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One-dimensional dynamic simulations of slip complexity of earthquake faults
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Slip complexity of earthquake faults is studied based on an N-degree-of-freedom dynamical spring-slider system
in the presence of slip-law-type, velocity- and state-dependent friction. Simulation results based on such a friction
law show that slip complexity depends on the inhomogeneous distribution of the breaking strengths (including its
pattern and degree) along the fault and nonlinear velocity- and state-dependent friction. However, for the given
model parameters the former is more important than the latter in controlling slip complexity. Frictional effects
obviously appear only when the distribution of the breaking strengths is inhomogeneous. In addition, the stiffness
ratio, defined as the ratio of the coil spring strength, Kc, to the leaf spring strength, Kl , is also a factor in controlling
slip complexity.

1. Introduction
Slip complexity has long been observed fromboth the field

survey and from the inversion of earthquake source ruptures
(cf. Scholz, 1990; Kanamori, 1994). A complex slip distribu-
tion has been interpreted in terms of two phenomenological
models. One of them is specified with barriers (areas where
no slip occurs during a mainshock) proposed by Das and Aki
(1977) and the other with asperities (areas where large slip
takes place during a mainshock) suggested by Kanamori and
Stewart (1978). However, the physical nature of asperities
and barriers is not well known (cf. Kanamori, 1994). Hence,
it is significant to explore the causes to yield slip complexity
of earthquake faults.
Numerous authors also theoretically studied this prob-

lem. Carlson and her co-authors (Carlson, 1991; Carlson
and Langer, 1989; Carlson et al., 1991) stated that self-
organization of repeated ruptures of uniform faults gives
rise to slip complexity when inertial effects and nonlinear
velocity-weakening friction are included. They stressed the
importance of non-linearity of friction on slip complexity.
On the other hand, Rice (1993) strongly argued that all of
simulation results from the self-organizingmodels have been
sensitive to the spatial discretization used. He stressed the
importance of material heterogeneities and defined a co-
herent slip patch size, h∗. So-called self-organizing model
faults, having a numerical cell size h > h∗, are inherently dis-
crete, thus resulting in Gutenberg-Richter-type complexity
for small events. Based on amodel through the discretization
from a continuum one, Shaw (1994) stated that slip complex-
ity is mainly caused by non-linearity of velocity- and state-
dependent friction rather than by the matter that the grid size
h is larger than a critical length h∗ of the model. Knopoff
(1996) considered both heterogeneous breaking strengths
and non-linearity of friction to be two important factors in
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influencing slip complexity.
In this work, we first study the effects due to two factors:

the inhomogeneous distribution of the breaking strengths and
non-linearity of velocity- and state-dependent friction. Sec-
ondly, from simulation results we explore which is the major
factor in controlling slip complexity of earthquake faults.
In this study, we use an N-degree-of-freedom spring-slider
model, proposed by Burridge and Knopoff (1967), in the
presence of velocity- and state-dependent friction, to approx-
imate earthquake dynamics.

2. Theory
The N-degree-of-freedom dynamic spring-slider model

(see Fig. 1) consists ofN sliders of equalmass,m, and springs
with one slider being linked by a coil spring of strength, Kc,
with the other. A slider is also pulled by a leaf spring of
strength, Kl , on a moving plate with a constant velocity, Vp.
At time t = 0, all the sliders rest in the individual equilibrium
states. The i-th slider (i = 1, . . . , N ) is located at position xi ,
measured from its initial equilibrium position, along the x-
axis. A slider is subjected to a velocity- and state-dependent
frictional force, Fi (θi , vi ), where θi and vi (= dxi/dt) are
the state variable and the sliding velocity, respectively, of the
i-th slider. The equation of motion of the i-th slider is

m(d2xi/dt
2) = Kc(xi+1 − 2xi + xi−1)

− Kl(xi − Vpt) − Fo(θi , vi ). (1)

