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Two types of co-accretion scenarios for the origin of the Moon
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Based on orbital calculations of Keplerian planetesimals incident on a planet with various initial orbital elements,
we develop a numerical model which describes the accretional and dynamical evolution of planet-satellite systems
in a swarm of planetesimals on heliocentric orbits with given spatial and velocity distributions. In the plane of
orbital radius of the satellite vs. satellite/planet mass ratio, a satellite with some initial value moves quickly toward
the balanced orbital radius, where accretion drag compensates with tidal repulsion, and then grows toward the
equilibrium mass ratio. Using the model, we propose two types of co-accretion scenarios for the origin of the Moon,
both of which satisfy the most fundamental dynamical constraints: the large angular momentum of the Earth-Moon
system and the large Moon/Earth mass ratio. In the first scenario the Moon starts from a small embryo and grows in
a swarm of planetesimals with low velocity dispersion and nonuniform spatial distribution, so that large spin angular
momentum is supplied to the planet. Such a situation would be realized when the Earth grows up rapidly before
dissipation of the solar nebula. Second one considers co-accretion after a giant impact during Earth accretion, which
produces enough angular momentum as large as that of the present Earth-Moon system as well as a lunar-sized
satellite. In this case, solar nebula would have already dissipated and random velocities of incident planetesimals
are rather high, so that the Earth grows slowly. We find that the total angular momentum decreases by 5-25% during

this co-accretion stage.

1. Introduction

The origin of the Moon has been controversial for many
years, but it has not been clarified yet (Boss and Peale, 1986;
Ida et al., 1997). The lunar formation scenario must satisfy
the following constraints: the large mass ratio of the Moon
(M = My/Mg = 1.23 x 1072, where My and Mg denote
the masses of the Moon and the Earth), the anomalously
large angular momentum of the Earth-Moon system (Lgy =
3.46 x 10*' g cm? s 1), the large obliquity of the Earth (0.409
rad), the small orbital eccentricity of the Earth-Moon system
around the Sun (0.017), and some geochemical constraints
especially the depletion of iron and volatile elements in the
bulk composition of the Moon. However, no hypotheses can
satisfy all of the constraints yet.

Classifying the lunar-formation hypotheses by the direct
origin of a lunar embryo, impact and capture are consider-
able. The giant-impact hypothesis is very popular (Benz et
al., 1986, 1987, 1989; Cameron and Benz, 1991; Cameron,
1997; Ida et al., 1997), which is mostly favorable from the
dynamical and geochemical constraints. In the capture hy-
potheses, capture by gas drag (Nakazawa et al., 1983), by
mutual tidal interactions (Singer and Bandermann, 1970),
and by collisions between planetesimals in the Hill sphere of
the Earth (Ruskol, 1960) have been proposed. The capture
hypotheses, however, have been considered not to be plausi-
ble from the geochemical constraints. Note that co-accretion
is not one that specifies the direct origin of the lunar em-
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bryo. Once a satellite formed around the planet by some
mechanism, it would grow together with the planet under ac-
cretion of planetesimals. The co-accretion stage inevitably
exists whether its period is long or short, so that one must
investigate not only the direct origin but also the dynamical
evolution of the co-accretion stage.

In the co-accretion stage, accumulating planetesimals sup-
ply mass and angular momentum to the planet and the satel-
lite. The spin angular momentum of the planet is then trans-
ferred to the orbital angular momentum of the satellite by
their tidal interaction. In the present paper, we propose a
new method for calculating accretional and dynamical evo-
lutions (i.e., semimajor axis of the satellite) of planet-satellite
systems in a swarm of planetesimals on heliocentric orbits
with given spatial and velocity distributions.

In their pioneer works, Harris and Kaula (1975) (here-
after HK75) and Harris (1978) calculated evolution of the
Moon/Earth mass ratio and the semimajor axis of the Moon
in a swarm of planetesimals using the particle-in-a-box ap-
proximation. HK75 showed that under the balance between
accretion drag and tidal repulsion, the semimajor axis of the
proto-Moon is kept about 10 times of proto-Earth radius in the
course of co-accretion. They also found a lunar progenitor
would grow from an initial mass of 10~* of the proto-Earth
to the present lunar mass while the Earth itself grows from
0.1 Mg to the present mass. The rapid growth of the Moon
relative to the Earth growth is because their adopted random
velocities are so large that the ratio of collisional cross sec-
tion of the Earth to that of the Moon is determined mainly
by the ratio of their geometrical cross sections.

Harris (1978) extended the model of HK75 including the
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effect of planetary-ring materials produced by mutual colli-
sions of planetesimals in the Hill sphere of the planet. How-
ever, these contributions are considered to be rather small,
since the mass of the planetary ring produced by such a mech-
anism is generally much smaller than the present lunar mass
(Stevenson et al., 1986). Hence, the evolution of mass and
angular momentum of the Earth-Moon system should be
determined mainly by direct collisions of planetesimals to
the Earth and the Moon. A fatal problem of the model of
HKY7S5 is that the final spin angular momentum of the Earth
supplied by planetesimals with large relative-random veloc-
ities as adopted by HK75 is much smaller than 1Lgy (Ida
and Nakazawa, 1990; Lissauer and Kary, 1991; Dones and
Tremaine, 1993a).

Two mechanisms have been proposed to explain the large
angular momentum of the Earth-Moon system. One is con-
tinuous accretion of planetesimals with spatially nonuniform
distributions (Ohtsuki and Ida, 1998; hereafter O198). When
a clear gap of planetesimals in the vicinity of a protoplanet is
formed due to the balance between gravitational scattering of
the protoplanet and gas drag of the solar nebula (Tanaka and
Ida, 1997, 1999), only planetesimals of lower Jacobi energies
can collide to the planet and supply net prograde angular mo-
mentum, which fairly explain the angular momentum of the
Earth-Moon system (OI98). The other invokes the giant im-
pact hypothesis. An oblique collision between a Mars-sized
protoplanet and the proto-Earth brings forth the rapid spin
of the proto-Earth as well as orbiting debris from which the
Moon is made. If the total mass of the proto-Earth and the
impactor is larger than say 0.5 Mg, formed system can have
angular momentum larger than 1 Lgy (Cameron and Canup,
1998a).

The plausible mechanism of angular momentum supple-
ment depends on a adopted formation scenario of the terres-
trial planets. The recent studies of planetary accretion reveal
that a small number of protoplanets with masses of 0.1 Mg are
formed in the terrestrial zone by runaway growth (Wetherill
and Stewart, 1993; Kokubo and Ida, 1996, 1998). However,
the subsequent stage of planetary formation is kept unclear.

One possible case is that each protoplanet is isolated from
other protoplanets and grows rapidly by sweeping up a large
number of planetesimals in the course of its radial migration
(Tanaka and Ida, 1999) due to tidal interaction between the
solar nebula and the protoplanet (e.g., Ward, 1997; and ref-
erences therein). In this case, protoplanets may have circular
orbits due to the dynamical friction exerted by the surround-
ing planetesimals (or by the solar nebula).

The other case is that each protoplanet grows rather slowly,
so that the solar nebula is disappeared before the completion
of the growth. Then the orbital crossings due to mutual
interactions may bring forth giant impacts. Recent N-body
simulations support the picture, but it is hard to explain the
present small orbital eccentricities of the terrestrial planets
(Chambers and Wetherill, 1998; Ito and Tanikawa, 1999;
Agnor et al., 1999).

Corresponding to the two pictures of planetary accretion,
we propose two types of co-accretion scenarios for the origin
of the Moon: co-accretion from small embryos in the solar
nebula and co-accretion after the later-stage giant impact in
vacuum.

In the former scenario, a small lunar embryo is assumed
to be formed by some mechanism such as capture due to
gas drag or an oblique impact when the mass of the proto-
Earth is much smaller than 1 Mg. We examine whether such
a small embryo can grow up to the Moon in the swarm of
planetesimals with nonuniform spatial distribution and lower
random velocities, both of which guarantee the large angular
momentum of the Earth-Moon system. It should be noted
that if the Moon gains most of the mass in the co-accretion, it
might be hard to explain the bulk composition of the Moon.
But it is not clear from the chemical constraints how much
the mass is allowed to accumulate onto the Moon in the co-
accretion. So, first we will clarify dynamical constraints
on the co-accretion process (period, velocity dispersion of
incident planetesimals, etc.) in the present paper.

The latter scenario invokes co-accretion after the Moon-
forming giant impact. The debris of the impact-generated
disk would accrete to a single satellite within a year (Ida et
al., 1997). Judging from the proportion of incorporation of
the disk into the satellite (< 0.4), the disk masses formed
by impacts with angular momentum 1Lgy; and total mass
1 Mg (e.g., Cameron and Benz, 1991) are found to be gen-
erally insufficient to account for the lunar mass. However,
Cameron and Canup (1998a, b) showed that impacts with an-
gular momentum about 1Lgy and total mass roughly %ME
can produce the disks massive enough to form the Moon.
Thus the giant impact during Earth accretion is plausible and
we should investigate co-accretion afterwards to clarify the
change of mass ratio of the Moon as well as angular mo-
mentum of the Earth-Moon system due to accretion of rather
high-speed planetesimals in vacuum.

In Section 2, we present methods of calculating accretion
rates of mass and angular momentum supplied to the planet
and the satellite from planetesimals with given spatial and
velocity distributions. The results are shown in Section 3
for wide ranges of parameters. In Section 4, we apply the
results to the two types of lunar formation scenarios and dis-
cuss the plausibility. In Section 5, we compare our results
for co-accretion after the giant impact with results of simula-
tions of satellite-forming impacts, and constrain the physical
parameter of the Moon-forming impact. In this section, we
also discuss the effects of imperfect coalescence between
the satellite and planetesimals, gas drag on the satellite, and
stochastic impacts. Finally, our summary is presented in
Section 6.

2. Methods
2.1 Basic equations and assumptions

We consider a planet-satellite system rotating around the
Sun in a swarm of planetesimals. In order to examine ac-
cretional and dynamical evolution of the planet-satellite sys-
tem, we numerically evaluate mass and planetocentric an-
gular momentum fluxes supplied to the satellite as well as
to the planet by numerous orbital calculations of incident
planetesimals with different orbital elements.

