculation. We synthesize 2,496
points of the transfer function for frequency range between
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0 and 2 f0 with an interval of 0.0008 f0.
We apply the band-limited analysis to the transfer function

for the whole frequency range. The synthetic transfer func-
tion is divided into 64 segments. Each segment contains 64
data points and the width of the frequency band is 0.0512 f0.
The bandpass filtering and alias folding technique is used to
determine the arrival time of the Rayleigh wave in each fre-
quency band. The velocity is calculated as the travel distance
divided by the arrival time.
For comparison, we also analyze the same transfer func-

tion using themulti-filter technique (Dziewonski et al., 1969)
commonly used for the dispersion analysis of surface waves.
We apply the Gaussian frequency window to each of the
successive frequency segments. The interval of the central
frequency is 0.0512 f0, which is the same as the band width
used in the analysis of the AR modeling, and the width of
Gaussian windows are proportional to the central frequen-
cies. We convert each windowed frequency series into the
time domain data by the inverse Fourier transform.
The results of the analysis of the AR modeling and the

multi-filter analysis are shown in Fig. 8, respectively. In
Fig. 8(a), we plot the dimensionless group velocities esti-
mated for all the trial AR orders (1–10) in each frequency
band with the theoretical dispersion curves up to the second
higher modes calculated by means of the Thomson-Haskell
method (Thomson, 1950; Haskell, 1953). Although there ex-
ist scattered points for estimated wave elements originated
from incoherent noise, densely populated regions are in good
agreement with the theoretical curves up to the second higher
modes. As shown in Fig. 8(b) of multi-filter analysis, the
fundamental mode is identified with a clear peak in each fre-
quency band. While we can recognize the branches of the
highermodes in Fig. 8(b), their peaks are generally broad due
to the operation of the Gaussian frequency window, indicat-
ing difficulties in determining group velocities accurately, in
contrast with our result.

4. Discussions
We have presented a method to determine the complex

travel times based on the AR modeling of a complex fre-
quency series of transfer function. In the Sompi method, the
AR equation is the same as Eq. (17) but the AR coefficients
are real. A complex solution of z for real AR coefficients is
always accompanied by its complex conjugate solution, and
the number of independent solutions becomes M/2 for even
M (an odd-order equation includes real roots for z). On the
other hand, we have defined AR coefficients as the complex
values for the complex series, resulting in M independent
solutions of z for the M th-order equation. In this sense we
have presented a more general theory of a series analysis
based on this AR equation.
Our basic assumption is that a complex frequency series

consists of coherent simple decaying (or growing) oscilla-
tions and incoherent noise, for which we can apply the com-
plex AR equation to determine the complex travel times and
amplitudes. Our AR model in the frequency domain corre-
sponds to the complex Lorentzian in the time domain, which
violates causality. Nonetheless, our ARmodel is justified for
two reasons: (1) Theoretically, the impulse model violating
causality is used only for narrow frequency bands, for which

causality constraint is meaningless: (2) In practice, our nu-
merical test based on the dispersive wave satisfying causality
show a reasonable and consistent result.
Another advantage of our method is that not only the ar-

rival time but also the pulse width can be estimated from the
complex travel time. The pulse width is related to anelas-
tic structure of medium represented by the quality factor Q
along the propagation ray path. Anelastic structure is poorly
understood compared with elastic structure, although Q is
an important parameter in understanding materials and their
physical states within the earth. In previous studies, t∗ or
differential t∗ (Teng, 1968) of the first arrival pulse has been
used to investigate Q structure (e.g. Evans and Zucca, 1993).
t∗ is related to the imaginary part of travel time υ by

t∗ = −2πυ. (39)

Least squares fit to the slope of logarithmic Fourier spectrum
of the seismogram has been commonly used for estimation
of t∗. However, this method cannot resolve closely spaced
pulses within a target time window (Evans and Zucca, 1988).
Our method successfully resolved such pulses as demon-
strated in Section 3.1, thus providingmore accurate estimates
of pulse widths and therefore Q structures.
Another advantage of our method is its high resolvability

of the complex travel time. The Sompi algorithm based on
the AR modeling has theoretically infinite travel time res-
olution, although limited by the presence of noise. On the
other hand, the travel time resolution based on the Fourier
method is limited by the length of frequency series as well
as the tapering. As demonstrated in the dispersion analysis
of surface waves in Section 3.3, the Fourier method requires
a window with tapering in a narrow target frequency band
to reduce side lobe interference by nearby peaks in the time
domain. This phenomenon also reduces the resolution of
the central peak while determining the arrival time. In the
Sompi algorithm, however, based on the AR modeling of a
frequency series, we can use the box-car window for a target
frequency band without side lobe interference, enabling high
resolution estimation of the arrival time.
Although our method has been developed for analysis of

ACROSS data, this method can be widely applied to analysis
of seismograms for active and passive sources after an appro-
priate deconvolution of source effects. Our numerical tests
demonstrate the applicability of our methodwith the high ac-
curacy and resolvability. Although some practical problems
such as error analysis are not treated in this paper, thismethod
provides a new approach for event analysis, and a useful tool
for the complex travel time analysis of seismograms.
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