In Eq. (1), Fi (θi , vi ) equals toμiσn A, whereμi is the friction
strength, σn is the normal pressure and A is the contact area
between a slider and the moving plate.
Experimental and theoretical studies show that two effects,

i.e., a direct effect and an evolution one, affect the dynamic
friction strength (cf. Dieterich, 1979; Ruina, 1983; Marone,
1998). The direct effect shows an instantaneous change of
the friction strength with a change in velocity, while the evo-
lution effect evolves with slip following a change in velocity
and is proportional to the negative log of sliding velocity. Un-
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Fig. 1. An N-degree-of-freedom dynamical spring-slider system.

stable slip in rock can result only when the evolution effect is
larger than the direct one. The one-state-variable, velocity-
and state-dependent friction strength, μ, which employs a
state variable, θ , defined by Ruina (1983), has a form of
μ = μo +a ln(v/vo)+b ln(θvo/Dc), where μo is the break-
ing strength (or the static friction strength), v is the sliding
velocity, vo is a constant reference velocity, and Dc is the
characteristic slip distance. This leads to μ = μo when
v = vo and θ = Dc/vo. Contributions to the total friction
strength is scaled by a for the direct effect and by b for the
evolution one. Two evolution laws are proposed to control
the state variable (cf. Marone, 1998). One of them is the
slip law: dθ/dt = −(θv/Dc) ln(θv/Dc). When v = 0,
dθ/dt approximates to zero. This implicates that no evo-
lution occurs when v = 0. The other is the slowness law:
dθ/dt = 1 − θv/Dc. When dθ/dt = 0, state is propor-
tional to slowness, i.e., θ = Dc/v. For the two laws, the
steady-state friction strength, μss , is μo + (a − b) ln(v/vo)

when dθ/dt = 0. This leads to μss = μo for both laws
when v = vo. From the simulation results based on a one-
degree-of-freedom spring-slider model, Wang (1999) stated
that the slowness law strongly resists the slider to movewhen
the driving velocity is less than 10−3 m/s. Thus, it is not
appropriate to apply the slowness law to simulate dynamic
earthquake ruptures. Hence, in this study only the slip law
is taken into account.
The velocity- and state-dependent dynamic friction

strength at the i-th slider is represented by μi = μoi +
ai ln(vi/vio) + bi ln(θivio/Dic). The breaking strength, μoi ,
is a function of position, with a maximum value of μomax.
In order to simplify numerical computations, the values of
the parameters ai , bi , voi , and Doi are individually consid-
ered to be constant at all sliders, i.e., letting ai = a, bi = b,
vio = vo and Dic = Dc. This leads to Fi (θi , vi ) = σn A[μo+
a ln(vi/vo) + b ln(θivo/Dc)] = Fo[γoi + α ln(vi/vo) +
β ln(θivo/Dc)], where Fo = μomaxσn A, γoi = μoi/μomax,
α = a/μomax, and β = b/μomax. The slip law becomes
dθi/dt = −(θivi/Dc) ln(θivi/Dc). Replacing Fi (θi , vi ) into
Eq. (1), we have

m(d2xi/dt
2) = Kc(xi+1 − 2xi + xi−1) − Kl(xi − Vpt)

− Fo[γoi + α ln(vi/vo)

+ β ln(θivo/Dc)]. (2)

To simply deal with the problem, Eq. (2) is normalized
in advance. We define three characteristic parameters, i.e.,

s = Kc/Kl , ωo = (Kl/m)1/2, and Do = Fo/Kl . Wang
(1995) called the quantity s the stiffness ratio. The quantity
ωo/2π is the frequency of oscillation of a single slider at-
tached to a leaf spring in the absence of friction. Do is the
characteristic displacement of a slider exerted by a force Fo
through a springwith strength of Kl . Longer Fo yields longer
Dowhen Kl isfixed. Obviously, Do andωo can be considered
to be two significant units to scale the spatial coordinates, xi ,
and time, t , respectively. Let Xi = xi/Do, τ = ωot , and
 =
Dc/Do. This leads to dxi/dt = [Fo/(mKl)

1/2]∂Xi/∂τ ,
d2xi/dt2 = (Fo/m)d2Xi/dτ 2, and Vi = dXi/dτ . Hence,
the normalized (dimensionless) quantities are νi = Vi/Doωo,
φi = ωoθi , νp = Vp/Doωo, and νo = Vo/Doωo. Do/Vp is
the loading time for a leaf spring to stretch enough for over-
coming the breaking strength, and νp, is equivalent to the
ratio of the slipping time ω−1

o to the loading time.
Based on the above-mentioned quantities, Eq. (2) is nor-

malized to the following form:

d2Xi/dτ 2 = s(Xi+1 − 2Xi + Xi−1) − (Xi − νpτ)