In order to calculate orbital motion of massless planetesi-
mals, we adopt the following assumptions:

A1l The instantaneous eccentricities and inclinations of plan-
etesimals are much smaller than unity.
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A2 The center of mass of the planet-satellite system has a
circular orbit around the Sun.

We adopt a rotating local Cartesian coordinate with the origin
atthe center of the mass of the planet-satellite system, x taken
along the radial direction, y along the azimuthal direction,
and z along the vertical direction. The equations of motion
of the satellite are given as (e.g., Nakazawa and Ida, 1988)

Xs = +2ys + 3x5 3)653 ,
|§s|
T . yS
Vs = —2X - , 1
S i M
. _ _ Zs
& “ Tl

where x; = (x5, Vs, Zs) 1S the position of the satellite relative
to the planet. The equations of motion of a planetesimal are
given by
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wherex = (x, y, z) isthe position of the planetesimal relative
to the planet. Further u is the mass ratio of the satellite given
by us = Ms/M,, where M, and M; are the masses of the
planet and the satellite, respectively. Equations (1) and (2)
are written in non-dimensional forms with time normalized
by the inverse of the Keplerian angular velocity lel of the
center of mass of the planet-satellite system and distance by
the Hill radius Ry defined by

M.+ M3
g) : 3)

RHzApthp( o
*

where Aj is the heliocentric distance of the center of mass.
Here we also introduced the reduced Hill radius 2 = Ry /A,.

When the distance between the planet-satellite system and
the planetesimal is large enough, the analytic solution of
Eq. (2) reduces to simple Keplerian motion. We adopt the
following scaled orbital elements:

b= P .= f i=1 4)
Ry

where A, e*, and i* are, respectively, the semimajor axis,
eccentricity, and inclination of the planetesimal in ordinary
use.

To simplify the problem, we further assume that

A3 The orbital plane of the satellite is coplanar with that of
the planet-satellite system around the Sun.

A4 The planetocentric orbit of the satellite is circular and
prograde.

Then the free orbital elements of the satellite are only two: the
planetocentric distance of the satellite a5 (= As/ Ry, where
A denotes the dimensional distance) and the initial phase
angle ¢y, which determines the position of the satellite.

We consider that a planetesimal collides with the planet or
the satellite if the relative distances become smaller than each
physical radius. The physical radius of the planet normalized
by Ry is given by

0 -3 /4 -1
rp = 0.005 [ —"— z .0
3.0gcm™3 1 AU

where p, denotes the density of the planet. In the follow-
ing orbital calculations, we adopt the radius of the planet
rp to be 0.005. The radius of the satellite is given by ry =
(op/ 05)1/3 (My/ Mp)l/ } rp, Where ps denotes the density of
the satellite.

Morishima and Watanabe (1996) obtained the growth rates
of the planet and the satellite by numerical integrations of
Eq. (2) in the case for e = i = 0. They fully took into
account the gravity of the satellite since mass ratios of the
satellite were so large (0.05 < us < 1) in their calculations.
In general, there are 8 parameters needed for uniquely spec-
ifying the orbit of a planetesimal (b, e, i, 7, w, as, rs, and g;
where 7 and w are the longitude of periheiron and the lon-
gitude of ascending node of planetesimals, respectively). In
order to reduce the number of parameters, we here exam-
ine the condition that the satellite gravity makes negligible
contribution to the orbital motion of planetesimals:

A5 The relative collision velocities of planetesimals to the
satellite are much larger than the escape velocity of the
satellite vese s = (645/75)'/? (= (2GM;s/R)'/? | RuSx,
where G is the gravity constant).

Then neglecting the relative velocities of planetesimals with
respect to the heliocentric orbit of the planet, we obtain the
sufficient condition for neglecting the satellite gravity as

a; L - —. (6)
2 ps

For a lunar-sized satellite (is >~ 0.012, ¢ >~ 1.2 x 1073), we
obtain a; < 0.15 =~ 30r,. In most of the following we con-
sider smaller us or as, so that we can safely neglect the effect
of satellite gravity in calculating planetesimal orbits. Thus,
we put s = 01in Eq. (2) in the following orbital calculations.
Even for the cases with larger satellites, we can fairly esti-
mate the growth rate of the satellite by simply multiplying
the gravitational focusing factor o = 1 + (vVesc,s/ vr’s)2 of the
satellite, where v; 5 denotes the averaged relative velocity of
planetesimals to the satellite.

The collision rate Py(e, i) of planetesimals to the planet
is given, from orbital calculations, by (Ida and Nakazawa,
1989)

Poeci) = [ S1bloa)panse.iob. v ) b, (1)
where pcolp is unity for collision orbits and zero otherwise,
and oq(b) is the nondimensional surface density of plan-
etesimals at b. Here we neglect the effect of the satel-
lite as a hindrance. The mean specific spin angular mo-
mentum supplied to the planet normalized by the specific
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Schematic illustration of oblique penetration of a planetesimal through an ith planetocentric annulus with radius a; and width Aa. Here 63 is

the angle between relative-velocity vector of the planetesimal to the satellite and normal direction of the satellite’s orbital plane, and r; is radius of the

satellite.

orbital angular momentum of a grazing satellite (3rp)1/2

[= (GMpRp)l/z/(RfIQK)] is given by
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In the above £, is the z-component of the specific planetocen-
tric angular momentum given by a colliding planetesimal:

C(e,i,b,T,0) =r¢+r2, ©)

where we use a planetocentric cylindrical coordinate for con-
venient sake; the position and the velocity of the planetesimal
at the collision are given by (r, ¢, z) and (7, ¢, 2), respec-
tively.
2.2 Evaluation of the accretion rate of mass and specific
angular momentum supplied to the satellite

For a satellite at planetocentric distance ag, the collision
rate Ps(e, i, as, rs) and the mean specific planetocentric angu-
lar momentum Js(e, i, as) normalized by the satellite orbital
angular momentum £, [= (3as)'/?] are, respectively, given
by

. 3 .
Py(e, i, as, rs):/E|b|0d(b)pcol.s(ealyb, T, , ds, T's, Ps)
dedtdw

db, 10
2n)? (10)
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Js(e,i, a5) = <i> =3 / Elblad(b)i(e, i,b, 7, 0)
'pCOI,S(e5iab’ T’ wyaS5rS9 (pS)
dodtd
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where pcol s 18 unity for collision orbits to the satellite and
zero otherwise. It should be noted that if J; > 1, the specific
angular momentum of the satellite increases and its orbit
expands.

Since we neglect satellite gravity, the orbits of planetesi-
mals are not affected by the position of the satellite, so that

only one orbital calculation is needed for each planetesimal
of given orbital elements. Further we safely expect the prin-
ciple of equal a priori probabilities in the orbital phase of
the satellite. Then, instead of counting direct collisions to
each satellite, we merely count number of penetrating orbits
through concentric annuli with the center at the planet and
width Aa (see Fig. 1). When a planetesimal with given or-
bital elements penetrates the ith annulus, the collision prob-
ability between the satellite therein and the planetesimal is
given by the ratio of the projection area of the satellite body
to the total area of the annulus:

pcol,3D(€’ i’ b5 T7 w7 ai7 rs)
1

2mwa; Aa
ai+Aa/2 p2m
: / / Peols(€, 1, b, T, w, as, s, ps)asdpsdas
ai—Aa/2 0

2
r _ '
2‘2?_ Ay (for penetrating orbits),

(12)

0 (otherwise),

where a; is the mean radius of the ith annulus. In the above,
g3 denotes the enlargement factor for oblique penetration

given by
. ( 1 3611)
g~min| ——,— ).
cosb; rg

Here 6; is the angle between the incident direction of the
planetesimal in the comoving system for the satellite and
normal direction of the orbital plane of the satellite given by

(13)

Vg —ro)? +i2 422
z

tan 65 : (14)

where w; denotes the angular velocity of the satellite given

by
GMN\ 12 3\ 12
wm(5) a0 (3)"
A} a;

The upper limit of g3 in Eq. (13) is derived in Appendix A.
We find that 1/ cos 65 scarcely exceeds the upper limit 3a;/rs,
when i R 0.01, so that g3 is almost independent of ;. Thus
once we obtain the collision rate for a certain physical radius
of the satellite as a standard case, we can estimate the value

(15)
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Fig. 2. Same as Fig. 1 but for the two-dimensional case (i = 0). Here 6, is the angle between relative-velocity vector of the planetesimal to the satellite

and direction of the satellite’s orbital motion.

for any other radius by multiplying the square of the ratio of
the radius to the standard value except extremely low i cases.

We find that the results have little dependence on Aa if Aa
is smaller than 0.01. So we fix Aa = 0.01 in the following.

In order to know the behavior of P, in the cases of low
inclination case, we also calculate P and Js for purely two-
dimensional cases. When a planetesimal orbit crosses the
satellite orbit, the collision probability is given by the ratio
of the satellite diameter to the length of the orbital circum-
ference (see Fig. 2):

pcol,2D(e» i=0,b,7,as,715)

2 d
. %
2/ Peols(e, i =0,b, T, ag, 1, g5) —
0 27T

(16)

oF, . .
_ { f’;—a: (for crossing orbits),

0  (otherwise).

Here g, is the enlargement factor for oblique crossing given

by
. 1 as
g=min|—,4/—|,
sin 6 2r

where 60, is the angle between the relative-velocity vector of
the planetesimal to the satellite and the velocity vector of the
satellite given by

(17

as@ — dss

cosfp =
\/(asﬁb - asws)z + 72

. (18)

The upper limit of g, in Eq. (17) can be derived, considering
a parabolic tangential orbit with the satellite orbit. We find
that orbits with 1/sin@, > 4./as/2r, are very rare, so that
&> 1s almost independent of 7.

In order to obtain P and Js, we numerically integrate
Eq. (2) using a fourth-order time-step variable Runge-Kutta
method. An orbital integration of a planetesimal with given
orbital elements is continued until the planetesimal collides
with the planet or goes far away from the planet-satellite
system.