− [γoi + α ln(νi/νo) + β ln(φiνo/
)]. (3)

The normalized form of the slip law is dφi/dτ =
−(φiνi/
) ln(φiνi/
). It is obvious that from the friction
law, the value ofμ cannot be defined at νi = 0. However, for
dynamic simulations, we cannot discard the case at vi = 0.
Hence, the values of φi are all set to be 
/νo when νi = 0
This can lead to μ = μo and avoid the appearance of infinity
when νi = 0. The main parameters controlling the motion
of a slider are s (the stiffness ratio), α (the parameter for the
direct effect), β (the parameter for the evolution effect), νp

(the dimensionless velocity of the moving plate), and 
 (the
dimensionless characteristic slip displacement). According
to the definition of friction law, the reference velocity νo
is not usually regarded as a parameter affecting the friction
strength. However, Wang (1999) stressed that νo must be one
of the significant parameters controlling the dynamic friction
strength. This can be seen in the followings. In addition, the
boundary condition at each end slider should be a factor in
influencing simulation results. In the following numerical
simulations, the two end sliders are fixed and do not move at
all.
To understand the variation of friction strength, μ, with

sliding velocity, we calculate the variation ofμwith v, which
increases, in a sine-function form, from 0 to vmax (= 10−3

m/s), through the fourth-orderRunge-Kuttamethod (cf. Press
et al., 1986). The values of model parameters μo, a, and b
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Fig. 2. The variations of the friction strength with normalized sliding velocity, v/vmax (with vmax = 10−3 m/s), under the controlling of the slip-type friction
law for six values of vo: (a) for 10−9 m/s, (b) for 10−6 m/s, (c) for 10−5 m/s, (d) for 10−4 m/s, (e) for 10−3 m/s, and (f) for 1 m/s, when a = 6 × 10−3

and b = 9 × 10−3. For each vo, four values of Dc: 10−5 m denoted by a solid line, 10−4 m by a dashed line, 10−3 m by a dashed-dotted-dashed line,
and 10−2 m by a dotted line, are considered.

are set to be 0.6, 10−3 and 1.5 × 10−3, respectively. For all
cases, the initial value of θ for numerical computations is
Dc/vo. The variations of μ with v/vmax for six values of vo,
i.e., 10−9 m/s, 10−6 m/s, 10−5 m/s, 10−4 m/s, 10−3 m/s, and
1m/s, are shown in Fig. 2. For each vo, four values of Dc, i.e.,
10−4 m, 10−3 m, 10−2 m, and 10−1 m, are considered. In each
diagram, the solid line, dashed line, dashed-dotted-dashed
line, and dotted line represent the results for Dc = 10−5 m,
10−4 m, 10−3 m, and 10−2 m, respectively.
There are two patterns for variations of μ with v/vmax,

depending upon vo. The value of vo = 10−5 m/s is a critical
one to separate the two patterns. When vo < 10−5 m/s, the
value of μ increases rapidly first from the initial value to a
peak value, and then decreases. The velocity range, within
which the friction strength increases from the initial value to
the peak one, increases with Dc and slightly with vo. This in-
dicates that the friction force makes resistance to prohibit an
object for sliding. The amount of resistance increases with
Dc and slightly with vo when vo < 10−5 m/s. On the other
hand, when vo � 10−5 m/s, the value of μ first drops to a
value less than 0.6, then increases from that to a peak value,
and finally decreases again. The decrease in the dynamic
friction strength at low velocities behaves like an impulse,
which supplies additional energy to an object. After the fric-
tion strength drops, the dynamic friction strength increases
with velocity. The increasing rate of the dynamic friction

strength with velocity decreases with increasing Dc. A rapid
increase in the dynamic friction strength can make a stronger
resistance to an object for sliding than a slow one. Hence,
large vo and large Dc are beneficial to an object for sliding
when vo � 10−5 m/s.
Earthquake fault zones are usually quite complex, and,

thus, the distribution of the breaking strengths is not homo-
geneous. Inhomogeneous friction strengths might be caused
either by a non-uniform distribution of crustal materials or by
variable pore pressures (cf. Rice, 1992). Wang (1995) con-
sidered a fractal function specified with a fractal dimension,
D, to describe the inhomogeneous distribution of the break-
ing strengths. A fractal distribution of the breaking strengths
is also considered in this study. The Fourier filtering method
developed by Saupe (1988) is applied to yield a fractal distri-
bution with 2n (n is an integer) discrete points. Let γomax and
γomin be, respectively, the maximum and minimum values of
the breaking strengths, and define R = (γomax−γomin)/γomax

to represent the degree of the inhomogeneous distribution of
the breaking strengths.

3. Simulation Results
In order to explore slip complexity of earthquake faults,

we here study the spatial distribution of fault slip through
numerical simulations based on Eq. (3) with slip-law-type
velocity- and state-dependent friction. The friction strength
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Fig. 3. The spatial distributions of final slip of sixty simulation events for three distributions of the breaking strengths: (a) for a fractal distribution with
D = 1.5, (b) for a random distribution, and (c) for a uniform distribution, when s = 4, γomin = 0.98, α = 10−2, β = 1.5×10−2, νo = 1, and
 = 10−3.
The site with γomax (= 1) is denoted by a cross and that with γomin shown by an arrow sign. The dipping line segments at the two end sliders demonstrate
the fixed boundary condition. The dotted line in the lower diagrams represents the site with γomin.

is defined only for the positive velocities. This means that no
backward motions in the fault are allowed. The simulation
procedure is briefly described here. First, we integrateEq. (3)
with friction forward in time. Secondly, we scan all sliders
again to find the sliders for which the forces are closest to the
individual breaking strengths. The velocity νi (τ + δτ) and
the displacement Xi (τ + δτ) of the i-th slider at time τ + δτ

is calculated from the acceleration ai (τ ) (= d2Xi/dτ 2) at
time τ , i.e., νi (τ + δτ) = ai (τ )δτ and = ai (τ )(δτ )2/2. The
value of φi (τ ) is computed from the slip-type evolution law
through the fourth-order Runge-Kutta method. The compu-
tation processes are conducted until all sliders have come to
rest. Thirdly, after all sliders come to rest, we add again a
loading force from the moving plate to each slider, and then
repeat the first and second processes.
The boundary condition must be a factor in affecting sim-

ulation results. Since in this study we are only focusing the
slip distribution of the model events, the two ends of the
model fault do not break in the seismic cycles. Hence, the
breaking strengths at two end sliders are set to be infinity
for avoiding numerical computations. In other words, we
consider the fixed boundary condition. To show the fixed
boundary condition, two dipping line segments are plotted at

the two end sliders.
For simplification, the inertial effect is considered to be

constant for all cases, thus letting m = 1 kg. The strength of
the leaf spring, Kl , is set to be 1 nt/m, thus leading to ωo =
1 Hz. Four values of s (= Kc/Kl), i.e., 2, 3, 4, and 5, are
used. It is noted that in this study, since only the normalized
equations are used, and only ωo and s are taken into account,
the absolute units of m, Kc, and Kl are less important. For
simplification, Do is set to be 1 m for all cases. Generally,
the value of Vp is generally about 10−9 m/s, and, thus, the
value of νp is 10−9 when Doωo = 1 m/sec. Since Eq. (3) is
a normalized equation, γomax is 1 for all cases in this study.
The difference a − b or α − β depends upon the gouge layer
thickness and the shear displacement (cf.Marone, 1998). For
a bare fault plane, the value of a − b ranges from −0.004 to
0. The value changes when a gouge layer exists. It changes
from a negative value to a positive one when the gouge layer
thickness is increased. The value of a − b also decreases
with increasing shear displacement. Since the parameter
α (or a) only changes the amount of the direct effect, its
value is set to be a constant (= 10−2) in this study. Two
values of the parameter β, i.e., 0.5× 10−2 and 2× 10−2, are
considered. The dimensionless reference velocity, νo, and
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Fig. 4. The spatial distributions of final slip of sixty simulation events for three values of R: (a) for 10% (γomin = 0.90), (b) for 6% (γomin = 0.94), and (c)
for 2% (γomin = 0.98), when s = 4, νo = 1, α = 10−2, β = 1.5 × 10−2, and 
 = 10−3. The distribution of the breaking strengths is a fractal function
with D = 1.5. The symbols used are the same as those shown in Fig. 3.