According to OI98, we modeled spatial distributions of
planetesimals as follows. For an uniform case, nondimen-
sional surface number density o4(b) is unity for all 5. On the
other hand, for nonuniform cases, planetesimals only exist in

the range of E < En.x, Where E denotes the Jacobi integral
given by (e.g., Nakazawa and Ida, 1988)

1 3 9
E=—(2+i%)—2p 42,

2 (e” +i°) g + 3
and E,,x denotes the maximum value of E. Thus o4(b) for
nonuniform cases is given by
0 for [b| < [4(e2 +i2)/3 + 12 — 8Emax/3]"%,
1 for [b] > [4(e? +i2)/3 + 12 — 8Emay /3]

(19)

We perform calculations for the uniform case (OI98 calls
it the case of En.x = 00) and two nonuniform cases with
Emax = 1.5 and 2.0. In the case of Eqx ~ 1.5, the final spin
angular momentum of the planet was found to be as large
as the present total angular momentum of the Earth-Moon
system (OI98). We assume that planetesimals are distributed
uniformly in the phase space (7, w) for all the cases.

oq(b) =

3. Results
3.1 Collision rate of planetesimals to the satellite

Using the methods described in Subsection 2.2, we nu-
merically calculate the collision rate of planetesimals to the
satellite from the data of more than 10* orbits penetrating
each annulus of Fig. 1. Though we only show the results for
the case of ry = 0.001, which corresponds to ;s = 0.01 with
Op = Ps, One can easily obtain P for an arbitrary radius by
multiplying the ratio of geometrical cross sections.

Using Eq. (10) we first examine the collision rate of the
satellite in a planetesimal disk with uniform spatial distri-
bution. Figure 3 shows Py as a function of as for various
values of e with fixing the ratio i /e to be 0.5. We find the
following properties: (1) in all cases P; decrease with the
increase of as and e, and the simple approximate relation
P oca;isvalid for 1 <e < 8;(2) Pi(e =i = 0) is almost
independent of a5 for a; < 0.05 and is approximated as a
power law Pj(e =i = 0) o< ag ! for larger as, and similar
as-dependencies of P can be seen for e < 1.0.

Property (1) is explained by using a semi-analytical form
of collision rate P;,p, which is practically valid for e,i =
1. This approximate form is basically after HK75 but the
numerical factor is determined by the 2-body approximation
(e.g., Greenzweig and Lissauer, 1990):
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Fig. 3. Collision rate versus planetocentric distance of the satellite

(ms = 0.01) in the case of uniform spatial distribution of planetesimals
with various e (0 < e < 8) with fixing i/e = 0.5. The solid curves
denote numerical solutions and the dashed curves in the case of e > 1.0
denote analytic solutions given by Eq. (20).

2
Psop(e, i, as, rs) = (%) [E(k)K (k)] *7r?

6 Vrp
. (1 + asv? ) 2
S I,p

where vy, is the random velocity of planetesimals given by

(20)

e2y)

E(k)7'?
Urp = ez+i2|: ()] .

K(k)

In the above K (k) and E(k) are the complete elliptic integral
of the first and second kind, respectively, with

3e2
k= |————. 22
4+ i) 22)

Considering the case that the gravitational energy of the
planet 3/ag is much larger than the kinetic energy of the
planetesimal vip /2, we obtain Py o< a;!. On the contrary,
for larger e and a5, P; becomes independent of a;. Compar-
ing P, with Ps, we find P coincides well with P ,p for
Vet +i? = 4.0.

Property (2) can be interpreted from properties of retro-
grade orbits of planetesimals around the planet. In the case of
e =i = 0, we find that there are no retrograde orbits around
the planet (i.e., orbits with ¢ < 0 at the time of collisions)
with rpin = 0.06, where rpp;, denotes the minimum distance
between a planetesimal and the planet, so that as-dependency
of Ps(e = i = 0) changes near as ~ 0.06; the detail is ex-
plained in Appendix B using the b-dependency of ryi,. In
the cases of small e (< 1.0), we also find that each kink of
Ps(e, i) corresponds to the maximum ry,, of all retrograde
orbits.

Next, we examine the collision rate of the satellite in plan-
etesimal disks with nonuniform spatial distributions. With
the decrease of Engx, both Ps and P, decrease because of

107t ¢ T — T

uniform

N /f;naﬁ 20

1072 |

PS/Pp
ty
z
ol
™

10-8 |

N ; s 9l N " L
0.05 0.1 0.2 0.5

104 . :
0.01 0.02

ds

Fig. 4. Ratio of collision rate of the satellite (s = 0.01) to that of the planet
for two spatially nonuniform cases (Emax = 1.5 and 2.0) and a uniform
case with fixing all the cases as (e, i) = (2, 1). The dashed curve denotes
analytic solution Ps/Pp = rs2 /(rpas) (see Eq. (23)).

broadening of the gap of planetesimals in the vicinity of the
planet. For example, the values of Ps(e = 2,i = 1, a,) with
Emax = 1.5 are reduced by a factor of about 20 from the
values of Ps(e = 2,i = 1, a,) for the uniform case. Hence,
Eq. (20) is no longer valid for the nonuniform disk. We are
rather interested in the ratio P/ P, than each absolute value,
since the ratio determines the evolution of us. Figure 4 shows
P/ P, as a function of a for Ep,x = 1.5 and 2.0, and the
uniform case with fixing all the cases as (e, i) = (2.0, 1.0);
we find that P/ P, is almost independent of Ey. In fact,
Ps/ P, is well approximated by

(Ps> <rs>2 (Emax_g)/2+3/as
Py /g Tp (Emax_9)/2+3/rp’
for /€2 +i2 Z 2.0. Since the kinetic energy of random
motion of planetesimals, (En.x — 9)/2, can be negligible
compared with the planetary potential energy 3 /as in the case
of Ve +i2 < 4.0, P/ P, is almost independent of Epy.
In this case, Eq. (23) is simply described as (Ps/Py)op =
rs2 /(rpas), which is also shown as a dotted line in Fig. 4.
3.2 Specific angular momentum of planetesimals sup-
plied to the satellite

We here show the angular momentum supplied by plan-
etesimals to the satellite. Neglecting planetary growth and
tidal torque, we can say that as decreases with satellite growth
when the specific angular momentum of the planetesimals Jg
is smaller than unity. For the sake of comparison with J;, we
also calculate mean specific angular momentum supplied to

a fictitious circumplanetary disk with radius a after Herbert
et al. (1986), which is given by

(23)

Jo(e, i, as)
3 £, dtd
/EW%wfwmhLMmmwmhum%)tw

on ) db

3 dtdw ’
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Fig. 5. Specific angular momentums supplied to the satellite Js(e, i) and
to a planetocentric disk Jy(e, i) as functions of planetocentric distance
as for the case of uniform spatial distribution of planetesimals. Analytic
solution Js yk given by Eq. (25) in the case of (e,i) = (2, 1) is also
shown.

where pol.q 1 unity for crossing (i = 0) or penetrating (i #
0) orbits and zero otherwise. It should be noted that putting
g3 = l(org, = 1)inEq.(12) (orin Eq. (16)) Eq. (11) reduces
to Eq. (24). This means that the effect of the orbital motion
of the satellite is not included in the value of Jy, whereas it is
taken into account in the value of J;.

We first calculate J; and Jy for many pairs of (e, i) for a
planetesimal disk with uniform spatial distribution. Figure 5
shows Js and Jy as functions of ag for the cases of (e, i) =
(0,0) and (e, i) = (2, 1), respectively. For (e,i) = (0, 0),
both Jy and J; are negative for all a5, which means that there
exist more retrograde planetesimals than prograde ones. Be-
haviors of J; and J, are similar and both have the minimum
values near a; ~ 0.06. For larger a, J; and Jj increase with
as. This is because number of collisional planetesimals with
prograde orbits around the planet increases with as, whereas
number of retrograde orbits is kept constant. In Appendix B,
we explain the detailed behavior of J;(e = i = 0) from
rmin(P) like that of Ps(e =i = 0).

For (e,i) = (2,1), both Js; and Jy are constant when
as < 0.30, whereas they decrease with increasing as for
larger as. In such higher random-velocity cases incident of
planetesimals is almost isotropic in the frame of reference of
the planet, so that J; is almost 0. However, J; is negative even
in these cases, since in the frame of reference of the satel-
lite, incident of planetesimals is not isotropic due to orbital
motion of the satellite; considering the relative azimuthal
velocity of colliding planetesimals (vr, = |r¢ — rws|), a ret-
rograde planetesimal with ¢ (< 0) has larger vy, than that
of prograde one with same |¢|, so that the enlargement fac-
tor (g3 in Eq. (13)) of collision probability for a retrograde
planetesimal (it has negative £,) is larger than that for the
prograde counterpart (see Eq. (14)).

When incident of planetesimals is isotropic in the frame
of reference of the planet, Js is analytically obtained from
Egs. (9) and (12) of HK75:

T

0.4 hmaxf 15 _ .

0.2} T

_—— Emax= 2.0

— 0.0 .

—0.2 uniform 7

-0.4 | -
o

0.01 0.02 0.05 0.1 0.2 0.5

Qs

Fig. 6. Specific angular momentum supplied to the satellite Js(e, i) for
the case of nonuniform spatial distribution (Em,x = 1.5 and 2.0) of
planetesimals with (e, i) = (2,1). For comparison, the uniform case
with the same (e, i) is also shown.

—1
1 27 7

Jsik=—=|1+—— |1+ , (25)
3 Sasvﬁp asvﬁp

which is also shown as a long-dashed curve in Fig. 5. We find
that Js gk is almost independent of a5 and v, and has a little
deviation from the numerical results of J;. The deviation
becomes smaller for larger e if we focus on small a5 (< 0.1).

It should be noted that Jy(e,i) given in Eq. (8) and
Jo(e, i, as) are the same quantity for the two-dimensional
case. The previous studies showed that J, is about —0.1 for
e = i = 0 (Ida and Nakazawa, 1990; Lissauer and Kary,
1991; Dones and Tremaine, 1993a; OI98), which well coin-
cides with the value of Jy with a; ~ 0.01. We also find that
Jo is almost zero for e R 2.0, which is consistent with the
previous studies of Jp,.