the ratio 
 (= Dc/Do) are two frictional factors in affecting
the motions of sliders. As mentioned above, for most of
cases νo is set to be 1. The parameter Dc is affected by
several factors (cf. Marone, 1998). Its values measured from
laboratory experiments are generally in the range of 10−6 −
10−5 m, which are many orders of magnitude smaller than
field-based estimates and those values required by theoretical
simulations of ruptures (cf. Beeler and Tullis, 1996). In this
study we consider four values of Dc, i.e., 10−4 m, 10−3 m,
10−2 m, and10−1 m,which are almost between the laboratory
values and the field-based ones. Hence, the values of 


related to them are 10−4, 10−3, 10−2, and 10−1, respectively,
because Do = 1m. The number of sliders in use is 27 = 128.
The time step δτ must be a factor in affecting numerical
results. A big value of δτ can cause several starting points
for one event and is able to produce numerical instability.
However, the simulation results for various δτ ’s are similar
when δτ < 0.05. In other words, numerical stability exists
when δτ < 0.05. For resulting in numerical stability, the
time step size is δτ = 0.01 (or δt = 0.01 sec) in the following
computations. Displayed also in the following figures are
the dimensionless maximum and minimum displacements
(denoted as Smax and Smin, respectively).

For exploring the effects due to the distribution of the
breaking strengths, we consider three kinds of spatial distri-
butions of the breaking strengths: a fractal distribution with
D = 1.5, a random distribution, and a uniform distribution.
For the first two distribution, γomin = 0.98. For the last one,
the breaking strength is set to be 0.98 at slider 9 and to be 1 at
the rest sliders. The values of s, νo, and
 are 1, 1, and 10−3,
respectively. The spatial distributions of final slip of sixty
events for the three distributions of the breaking strengths
are shown in Fig. 3. For the uniform distribution, three large
events, rupturing along the whole fault (expect for the two
end sliders), appear in the first three time intervals. After
that, a large event, rupturing almost along the whole fault,
followed by two small ones, occurring at the two second-end
sliders, appears repeatedly. When the fractal and random
distributions are applied, the ruptures are non-uniform along
the fault. For the fractal distribution (see Fig. 3(a)), the fault
can be divided mainly into two segments: one, in the right-
handed side, with lower breaking strengths and the other, in
the left-handed side, with higher breaking strengths. In addi-
tion, there is a transition zone, where the breaking strengths
increase from right to left, between the two above-mentioned
segments. A rupture cycle along the fault essentially con-
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Fig. 5. The spatial distributions of final slip of sixty simulation events for two values of β and νo: (a) for β = 10−2 and νo = 1, (b) for β = 2× 10−2 and
νo = 1, (c) for β = 10−2 and νo = 10−9, and (d) for β = 2 × 10−3 and νo = 10−9, when s = 4, α = 10−2, and 
 = 10−3. The distribution of the
breaking strengths is a fractal function with D = 1.5 and R = 2%. The symbols used are the same as those shown in Fig. 3.

sists of three steps: First, a larger-sized event occurs along
the right segment with lower breaking strengths. Secondly,
few small events appear in the transition zone and at the two
second-end sliders. Finally, the other larger-sized event takes
place along the left segment with higher breaking strengths.
The energy provided by themoving plate releases completely
during a rupture cycle. Such a rupture cycle almost appears
repeatedly. Of course, the number of small events, occurring
in the transition zone, changes with time. However, these
small events play a minor role for energy release during a
rupture cycle. The number of rupture cycles for the uniform
distribution is larger than that for each of the two inhomo-
geneous distributions. For each case, almost all the sliders,
except for the two end ones, slide in a rupture cycle. The
total rupture time for a rupture cycle is approximately a con-
stant, yet about ten times smaller the time interval between
two rupture cycles. This phenomenon can also be seen in the
following cases with different model parameters.
Figure 3 also shows that the maximum final slip somewhat

depends upon the type of distribution: the largest one for the
uniform distribution, the intermediate one for the fractal dis-
tribution, and the smallest one for the random distribution.
Of course, this statement is not necessary to be a general one,

because different fractal dimensions and different values of
α and β could lead to different results. Different fractal
dimensions produce different fractal distributions, thus be-
ing able to yield different spatial distributions of final slip.
However, tests show that when the coefficients of friction
law are fixed, the maximum final slips for different fractal
distributions with fractal dimensions varying from 1.1 to 1.9
are essentially similar, and the spatial distributions of slip for
different fractal dimensions are also similar to that displayed
in Fig. 3. (The spatial distributions of the displacements for
different fractal distributions of the breaking strengths are not
shown in this study.) Hence, the above-mentioned statement
can be correct when the values of α and β are fixed. Results
obviously show the importance of inhomogeneous breaking
strengths (the highest one for the random distribution, the
intermediate one for the fractal distribution and the lowest
one for the uniform distribution) on the spatial distribution
and the maximum value of final slip.
For an inhomogeneous distribution of the breaking

strengths, in addition to the pattern of inhomogeneities, the
degree of inhomogeneities would be also a significant factor
in affecting slip complexity. In this study, the parameter R
is considered as an indication to show the degree of inho-
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Fig. 6. The spatial distributions of final slip of sixty simulation events for four values of 
: (a) for 10−4, (b) for 10−3, (c) for 10−2, and (d) for 10−1, when
s = 4, α = 10−2, β = 1.5× 10−2, and νo = 1. The distribution of the breaking strengths is a fractal function with D = 1.5 and R = 2%. The symbols
used are the same as those shown in Fig. 3.

mogeneities. The spatial distributions in final slip of sixty
simulation events for three value of R, i.e., 10%, 6%, and
2%, which are related to γomin = 0.90, 0.94, and 0.98, re-
spectively, for a fractal distributions (with D = 1.5) of the
breaking strengths are shown in Fig. 4. The values of s, νo,
and 
 used are 1, 1, and 10−3, respectively. When R = 2%,
the simulation results (see Fig. 4(c)) are the same as those
shown in Fig. 3(a), and the results were described previously.
The simulation results for R = 10% (as shown in Fig. 4(a))
show that all events are small, and each of them is associ-
ated with either a small number of slid sliders or only one
slid slider. The first 52 events belong to a rupture cycle.
The energy in the fault system exerted by the moving plate
completely releases after the occurrences of the 52 events.
One could consider that the 52 events are sub-events of a
large one. However, the total rupture time of the 52 events
is too long to consider them to be sub-events of a large one.
The simulation results for R = 6% (as shown in Fig. 4(b))
show that there are two rupture cycles, each occurring in
a somewhat long time interval, and in each cycle there are
small and intermediate-sized events. The seismicity pattern
for R = 6% seems to be a middle state between those for
R = 2% and 10%. However, the values of the maximum

final slip for the three values of R are almost equal and in-
dependent upon R. For each case, except for the two end
sliders, almost all sliders move in each rupture cycle. In
addition, the total rupture times for individual cycles in dif-
ferent diagrams are approximately equal. Of course, the total
times for the sixty events are different for the three cases: the
largest one for R = 2%, the second largest one for R = 6%,
and the smallest one for R = 10%.
In addition to the effects due to the distribution of the

breaking strengths, we need to study the frictional effects.
As mentioned above, the major factors of the friction law
include α, β, and 
, and νo is set to be 1. For comparison,
we also consider two cases with νo = 10−9. Figure 5 shows
the plots for two values of β and two values of νo: (a) for
β = 1 × 10−2 and νo = 1, (b) for β = 2 × 10−2 and
νo = 1, (c) for β = 1 × 10−2 and νo = 10−9, and (d) for
β = 2 × 10−3 and νo = 10−9, when s = 4, α = 10−2, and