Next, we show the results of J; for nonuniform disks.
Figure 6 shows Js as a function of a5 for two nonuniform
cases with E,, = 1.5 and 2.0, and an uniform case. All of
the cases, we fix (e, i) = (2, 1). In the nonuniform cases, J;
becomes positive for small E},,x, which means that there exist
more prograde planetesimals than retrograde ones. Hence,
in this case, accretion of planetesimals boosts up the angular
momentum of the planet-satellite system. However, Js never
exceeds unity, so that a inevitably decreases with satellite
growth. These results for small E,,, are consistent with the
case of planetary spin; the accretion of planetesimals with
small E,,x accounts for the rapid prograde spin of the planet,
but the outcoming spin rate is much smaller than the value
required for rotational instability (OI98).

3.3 Evolution of planet-satellite systems

We now investigate the accretional and dynamical evolu-
tion of planet-satellite systems. We assume that coalescence
probability between the satellite and planetesimals is always
unity. The effect of incomplete coalescence will be discussed
in Subsection 5.2.
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The evolution of the mass ratio u can be expressed by

1d 1 P,
Ldus _ < s 1) ’ 26)
Ms dt Tarow,p Pp Ms
where Tgrow,p 15 the growth time of the planet given by
1 dM,\""  [P,RZZ4\ "
Tgrow,p = <__P> = <i> ) (27)
M, dt M,

Here X, is the surface density of planetesimals.
The evolution of the semimajor axis as can be expressed
symbolically by
1 das 1 1 1

=—— -—, 28
as dt Tace * 28)

Ttidal Tgas

where Tace, Tidal, and Tges are the time scales of accretion
drag, tidal repulsion, and gas drag, respectively. To simplify
the problem we here neglect the effect of gas drag (which
will be discussed in Subsection 5.3). The effect of accretion
drag is given by

1 1 |:2(1 — Jo) P 4i|
R + =1,
Py s 3

29)

Tacc Tarow,p

where first and second terms originate from accretion of plan-
etesimals to the satellite and to the planet, respectively.

The satellite affects the repulsive force from the planet by
tidal interaction when qs is larger than the so-called synchro-
nized radius rgyn = (3 /a)g)l/ 3 where wyp is the normalized
spin angular velocity of the planet. The effect of tidal repul-
sion is given by (e.g., Mignard, 1979)

1 ko rS//Ls
. =33 13/2°
Ttidal Op as

(30)

where k; and Q, are, respectively, the Love number of the
second degree and the quality factor of the planet. Here &, for
a homogeneous and incompressible planet can be estimated
by (Love, 1934)

€2))

where 4 is the rigidity of the planet normalized by p, R22%,
RE and kg are the radius and the Love number of the present
Earth, respectively, and m, = M,/Mg. The ratio of the two
time scales Tyec/Tiidal 1S given by

Tacc — 3\/§frglj/smp [2(1 - JS)PS 4

-1
+ = (32)
Tiidal al®? Py s 3 }

where f denotes the tidal parameter defined by

x ko
f= — Tgrow,E>»
Op

1/3

(33)

With Terow.E = Tarow,p/p ' . Note that with increasing f s
tidal repulsion becomes dominant in comparison with
accretion drag. Taking the present values of parameters
kg = 0.3 and Q, = 10, and the standard value Tgrow,r =

(a)

2162

«~— Moon

5-10°3

2.103

Ko

==/« £ Moon

Ms

Fig. 7. Evolution of orbital radius a5 and mass ratio s of the satellite in the
as—ts plane in the swarm of planetesimals with (e, i) = (2, 1). (a) Tidal
parameter f = 0.21, which corresponds to a spatially uniform disk. (b)
f = 3.9, which corresponds to a nonuniform disk with Ey,,x = 1.5. Each
vector component is proportional to inverse of corresponding evolutional
time scale (but truncated by an upper limit). The solid curves show the
stationary mass ratio where dus/dt = 0. The dashed curves show the
balanced semimajor axis where das/dt = 0. The satellite finally evolves
into the equilibrium points where ds/dt = das/dt = 0.

Tarow ES2¢ (1 AU) = 10° years, we obtain f = fo = 1.9 x
10°. We re-normalize tidal parameter f by fo as

f=

— (22 (2) | (%) PR
0.03 o 6 x 1073
where X, is the surface density of planetesimals for the
minimum-mass solar nebula model at 1 AU (Hayashi et al.,
1985).
Here we assume that the planet spins so rapidly that exert-

ing enough tidal repulsion. Figure 7 shows change rates of a;
and 15 inthe plane of as vs. us withmp, = 1.0, (e, i) = (2, 1),

;“4\1
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and p, = ps. Further, we choose two types of spatial dis-
tributions of planetesimals, a uniform one (Fig. 7(a)) and a
nonuniform one (Fig. 7(b)). The spatial distribution of plan-
etesimals affects the normalized tidal parameter f through
Py; we find that Fig. 7(a) corresponds to the case of f = 0.21
and Fig. 7(b) to f = 3.9. The solid curves show the sta-
tionary mass ratio where dus/dt = 0. If us is smaller
than the stationary mass ratio, s increases with growth, be-
cause smaller satellites have larger cross sections per mass.
The dashed curves show the balanced semimajor axis where
dag/dt = 0 (in other words, Taec/Tidgal = 1). The balanced
semimajor axis for the nonuniform case is larger than that for
the uniform case, because of the effects of larger f (which
comes from smaller P,) and larger J; (see Fig. 6). Since the
evolution time scale of a; is generally much shorter than that
of us, as evolves toward the balanced semimajor axis quickly.
Then, with keeping as to be the balanced semimajor axis, s
evolves toward the stationary mass ratio. We denote the final
locus the equilibrium point, where dag/dt = dus/dt = 0,
and its mass ratio s eq.

Note that (4, ¢q 1S the maximum mass ratio of the satellite if
the satellite grows from a smaller embryo. We find that p ¢q
for the nonuniform case is smaller than that for the uniform
case and both are smaller than ;. However, one should note
that we show here the case with (e, i) = (2, 1) as a nominal
example. In Section 4 we consider more realistic (e, i) and
examine whether ps oq exceeds .

In the case of a smaller planetary mass (m, < 1.0), the
balanced radius becomes smaller (see Eq. (32)) and piseq
becomes larger in comparison with the case of m, = 1.0.
Also, the value of f would not be a constant during the ac-
cretion. Thus, jisqq changes with growth, so that the final
mass ratio ps will deviate from fu5qq. Let us simply esti-
mate how much the final us would deviate from pi5 oq, using
Eq. (26). For the case that p1s < [4s eq, the time scale of the
mass-ratio evolution (i.e., us(dus/dt)™") is much shorter
than Tgrow,p. Equating pus(d s /dt) ™" with Tgrow,p in Eq. (26),
we find that within the time of Tgow,p, s Will be converge
Is,eq Within a factor 2 in spite of the initial value of us. Thus,
we can roughly estimate the final mass ratios of long-lasting
co-accretion cases from the mass ratio of the equilibrium
point (15 oq (see Subsection 4.1).

On the other hand, if m, becomes unity and stop growing
before j1 getting closer to (g cq, the value of i, at this point
should be frozen as the final value. Thus, when discussing the
co-accretion after late-stage formation of the satellite (such
as the giant-impact hypothesis), we should directly deal with
time evolution of s and a, instead of using only s cq (see
Subsection 4.2).

4. Two Types of Co-Accretion Scenarios for Lunar
Origin

In Subsection 3.3 we assumed that the planet spins so
rapidly that tidal repulsion prevents the satellite from spi-
raling into the planet. We here demonstrate two types of
promising situations which satisfy the rapid-spin condition
and would bring forth the present Earth-Moon system. One is
a long-lasting co-accretion case, in which an initial satellite
embryo much smaller than the present Moon successively
grew in a swarm of low-Jacobi-energy planetesimals in the

solar nebula, and the other is an additional co-accretion case,
in which a satellite as large as the present Moon was formed
by a giant impact in the later stage, but not in the final stage,
of Earth formation.

In both cases, the large angular momentum of the Earth-
Moon system Lgy as well as the large relative mass of the
Moon pup can be accounted for within possible ranges of ini-
tial masses and angular momentum. These ranges of initial
values are important for us to constrain the conditions of pos-
sible Moon-forming events from the dynamical viewpoint.

It should be noted that if the Moon gained most of the
mass during co-accretion, it might be hard to explain the
bulk composition of the Moon, which is different from that
of the Earth (e.g., Wood, 1986). It is a severe obstacle es-
pecially for a long-lasting co-accretion case. But it is not
clear from the geochemical constraints how much the mass
is allowed to accumulate onto the Moon during co-accretion.
In order to overcome the geochemical constraints, one must
first clarify a picture of accretional and dynamical evolution
of co-accretion. So we here confine our discussion only to
the dynamical constraints.

4.1 Co-accretion from small embryos

In this scenario, we consider that large spin angular mo-
mentum of the planet was supplied by a swarm of low-Jacobi-
energy planetesimals with nonuniform spatial distribution.
0OI98 showed that the final planetary spin rate by accre-
tion of planetesimals with nonuniform spatial distribution of
Emax < 1.5 is large enough to explain 1Lgy;, where Ep,y is
the maximum Jacobi integral of planetesimals (see Eq. (19)).
Such lower values of the maximum Jacobi integral as well
as lower random velocities is expected when the spatial and
velocity distributions of the planetesimals are determined
mainly by the balance between gravitational scattering by
the planet and gas drag by the solar nebula.

We examine the case that a small satellite embryo evolves
under the swarm of planetesimals with small Ej,. In Sub-
section 3.3, we found that the relative mass of the satel-
lite evolves toward the equilibrium mass ratio ftscq. In-
serting the relation dus/dt = das/dt = 0 into Egs. (26)
and (28) and using the relation Ps/P, = r2a/(rpas) (see
Eq. (23)) (here we multiply the focusing factor of the satel-
littor = 14 (Vesc.s/ vr,s)z, which is not negligible for a lunar-
sized satellite), we can estimate the equilibrium mass ratio
as

6/19 N
e = 2(1 — J) +4/3 (&) 26/19 (r a)39/19
> 3\/§f~mpr}f Op P

=33 x 107 /P o1, (35)

where we adopt appropriate values of parameters: J; = 0.25
(the averaged value for the case of (e, i) = (2, 1) and Enax =
1.5; see Fig. 6), r, = 0.004, ps/pp = 0.6 (the present values
for the Earth-Moon system), and @ = 1.2 (for the case of
Ms.eq = Mm)- Eq. (35) suggests that with decreasing f, the
larger satellite is produced under the benefit of gravitational
focusing by the planet, since the semimajor axis of the satel-
lite is kept smaller. Choosing m, = 1.0 and f = 3.9, we
find that pis oq is about one tenth of y (see Fig. 7b). Since
f depends on the uncertain values of the parameters P,, X4,
and Q, [f o (PyXyq Qp)’l], we here evaluate the proba-
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ble minimum value of f at the later stage of Earth formation
(mp ~ 1.0) in order to check the possibility that s .q reaches
M-

We first evaluate maximum value of the collision rate P,,
which is a function of mean eccentricity e, inclination i, and
maximum Jacobi integral E,x of planetesimals. In the later
stage of planetary accretion, small fragments produced by
mutual collisions of planetesimals are expected to make a
main contribution to the planetary growth in the solar nebula
(Wetherill and Stewart, 1993). The eccentricities and incli-
nations of these small fragments are estimated as ¢ ~ 3 and
i < e under the balance between gravitational scattering
by the proto-Earth and gas drag of the solar nebula (OI98).
The condition that the final angular momentum of the Earth-
Moon system reaches 1Lgy restricts Eya.x must be smaller
than 1.5. Under these values of e, i, and E,,x, we obtain the
maximum value of P, to be about 0.01 (OI98). It should be
noted that such a large value of P, can be acheived by the
effect of small i prevailing against that of small E,x.

The maximum value of surface density ¥4 of solid material
in the circumsolar disk can be somewhat larger than that of
the minimum-mass model 3 (Hayashi et al., 1985), whereas
in the later stage of Earth formation it would decrease from
the initial value. So we choose X to be the maximum value
of the surface density at the later stage of Earth formation.

We next estimate the maximum value of plausible Q. The
value for the present Earth is O, ~ 12 (e.g., Lambeck, 1980;
Burns, 1986); the main contribution is due to oceanic tides.
Whereas Q, would be 370 if solid tides only (Ray et al.,
1996). The value of Q,, for a planet with the surface ocean is
expected to increase with the depth of the ocean (Goldreich
and Soter, 1966; Sagan and Dermott, 1982). In the course of
planetary accretion we must consider the effect of the surface
magma ocean, which would be formed when the mass of the
proto-Earth exceeds 0.1 Mg (e.g., Kaula, 1979; Sasaki and
Nakazawa, 1986). At the later stage of the Earth formation,
the magma ocean would be deep and fully melted due to
the strong green-house effect of the protoatmosphere (Abe
and Matsui, 1985, 1986; Sasaki and Nakazawa, 1990) and
the large values of estimated P, (i.e., Torow, e < 100 years).
Hence, we expect that contribution of the magma ocean to
tidal dissipation of the proto-Earth is rather small, so that we
here adopt the maximum value of Q, to be 400.

It should be noted that the maximum values of the parame-
ters given above were consistently realized if the Earth grew
rapidly. Re-normalizing each parameter by the correspond-
ing maximum value, we can rewrite Eq. (34) as

0, 1! P, —1

f=0015 <4oo> (20> <1 X 10—2) - (9
Figure 8 shows the equilibrium points on the s vs. a; plane
for f = 0.015 and 1.0 with m, = 1.0, J; = 0.25, and
os/pp = 0.6. Note that s .q exceeds py in the case of
f = 0.015. In fact, pgeq ~ um when f ~ 0.03 (see
Eq. (39)).

This means that, as long as from the dynamical viewpoint,
the Moon could be grown up from a small embryo, if the
following conditions were satisfied for the long-lasting co-
accretion:

2-10-2 — 7
f=0015 { /

‘ 5 Moon
1-1072 | £\ / A

5.10°3

Fig. 8. Tidal-parameter ( f) dependency of the mass ratio at the equilibrium
point fseq in the as—us plane. In the case of the minimum value of f
(= 0.015, see Eq. (37)), is,eq has the maximum value.

(1) The Earth and the Moon grew up in the solar nebula,
so that the growth time of the Earth is short enough
(Tarow.E < 10° years) and that large angular momentum
was supplied by planetesimals with small E .

(2) Owing to fully-melted and deep magma ocean through
accretion, O, of the proto-Earth was kept large (~ 400).

(3) The satellite avoided from spiraling into the planet owing
to gas drag by the solar nebula (see Subsection 5.3).

These are rather strong dynamical constraints, so that we
should examine whether these constraints are really satisfied
in the course of Earth accretion. In the future work we will be
able to clarify the possibility of realization of the long-lasting
co-accretion from these dynamical constraints, besides from
the frequentry-discussed geochemical constraints.

Until now, we focused on the final mass ratio of the satel-
lite. Here, we estimate the minimum mass of an initial satel-
lite embryo from which the Moon could grow up succes-
sively. As shown in Section 3, the embryo with small mass
ratio grows around the balanced radius, which increases with
the mass ratio. We can estimate the minimum mass by equat-
ing the balanced radius with the Roche radius rg ~ 2.5r, ~
0.01, within which planetary tides prevent the embryo from
growing. Note that the synchronized radius is expected to be
smaller than rg, since planetary rotation is rapid enough due
to accumlation of planetesimals with small Ep,, (~ 1.5).
The minimum mass M min of the initial embryo is given
approximately from Egs. (23), (29), and (30) as

f —3/4
Mg min = 6.3 x 1073 My [ ——
s x M <0.015>

() ()"

0.1 2.5rp '
Note that dependency of Mg ymin on m, is rather small, so
that we can fairly constrain the minimum mass of the lunar

embryo. Though HK75 obtained a similar expression of
M min, their estimated mass of the initial embryo is much

(37
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smaller than ours. This is because their adopted random
velocity of planetesimals was larger (i.e., smaller P,) and
0, was smaller than ours.

4.2 Co-accretion after the Moon-forming giant impact

Recently, the Moon-forming giant impact is considered to
have occurred during Earth accretion (Cameron and Canup,
1998a, b; Canup et al., 2001). In this scenario, the large spin
angular momentum as well as a lunar-sized satellite were
produced by the giant impact itself. Then, the mass ratio and
the angular momentum of the Earth-Moon system would be
changed through co-accretion thereafter. After the dissipa-
tion of the solar nebular, random velocities of planetesimals
were determined by the balance between gravitational scat-
tering by the planet and dissipation due to mutual inelastic
collisions. The balanced values of the random velocities
become larger than those in gaseous environment, so that
net angular momentum brought by planetesimals was almost
zero and the planet would spin down in the post giant-impact
stage.

In order to confine dynamical parameters (e.g., mass ratio,
angular momentum) immediately after the giant impact, we
go back evolution of the Earth-Moon system from the final
stage of Earth formation to the past. The changes of s and
as can be expressed by Egs. (26) and (28), respectively, and
the change of w, by

ldo, 5 1
a)pdt_

1 us/3as 1

2 Irg Wp  Ttidal

, (38
3 Tarow,p )

where [ is the normalized moment of inertia of the planet
(we here adopt I = 0.33, the value for the present Earth).
In Eq. (38), the first term of the right-hand side denotes the
effect of planetesimal accretion and the second term the effect
of tidal interaction with the satellite. We also calculate the
total angular momentum of the planet-satellite system, L,s =
IMpRga)pQK + M,/GM,A,. We choose the starting values
of the mass ratio to be wy, the total angular momentum to
be Lgwm, and ag to be the balanced radius ag p, for us = um
(see Subsection 3.3).

We halt each backward integration if one of the following
conditions is satisfied:

(1) as > As,bas
(2) as < v,
(3) wp > 5600.

Condition (3) corresponds to the marginal value of the sec-
ular bar instability of a rapidly rotating planet (Durisen and
Gingold, 1986). During the integration we keep the semi-
major axis of the satellite to be the balanced radius at each
time; otherwise the integration would halt more rapidly.

We determine the parameters for the integration, i.e., the
mean random velocity, the surface density of planetesimals,
and the specific angular momentums supplied to the planet
and the satellite, as follows.

The mean random velocity v, of planetesimals in gas-
free environment is given by the balance between gravita-
tional scattering by the planet and dissipation due to mu-
tual inelastic collisions. The time scale of increasing of v,
by planet’s gravitational scattering (i.e., the viscous stirring

time) is given by (Ida, 1990; Ida and Makino, 1993)

4
Cel < Uy )

nprd \Vesep/)
where c; is a numerical factor (~ 0.10), n;, is the effective
surface number density of protoplanets (one of which is the
proto-Earth), and ves. p(~ 35) is the escape velocity of the
planet. On the other hand, the time scale of mutual collisions

of planetesimals is given by (Greenzweig and Lissauer, 1990;
Ohtsuki, 1993)

Tys = (39)

Ce2

ngr?’

Tcol = (40)
where ¢, is a numerical factor (~ 0.54), nq is the surface
number density of planetesimals, and r is the sum of plan-
etesimal radii. Here we assumed that e = 2i and that masses
of all the planetesimals are equal. Equating T, with T, we
obtain

nyMy/ S\ (m) M\

where m is the mass of planetesimals. According to the
above equation, we here choose the value of eccentricity and
inclination of planetesimals as (e, i) = (15, 7.5).

We assume that the surface density of planetesimals is
kept constant with the value of the minimum-mass model
during the growth for simplicity. Then in gas-free environ-
ment, the growth time of the Earth given by Eq. (27) is about
6.0 x 107 years, which is two orders of magnitude longer
than that for accretion in the gaseous environment adopted
in Subsection 4.1.