 = 10−3. The distribution of the breaking strengths is a
fractal function with D = 1.5 and R = 2%. The case for
β = 1.5 × 10−2 and νo = 1 can be seen in Fig. 6(b). These
plots for νo = 1 show that large events, rupturing almost
along the whole fault, are generated when β = 1 × 10−2 or
α − β = 0, and both the size of the largest event and the
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Fig. 7. The spatial distributions of final slip of sixty simulation events for four values of s: (a) for 2, (b) for 3, (c) for 4, and (d) for 5, when α = 10−2,
β = 1.5 × 10−2, νo = 1, and 
 = 10−3. The distribution of the breaking strengths is a fractal function with D = 1.5 and R = 2%. The symbols used
are the same as those shown in Fig. 3.

maximum final slip decrease with increasing β. Figures 5(c)
and 5(d) show that when νo = 10−9, the seismicity patterns
and the values of the maximum final slip for the two values
of are the same. In the following simulations, the values of
α and β are 10−2 and 1.5 × 10−2, respectively.

Figure 6 shows the spatial distributions of final slip for
sixty simulation events for the four values of 
, i.e., 10−4,
10−3, 10−2, and 10−1, when s = 4 and νo = 10−3. The
distribution of the breaking strengths is a fractal function
with D = 1.5 and R = 2%. It is evident that large 
 is
more capable of generating larger-sized events than small

, and the maximum final slip increases with 
. There are
several rupture cycles for 
 > 10−4, but only two cycles for

 = 10−4. The rupture times for individual cycles for the
four cases are almost equal.
Finally, the effects caused by the stiffness ratio are taken

into account. Figure 7 shows the spatial distributions of final
slip for sixty simulation events for four values of s, i.e., 2,
3, 4, and 5, when νo = 1 and 
 = 10−3. The distribution
of the breaking strengths is the same as that in Fig. 6. It is
obvious that the range of ruptures increases slightly with s,
but the maximum final slip does not.

4. Discussion
The inhomogeneous distribution of the breaking strengths

andnon-linearity of velocity- and state-dependent friction are
usually considered as two important factors in affecting slip
complexity. The debate about which is the predominant fac-
tor has been lasted for a long time. Carlson and her co-author
(cf. Carlson and Langer, 1989; Carlson et al., 1991) stressed
that nonlinear velocity-dependent friction is the major fac-
tor. Cochard and Madariaga (1994, 1996) also emphasized
the importance of friction on slip complexity. On the other
hand, Rice (1993) strongly argued that the complexity comes
from the self-organized models and the BK models has been
sensitive to the (inherent) spatial discretizations used. He
proposed that the dynamic effect suggested by Carlson and
her co-authors is not themajor factor in influencing slip com-
plexity in the earthquake faults. He also stated that models
that incorporate approximately geometric fault-zone disorder
can produce slip histories with features that are comparable
to observations. Based on a model through the discretiza-
tion from a continuum one, Shaw (1994) stressed that slip
complexity is mainly caused by non-linearity of velocity-
and state-dependent friction rather than by the matter that
the grid size h is larger than a critical length h∗ of the model.
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Of course, the difference in the conclusions obtained by the
rival groups might also be due to the use of different friction
laws used by different authors.
Figure 3 obviously show that when the distribution of the

breaking strengths is uniform, the spatial distribution of sim-
ulated final slip is also uniform whatever the values of model
parameters are. Figure 4 shows the effects caused by the de-
gree of inhomogeneity, represented by the parameter R, on
slip complexity. A decrease in R results in an increase in the
capability to generate large events. This is due to an increase
in the degree of homogeneity with decreasing R. The dis-
tribution of the breaking strengths is uniform when R = 0.
Results shown in Figs. 3 and 4 indicate that the degree and the
pattern of inhomogeneous breaking strengths over the fault
plane are themajor factors in affecting slip complexity, while
non-linearity of velocity- and state-dependent friction is less
significant. However, the present results cannot directly con-
firm Rice’s proposition. In addition, Fig. 4 also shows that
the capability to generate larger-sized earthquakes decreases
with increasing R, and only small events are produced when
R = 10%.
When the distribution of the breaking strengths is inhomo-

geneous, the effects on slip complexity caused by nonlinear
velocity- and state-dependent friction obviously appear. The
main parameters in the velocity- and state-dependent fric-
tion law include α (the parameter for the direct effect), β

(the parameter for the evolution effect), 
 (the dimension-
less characteristic slip distance), and νo (the dimensionless
reference velocity). Figure 5(a) (for β = 10−2), Fig. 5(b)
(for β = 2×10−2), and Fig. 6(b) (for β = 1.5×10−2) show
the effect of β as well as α − β on slip complexity when
νo = 1. When β = 10−2 or α − β = 0, only large events,
rupturing almost along the whole fault, are generated. The
size of the largest event and the maximum final slip decrease
with increasing β. This indicates that when νo = 1, large β

is not appropriate for the generation of larger-sized events.
An increase in β (or b) results in an increase in the increasing
rate of the dynamic friction strength with velocity. The effect
is the same as that for decreasing 
 (or decreasing Dc) as
shown in Fig. 2. In addition, Figs. 5(c) and 5(d) also show
that no larger-sized events can be yielded when νo = 10−9.
As shown in Fig. 2(a) for νo = 10−9, the dynamic friction
strength obviously increases with velocity. Hence, after a
slider moves, the increasing dynamic friction force resists
the slider to slide further. Hence, small νo cannot result in
large events.
Figure 6 shows the spatial distributions of final slip for

sixty simulation events for the four values of 
, i.e., 10−4,
10−3, 10−2, and 10−1, when s = 4 and νo = 10−3. It is evi-
dent that large 
 is more capable of generating larger-sized
events than small 
, and the maximum final slip increases
with 
. From Fig. 2(e) with vo = 10−3 m/s (or νo = 10−3),
we can see that the friction strength and the increasing rate
of friction strength at low velocities generally increases with
decreasing Dc. This indicates that smaller Dc (or 
) is less
appropriate for generating larger-sized model events. This
leads to the phenomena observed in Fig. 6.
The stiffness ratio, s, would be a factor in influencing

slip complexity. The results shown in Fig. 7 display that
larger s is more appropriate for producing larger-sized events

than smaller s. Wang (1995) also stated that large s is more
capable of generating larger-sized events, thus leading to a
smaller b-value, than small s. The reasons are described as
below: The coil spring (with a stiffness of Kc) between two
sliders only transfers the mechanical energy from one slider
to the nearest ones. Thus, it does not take the elastic energy
in the system away. On the other hand, the leaf spring (with a
stiffness Kl) between a slider and the moving plate plays two
roles: One is to transfer the mechanical energy, exerted from
the moving plate, into the system through the KlVpt term,
and the other to remove the energy through the −Klxi term.
Hence, the stiffness ratio is also a parameter representing
the level of conservation of energy in the system. Larger s
indicates a higher level of conservation or a lower level of
dissipation of energy in the system. Hence, an increase in
the capability of yielding larger-sized events with s must be
reasonable.
Simulation results in Figs. 3–7 also show that the maxi-

mum final slip depends upon mainly the characteristic slip
distance and the reference velocity, but only slightly affected
by stiffness ratio, the pattern of the inhomogeneous distri-
bution of the breaking strengths, and the degree of inho-
mogeneities. The former two parameters directly affect the
dynamical rupture processes (see Fig. 2), but the latter three
parameters do not. Hence, the former two parameters are
more important on the size of the final slip than the latter
three.

5. Conclusions
The characteristic slip, Dc, and the reference velocity, vo,

of the slip law are two important parameters affecting dy-
namic friction strength. The velocity-weakening process is
produced when the reference velocity, vo, is smaller than
a critical value, voc (= 10−5 m/s in this study), while the
velocity-hardening process is yielded when vo > voc. The
changing rate of μ with sliding velocity depends on Dc.
Since the friction law itself could affect simulation results,

the following conclusions mainly hold for the velocity- and
state-dependent friction lawused in this study. Simulation re-
sults show that slip complexity depends on the heterogeneity
of the breaking strengths and nonlinear velocity- and state-
dependent friction. The former is more important than the
latter. When the distribution of the breaking strengths is
homogeneous, only large events, which rupture almost uni-
formly along the fault, are generated. When the distribution
of the breaking strengths is inhomogeneous, the friction law
and the stiffness ratio are also significant factors in affecting
slip complexity.
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