Because of the large random velocities of planetesimals,
we adopt that specific angular momentums supplied to the
planet and to the satellite are, respectively, J, = 0 and J; =
—0.2 (see Subsection 3.2), which are fairly smaller than those
in the gaseous environment (J, ~ 0.2, J; ~ 0.1).

Using these parameters, we perform the integration. Fig-
ure 9 shows the results; changes of £, (= Lps/Lem), wp,
as, and s as functions of m, for two different values of
f = 60 (long-dashed curves) and 1.5 (solid curves), which
correspond to the cases of O, = 10 and 400, respectively. In
both cases the backward integrations were halted by satisfy-
ing Condition (3) (see Fig. 9(b)) when m, ~ 0.55, because
a smaller planet cannot have angular momentum as large
as that of the Earth-Moon system. Hence, the giant impact
should occur after the mass of the proto-Earth exceeds about
half of the present mass.

Figure 9(a) shows that £, decreases with increasing m,.
This is because of collisional-planetesimals anisotropy due
to the orbital motion of the satellite (see Subsection 3.2). We
find that the angular momentum supplied by the giant impact
should be a factor 0.5|J;|(1 — my) (for m, ~ 0.5, about 5%)
larger than 1 Lgy. The giant-impact simulations by Cameron
and Canup (1998a) in the case of m, = 0.6 (where we use
m, as the total mass of the impactor and the target) show
that mass of the disk generated by an impact with the total
angular momentum 1.2Lgy is twice as large as that with
1.0Lgyp. Thus, even 5% increase of total angular momentum
as shown in Fig. 9(a) would be effective for forming a larger
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Fig. 9. Evolutions of total angular momentum £ (a), planet’s spin angular velocity wj (b), satellite’s planetocentric distance as (c), and relative mass
s (d) as functions of planet mass for two perfect accretion cases with f = 1.5 (solid curves) and 60 (long-dashed curves), and one non accretion case
(dMs/dt = 0) with f = 60 (short-dashed curves). The integrations start from mp = 1.0 to the past. The starting values for us and £ps are the present
values of the Earth-Moon system (us = jum, £ps = 1.0), but ag is determined from a given value of f (as = as pa) and w, is determined from all these
values. In all the cases, the backward integrations are halted where rotational instability of the planet will occur (wp > 5600).

protoMoon if co-accretion after the giant impact is taken into
account.

Figure 9(d) shows that s increases with m,,. This is be-
cause the Moon has larger collision cross section per mass
than that of the Earth. In other words, usq for the case of
larger v; (as adopted in Fig. 9) exceeds uy even for the case
of larger f. The value of i increases more rapidly with de-
creasing f because a satellite with smaller balanced radius
(see Fig. 9(c)) receives a larger benefit of planetary focus-
ing. In any cases, however, mass-ratio changes are rather
small compared with the situation in Subsection 4.1 because
of smaller mass change of the Earth itself.

Until now, we assumed that the coalescence probability
between the satellite and planetesimals to be unity. But in
high-speed collisions, the total mass of escaping ejecta from
the satellite might become comparable to the mass of a im-
pactor (for a full discussion of ejecta, see Subsection 5.2).
Here we also calculate the post-giant-impact co-accretion

in an extreme case that dM;/dt = 0. We assume that all
of escaping ejecta from the satellite also escape from the
planetary Hill sphere and that their mean specific geocen-
tric angular momentum is same as that of the satellite. We
perform integration of the co-accretion evolution backward
from m, = 1.0 for the case of f = 60. The results are also
shown in Fig. 9 (short-dashed curves). Figure 9(a) shows
that £,5 decreases with increasing m, much faster than the
perfect accretion cases, since escaping ejecta take away large
amount of angular momentum from the planet-satellite sys-
tem. With a increase in total mass of escaping ejecta from
the satellite, larger £, is allowed immediately after the giant
impact.

5. Discussion
5.1 Comparison with results of giant-impact simula-
tions
In Subsection 4.2, starting from the present values of the
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Fig. 10. Mass ratio of a impact-generated satellite relative to total colliding
mass as a function of impact angular momentum normalized by L., (dotted
curve) with fixing an impactor-to-target mass ratio to be 3:7 and an impact
velocity to be the mutual escape velocity. Three evolutional curves,
which correspond to the results shown in Fig. 9 (solid, short-dashed,
and long-dashed curves), are also shown. The converging point of three
curves corresponds to the present state of the Earth-Moon system.

mass ratio and the total angular momentum, we went back
the evolution of the Earth-Moon system to the past. Thus,
if all the dynamical quantities of the outcome of a giant-
impact simulation locate on the evolution curves of the cor-
responding quantities obtained in our calculation, the gen-
erated system will finally reach to the present Earth-Moon
system through co-accretion. Here we compare our results
with the results of the giant-impact simulations.

Canup et al. (2001) compiled the results of the impact
simulations, all employing an impactor-to-target mass ratio
of 3:7 and equalizing the impact velocity with the mutual
escape velocity of the target and the impactor. They showed
that mass of the impact-generated satellite Mj is given by

M, L. 3.83 L 3.40
—S—10.15( =2 —0.064 [ =2
Mt L* L*

Limp
0.5 < 7 <1.0), (42

*

where Liy, and M, are the impact angular momentum and
the total mass of the impactor and the target, and L, =
2.91(M,/Mg)>3 Lgy; denotes the planetary angular momen-
tum spinning at the maximum rate for rotational instability.
Figure 10 shows the relation between M/ M; and Lipy,/ L.
given by Eq. (42) (dotted curve). It is clear that M,/ M, dras-
tically increases with Lin,/L,. In the same figure, we also
re-plot three evolution curves shown in Fig. 9. Note that
the converging point of the three curves corresponds to the
present state of the Earth-Moon system. An important fea-
ture of this figure is that mass of a satellite formed by a
impact with the present total mass and the angular momen-
tum of the Earth-Moon system is much smaller than that of
the Moon. This problem has been discussed by multiple pre-
vious works (Canup and Esposito, 1996; Ida et al., 1997;
Cameron, 1997, Cameron and Canup, 1998a, b; Canup et

al., 2001). If smaller total mass is considered, larger satel-
lite mass is achieved owing to increasing of Limp/L.. We
find each evolution curve has a point of intersection with the
curve represented by Eq. (42). It should be noted that if a gi-
ant impact produces a planet-satellite system corresponding
to each point of intersection, the generated system evolves
into the Earth-Moon system through co-accretion with the
corresponding conditions. From Fig. 9(d), we can find that
the value of m,, of at the three points of intersection are al-
most equal to 0.7. This suggests that the Moon-forming
impact was occurred when M; >~ 0.7 Mg, regardless of the
conditions of subsequent co-accretion stage.

However, Eq. (42) is confined to the case that the impactor-
to-target mass ratio to be 3:7 and the impact velocity to be the
mutual escape velocity. Giant-impact simulations in wider
parameters region are desirable.

5.2 Coalescence probability between the satellite and
planetesimals

In most of the calculations, we assumed that coalescence
probability between the satellite and planetesimals to be
unity. It might fairly decrease in high-speed collisions. Here,
we estimate the coalescence probability P, i.c.,

Mesc
—(

Peo=1-— - Qre)a (43)
where m and ms denote, respectively, the colliding plan-
etesimal mass and the total mass of ejecta escaping from
the satellite, and gy is the mass fraction of re-accumulating
ejecta which once escaped from the gravitational sphere of
the satellite to the circumplanetary orbit.

Using the scaling laws of impact cratering in the gravity
regime given by Housen et al. (1983), we estimate the escap-
ing mass meg as a power-law function of impact velocity of
the planetesimal vin, = (v7 +9/as+vZ, ()'/?. Adopting the
coefficients and the power-law indices determined from labo-
ratory experiments of sand targets (Holsapple, 1993; Housen

et al., 1983), we obtain

1.23
Mese —0.12 < Vimp ) .
m

Vesc,s

(44)

Setting a; to be the balanced radius, we obtain vip, ~
2.3Vese,s for ps = pum and vimp ~ 12.5vese s for pus =
M min/(0.1Mg) in the gaseous environment discussed in
Subsection 4.1. In the gas-free environment discussed in
Subsection 4.2, we have vjmp ~2.6-3.2v¢s. Putting these
values in Eq. (44), we have mes./m ~ 0.33-2.7 and 0.39—
0.50, respectively. A small initial embryo as evaluated in
Eq. (37) ejects mass more than impactor mass, which would
prevent the satellite growth (P, < 0), if gy is small enough.
Hence, the minimum mass of the initial embryo might be
larger than that in the perfect accretion case. On the other
hand, even for g, = 0, the satellite with the mass ratio as
large as that of the Moon can safely grow (P, > 0) in both
situations in Subsection 4.1 and Subsection 4.2, though the
growth rate would be reduced. For the situation in Subsection
4.1, we estimate the i, .q again adopting imperfect accretion
given by Egs. (43) and (44) with ¢, = 0, and find that the
condition ftseq > pm is still satisfied for f ~ 0.015. Note
that, however, the coefficient as well as the power-law in-



226 R. MORISHIMA AND S. WATANABE: CO-ACCRETION OF EARTH AND MOON

dex of the right-hand side of Eq. (44) have some uncertainty,
which would affect the conclusion.

Even in the case that the escape mass is comparable to the
impactor mass, the satellite can grow if most of the ejecta re-
main in the Hill sphere of the planet and finally re-accumulate
onto the satellite. Though most of the ejecta escaping from
the present Moon (a; = 0.25) also escape from the Hill
sphere of the Earth (Gladman et al., 1995), re-accumulation
fraction might be higher in the co-accretion stage, when the
Moon was much closer to the Earth.

Ejecta thrown in orbits around the planet are gravitation-
ally scattered by the satellite and the velocity dispersion of
the ejecta increases to almost as large as the escape velocity
of the satellite. Then, if the orbital velocity of the satel-
lite around the planet is larger than the escape velocity of
the satellite, we can safely assume that the ejecta finally re-
accumulates to the satellite without escaping from the Hill
sphere of the planet or fall onto the planet. This condition
can be written as a, < 0.04(us/um) >3, For the situations
in Subsection 4.1, the re-accumulation condition is satisfied
for a satellite with g < ftseq = M, so that the value of
P, would be close to unity even if mes/m is not so small.
On the other hand, the condition of re-accumulation is not
satisfied for the situation in Subsection 4.2. Hence, the value
of P, would be very small if m.s/m is almost unity.

In order to obtain more reliable values of the re-accumula-
tion fraction g, we also performed many orbital calculations
of escaping ejecta, details of which will be presented in the
next paper (Morishima and Watanabe, in preparation). We
found that g for a satellite with as > 0.04(us/pnm) 3
is small (< 0.2) and that most of the escaping ejecta from
the satellite escape also from the Hill sphere of the planet
(its fraction is * 0.7). We also found that the mean specific
angular momentum of escaping ejecta from the planetary Hill
sphere is about 1.2-1.3 times larger than that of the satellite.
Since decreasing rate of angular momentum by the escaping
ejecta is proportional to a product of the mass fraction of
escaping ejecta and their mean specific angular momentum,
the assumptions adopted in Subsection 4.2 is fairly good.
5.3 Gas drag on the satellite

Since we have adopted gaseous environment in the sit-
uation discussed in Subsection 4.1, we should estimate the
effects of gas drag on the satellite. After Adachi ez al. (1976),
the decay time of the semi-major axis of a satellite by gas

drag is given by
(das>_l
a [ =
S\ dt ) g

where Cp is the gas drag coefficient (~ 0.5) and p, is the
gas density around the satellite. Further, n is the fractional
deviation of the gas velocity from the local Keplerian velocity
around the planet (n = 1 — vy/vs, where v, denotes the
rotational gas velocity).

We estimate 7,4, for the two types of gaseous environment
around the satellite: (1)ahydrostatic atmosphere (n = 1) and
(2) a Keplerian subdisk (7 < 1); it is controversial which
type is more plausible.

First we consider the hydrostatic atmosphere. When the
planet mass becomes greater than that of the present Moon,

_4rrops

= , 45
3 Cpus Pg 45)

Tgas =

gas around the planet is getting denser than ambient solar
nebula and is well regarded that the planet has an atmosphere.
The outer boundary of the atmosphere is the Bondi radius rg
defined by

B = 3/c2 = O.25m§/3,

(46)
where c is the sound velocity of the gas, and the temperature
is assumed to be 280 K. The structure of the hydrostatic
atmosphere was obtained by Sasaki and Nakazawa (1990).
Assuming radiative equilibrium and a constant opacity, the

density structure is given analytically by

r 3 r 3
pg,st(as) = Pq |:<a_p) - (é) :| +e:0g07 (47)

where pg is the gas density of the minimum-mass solar neb-
ula model at 1 AU (Hayashi et al., 1985). Further pq can be
taken as the gas density at the planet surface in the case of
rp K 1B, and is given by

K T
=4.6x107° gonp
Pa % (0.1 m? kg“) <6.0 x 105 years

7/3
(T5) e

where « is the opacity.

Next we consider the subdisk. Considering the case that
gas with large angular momentum has steadily supplied from
the nebula, not an atmosphere but a subdisk can be formed
inside of the Bondi radius of a planet as large as the Earth
(Miki, 1982; Korycansky and Papaloizou, 1996). In this case
the boundary of the planetary atmosphere and the subdisk is
determined as the processes of angular momentum transfer,
which is yet an open question. The structure of the subdisk
is uncertain, so that we here adopt a nominal model with a
single power-law density distribution:

(43)

a —n
%wm=%(f) (foras <ra).  (49)
B

where n is the power-law index. We also assume that the
subdisk is isothermal. Then 7 in Eq. (45) is given by

a 12 na
n(as)zl—(l—n—s> ~ ==
B 27‘3

(for a; < rg). (50)

Adopting m, = 1.0, s = fim, and Tgow,p = 6.0 x 10°
years (see Subsection 4.1) we calculate 74,5 from Eq. (45)
for the two cases; Tgsa for the hydrostatic atmosphere and
Tgasp for the subdisk with n = 1.5. The results are shown
in Fig. 11. For comparison we also show the tidal evolution
time Tga of a5 for O, = 400 and the orbital decay time
Tace due to accretion drag. We find that 7y, is shorter than
both 7, and 744, for all a;. This means, for the case of
static atmosphere, gas drag is the main agent of the orbital
decay and satellite inevitably spirals into the planet. On the
other hand, 7g,p is somewhat longer than 7, withn = 1.5,
so that evolution of gy is determined mainly by the balance
between accretion drag and tidal repulsion. Even in the case
of smaller m, or (s, Tgasp is still longer than Ty, so that
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Fig. 11. Orbital decay time scales of the satellite by gas drag (tgasa for
the hydrostatic atmosphere and 7g,sp for the subdisk) in the solar nebular
as functions of as with m, = 1.0 and s = um. We adoptn = 1.5 to
TgasD» Tgrow,E = 0 X 10°years to Tgasa and Tyee, and Qp = 400 to g,
respectively.

the picture of co-accretion shown in Subsection 4.1 might
not be affected by the effect of gas drag. It should be noted
that even in such cases the protoatmosphere must dissipate
immediately after the completion of planetary growth.

Since the lunar mass is comparable to or larger than that
of the protoatmosphere of the Earth, the Moon would affect
the structure and evolution of the atmosphere. The analysis
of the coupled system is desirable.
5.4 Stochastic impacts

Until now, we only considered the “ordered component”
of accumulated angular momentum, i.e., angular momentum
brought by a large number of small planetesimals. However,
the “stochastic component” of accumulated angular momen-
tum, i.e., angular momentum brought by one or a few number
of large planetesimals to the planet (or the satellite) may play
a significant role, in particular, in co-accretion after the giant
impact (Subsection 4.2). Here we estimate which component
is dominant in the evolution of the total and the orbital an-
gular momentums of the Earth-Moon system after the giant
impact.

The z-component of mean-square angular momentum sup-
plied to a planet-satellite system during co-accretion is given
by (e.g., Dones and Tremaine, 1993b)

(L?) = [Myp(L)p + Mes(l)s]

+ [’"ipU?)p + mﬁ,sﬂf)s] : (51)
with

2 _ Mk

k= 52)

where M, x, (I.)k, (I2)k, (m)x, and (m?*); are the total mass,
the mean and mean-square angular momentums per unit
mass (which are the dimensional angular momentums: [, =

£, R% ), and the mean and mean-square masses of planetes-
imals, respectively, colliding with the planet (k = p) or with
the satellite (k = s). Further, mé_ « denotes the product of the
effective mass ((m?);/(m);) and the total mass of planetesi-
mals. The bracketed first and second terms in the right hand
side of Eq. (51) correspond to the ordered and the stochastic
components, respectively. Similarly, if we consider the evo-
lution of the orbital angular momentum of the satellite, the
z-component of mean-square angular momentum supplied
to a satellite is given by
(LD)s = ME(L)T +ml (12)s. (53)
We first evaluate the ordered component of Egs. (51) and
(53). In Subsection 4.2, we showed that the total angu-
lar momentum of a planet-satellite system is decreased by
anisotropic collisions of planetesimals to the satellite and the
escaping ejecta. According to Fig. 5 and the calculation of
the ejecta orbits (see Subsection 5.2), we obtain

‘Mr,s<lz>s’ =[0.2+ 1.0(1 — Peo)] {lo) M: s

Lgm
> [0.14+0.7(1 = Peo)] —— Myp,  (54)
Mg

where (/,) is the mean specific orbital angular momentum of
the satellite and the lower right hand side comes from the re-
sults shown in Fig. 9(a). The range of mean specific angular
momentum of planetesimals accumulating onto the planet
is given by |(lz)p| < 0.05Lgp /Mg (Dones and Tremaine,
1993a) when the spatial distribution of planetesimals in the
circumsolar disk is uniform and the relative-random veloci-
ties are as large as that adopted in Subsection 4.2. Thus we
can safely neglect the contribution of planetary accretion to
the ordered component in Eq. (51).

Next we evaluate the stochastic component of Egs. (51)
and (53). The value of mg is determined by the mass dis-
tribution of planetesimals. We consider that numbers of
planetesimals per unit mass are given by a power-low as
ng(m) o« m™1 (Mpmingr < M < Mmaxk, Where k denotes
the subscripts “p” and “s”). Here we assume that #2p,y x 1S

defined as
o0
/ ngdm = 1. (55)
Mmax, k
Then, we obtain that
Q=9? ,p
GB—q)g—1)"rk
) (for 1 < g < 2),
Mok = (q —2)?° (mmin,k )2<q2) "2 (56)
G =) g —1) \Mmack o

(for2 < g < 3).

For the case of 1 < g < 2, most of the mass of the im-
pactors is contained in the largest planetesimals, so that m
is comparable with M, ;. On the other hand, for the case
of 2 < g < 3, mgy is much smaller than M, ; since most
of the mass of the impactors is concentrated in the smallest
planetesimals.

Since the square root of the specific mean-square angular
momentums of planetesimals colliding with the satellite is
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almost same as that of the satellite, the stochastic components
about the satellite is approximately given by

mqs(12)% > mgs(l,). (57)

From Eq. (56) and Fig. 9(d), we find that m? /m? = ~
(M/Mp)? (K (I2)p/(I2)s ~ Ry/As). Thus, we can neglect
the effect of the stochastic impact with the satellite relative
to that with the planet in Eq. (51). Hence, we focus on the
stochastic component about the planet for the evaluation of
the evolution of the total angular momentum. Taking the
mean impact velocity to be the escape velocity of the planet
and the mean impact parameter to be R,/ V2, we obtain
mq,p(lz2 );1)/2
8.6(2 — q)m}’ Lem
G—q)"q =D My
(forl < g <2),
_ 2/3 q-2
8.6(2 Q)mp Mmin,p Lgm
G-)g - Mg
(for2 < g < 3),

(58)

Mmax,p

where we should note that m,, is the normalized mass of the
planet by the Earth mass.

Now we compare the ordered components (Eq. (54)) with
the stochastic components (Egs. (57) and (58)). For the
case of 1 < g < 2, the stochastic component about (L?) is
much larger than the ordered component and the stochastic
component about (Lg)s is comparable or slightly larger than
the ordered component. On the other hand, for the case of
2 < g < 3, the stochastic components are negligible. Thus,
evolution of the angular momentums of the planet-satellite
system are determined by the ordered components if g > 2.

Then we discuss the value of ¢ in the final stage of plan-
etary accretion. In general, we must consider the possibil-
ity that collisions of the protoplanets (i.e., runaway bodies,
which are detached from the continuous power-law mass
distribution (e.g., Kokubo and Ida, 1996)) determine the
stochastic components, since the Moon-forming giant im-
pact itself is one of the example. In the following discussion,
however, we assume that there was no impact of other proto-
planets with the proto-Earth after the Moon-forming impact.
If other protoplanets exist around the proto-Earth in the fi-
nal stage of its accretion, they affect the heliocentric orbit of
the proto-Earth and the present small orbital eccentricity of
the Earth would not be achieved whereas dynamical friction
of small planetesimals might decrease the eccentricity of the
proto-Earth (Agnor et al., 1999). Thus, we focus on the value
of g only for planetesimals except runaway bodies. In the
stage of runaway growth, ¢ is shown to be ~ 2.5 (Kokubo
and Ida, 1996). The value of ¢ might become smaller through
collisional disruption, since g ~ 11/6 for steady state of the
collision cascade (Dohnanyi, 1969; Tanaka et al., 1996). The
disruption is, however, expected to be less effective for larger
planetesimals with stronger gravity. In fact, statistical simu-
lations by Wetherill and Stewart (1993) showed that the value
of ¢ for small fragments (< 10'8g) is ~ 11/6, whereas that
for residual planetesimals (10'%g < m < 10**g) is ~ 2.5.
This means that most of the mass of the impactors is con-
tained in the small planetesimals (~ 10'3g). Thus, we con-

sider that the stochastic components would not be dominant
in co-accretion after the giant impact.

6. Summary

Based on the orbital calculations of Keplerian planetesi-
mals, we develop a numerical model which describes accre-
tional and dynamical evolution of planet-satellite systems in
a swarm of planetesimals with various spatial and velocity
distributions.

Obtained mass accretion rate of the satellite is in good
agreement with the particle-in-a-box model by Harris and
Kaula (1975) in the case of uniform spatial distribution of
planetesimals with «/e2 + i2 2 4.0. In the cases of nonuni-
form spatial distributions, however, the absolute values of
mass accretion rate in the particle-in-a-box model is no longer
valid. Even in these cases, the ratio of mass accretion rate
of the satellite to that of the planet is still in good agreement
with an analytic solution derived from particle-in-a-box ap-
proximation.

Mean specific angular momentum supplied to the satellite
Js from planetesimals with uniform spatial distribution is al-
ways negative, even for the case of large velocity dispersion.
This is because incident of planetesimals is not isotropic for
the satellite due to its prograde motion around the planet. But
the values of Jg; become positive for the case of nonuniform
spatial distribution with small E,. These results are con-
sistent with the results of the previous work about planetary
spin by accretion of planetesimals (Ohtsuki and Ida, 1998).

Using these results, we calculate evolution of planet-satel-
lite systems. In the plane of orbital radius of the satellite vs.
satellite/planet mass ratio, a satellite moves quickly toward
the balanced orbital radius where accretion drag compensates
with tidal repulsion and then grows slowly toward the equi-
librium satellite/planet mass ratio. Analyses of the model
show that, as long as from the dynamical viewpoint, two
types of co-accretion scenarios for the origin of the Moon
are plausible as follows:

(1) In the first scenario, the Moon started from a small em-
bryo with its mass of 102 My and grew in the swarm of
planetesimals with low velocity dispersion and nonuni-
form spatial distribution, so that large angular momen-
tum was supplied to the planetary spin. Such situations
would be realized when the Earth grew rapidly before
the dissipation of the solar-nebula. The rapid growth
of the Earth (Tyrow,e ~ 10° years) was needed for the
semimajor axis of the Moon to be kept so small that
the Moon grew up more rapidly than the Earth under
the benefit of large gravitational focusing by the Earth.
Moreover, the rapid growth prevented the Moon from
spiraling into the Earth by gas drag.

(2) In the second scenario, the Moon was formed by a gi-
ant impact occurred during Earth accretion. The impact
supplied enough angular momentum as large as that of
the present Earth-Moon system. Since a smaller planet
cannot have such large angular momentum, mass of the
proto-Earth immediately after the giant impact should
be larger than about half of the present Earth mass.
The Earth grew rather slowly in the vacuum (Zgrow,g ~
10% years) due to large velocity dispersion of planetesi-
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mals. The dynamical evolution of the Earth-Moon sys-
tem strongly depended on coalescence probability be-
tween the Moon and planetesimals. For the perfect ac-
cretion case, the mass ratio of the Moon hardly changed,
whereas the total angular momentum decreased a little
(~ 5%) due to anisotropic collisions of planetesimals
to the Moon. On the other hand, if the Moon did not
grow, much of the angular momentum (~ 25%) was
taken away by escaping impact ejecta. From a compar-
ison with results of giant-impact simulations, we found
that the Moon-forming giant impact occurred when the
total mass of the impactor and the proto-Earth was 0.7
times of the present Earth mass.
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Appendix A. Upper Limit of the Enlargement Fac-
tor g3

Here we briefly explain the derivation of the upper limit
of the enlargement factor of the satellite’s cross section g3
for oblique penetrations of planetesimals given in Eq. (13).
In the limit of i — 0, (1/ cos 63) diverses, whereas the colli-
sion probability of a satellite with penetrating planeteismals
through an anulus (which contains the satellite) should re-
main finite, so that g3 should be confined by some upper
limit.

We determine the upper limit by the condition that the
value of the collision rate Ps(e, i) must converge to the value
for the two-dimensional case when i — 0. From Egs. (10),
(12), and (14), we obtain the following condition

_ (82)7s
Ta

(g3)rs
iS0 2aha 2 A1)
where (g3) and (g;) are average values of g3 and g, re-
spectively, n3 and n, denote numbers of penetrating orbits
through an anulus and crossing orbits with the satellite orbit,
respectively.

Then we estimate the ratio of n3 to n,. We find, from
numerical calculations, that number of planetesimals with
the closest distance ri, from the planet is proportional to .
with B ~ 0 for smaller e (< 4). Further, assuming that orbits
of planetesimals are parabolic, we obtainns /ny = Aa/(2as).
Hence, we obtain the upper limit of (g3) as

4(g2)

as as
=35,
s s

(83) = (A.2)

where the factor 3 in the right hand side is determined by
numerical fitting. Note that this factor is somewhat nominal,
since it really depends on e and as.

Appendix B. Behavior of Ps and Js in the Case of
e=i=0

We here derive approximate form of the collision rate P

and the mean specific planetocentric angular momentum J; as

functions of'the satellite’s orbital radius as from the minimum

distance rpi, between a planetesimal (with orbital elements
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Fig. 12.  Minimum distance rpj, between the planet and a planetesimal

for the first encounter (solid curve) and including multi-time encounters
(dashed curve) in the case of e = i = 0. Radius of the planet r;, is shown
by a horizontal dashed line. Direction of rotation of the planetesimal
around the planet is changed at b; and b;.

b, e, and i) and the planet during the encounter. We focus
on the case of e =i = 0. Figure 12 shows ry,;, as a function
of b. There are two main collision bands (where rp, < ag)
around b = by ~ 2.1 and b = b, ~ 2.4. Planetesimals
are prograde around the planet in the ranges of b < b; and
b > b,, and retrograde in the range of b; < b < b;.

From Egs. (10) and (16), Ps(e = i = 0) is approximately
described by

Py(as, rs)

3r 1
= 28 — Spr
2mag |:< sin 6, >pm( pro(4s) P O(rp))

1
+ <sin 0 >retm(2Sretro (@s) — Stetro (rp))i| . (B.1)

where (1/sin62)pro, {1/ 5in62)rerro are averaged inverses of
sin 0, for prograde and retrograde orbits, which are estimated
as about 1.1 and 2.2, respectively, by numerical calculations.
In the above, Sy, and S, are defined by

2
Se(r) =Y 1B} — bij (1), (B.2)
j=1

where subscript k denotes “pro” (or “retro”), and by ;(r) are
the differential semimajor axes of the orbits with ryi, = r in
the prograde (or retrograde) range beside b;. The factors of
St in Eq. (B.1) represent the fact that the planetesimal crosses
each satellite orbit with as > ryi, twice if rin > 1, and once
if Fmin < 7p.

From Fig. 12 we find

Spro(r) 2 2.7r112, B3

5.5,-1/2 (r < 006)
¢ - = ’ B.4
retro () :b% _ b% (r > 0.06). ®H
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It should be noticed that there are no retrograde orbits with
Fmin > 0.06.
Substituting Egs. (B.3) and (B.4) into Eq. (B.1), we obtain

14.4r,(a)”* — 0.035)a;"!

(as < 0.06),
2.84ry(as’” 4 0.82)a;!
(as > 0.06).

Ps(as, rs) =~ (B.5)

The approximate formula well coincides with numerical re-
sults. This functional change of Ps(e =i = 0) at ag ~ 0.06
is appeared as a kink in Fig. 3.

Similarly, Js(e = i = 0) is obtained approximately by

1 ¢
i >k (28¢@) = Sup) <Z>k

k=pro,retro <

Js(as) =

< . > (25¢(@) = 5:0p))
k=pro,retro sin 6 k

(B.6)
Here, approximate mean values of specific angular momen-
tums are (£, /£,)pro ~ 1 for prograde orbits and (£ /o) retro ~
— 1 forretrograde orbits, respectively. Substituting Egs. (B.3)

and (B.4) into Eq. (B.6), we obtain

—0.61
(as < 0.06),

al? = 0.89)/(ad* +0.82)
(as > 0.06).

Js(as) = (B.7)

This is roughly coincide with numerical results. For as >
0.06, number of collisional planetesimals with prograde or-
bits around the planet increases with as, wheras number of
retrograde orbits is kept to be a constant, so that J; increases
with ag (see Fig. 5).
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