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The deep creep plate interface extends from the down-dip edge of the seismogenic zone down to the base of the
overlying lithosphere in subduction zones. Seismogenic/deep creep zone interaction during the earthquake cycle
produces spatial and temporal variations in strains within the surrounding elastic material. Strain observations in the
Nankai subduction zone show distinct deformation styles in the co-seismic, post-seismic, and inter-seismic phases
associated with the 1946 great earthquake. The most widely used kinematic model to match geodetic observations
has been a 2-D Savage-typemodel where a plate interface is placed in an elastic half-space and co-seismic slip occurs
in the upper seismogenic portion of the interface, while inter-seismic deformation ismodeled by a locked seismogenic
zone and a constant slip velocity across the deep creep interface. Here, I use the simplest possible 2-D mechanical
model with just two blocks to study the stress interaction between the seismogenic and deep creep zones. The
seismogenic zone behaves as a stick-slip interface where co-seismic slip or stress drop constrain the model. A linear
constitutive law for the deep creep zone connects the shear stress (σ ) to the slip velocity across the plate interface
(s ′) with the material property of interface viscosity (ζ ) as: σ = ζ s ′. The analytic solution for the steady-state
two-block model produces simple formulas that connect some spatially-averaged geodetic observations to model
quantities. Aside from the basic subduction zone geometry, the key observed parameter is τ , the characteristic time
of the rapid post-seismic slip in the deep creep interface. Observations of τ range from about 5 years (Nankai and
Alaska) to 15 years (Chile). The simple model uses these values for τ to produce estimates for ζ that range from
8.4 × 1013 Pa/m/s (in Nankai) to 6.5 × 1014 Pa/m/s (in Chile). Then, the model predicts that the shear stress acting
on deep creep interface averaged over the earthquake cycle ranges from 0.1 MPa (Nankai) to 1.7 MPa (Chile).
These absolute stress values for the deep creep zone are slightly smaller than the great earthquake stress drops.
Since the great earthquake recurrence time (Trecur) is much larger than τ for Nankai, Alaska, and Chile, the model
predicts that rapid post-seismic creep should re-load the seismogenic zone to about (1/3) of the co-seismic change;
geodetically observed values range from about (1/10) to more than (1/2). Also, for the case of (Trecur/τ) 
 1, the
model predicts that the slip velocity across the deep creep interface during the inter-seismic phase should be about
(2/3) the plate tectonic velocity (R). Thus the deep creep velocity used in Savage-type models should be less than
R. Even complex 3-D models with non-linear creep laws should make a similar prediction for inter-seismic deep
creep rates. At present, it seems that geodetic observations at Nankai and other subduction zones are more consistent
with a deep creep rate of R rather than (2/3)R. This discrepancy is quite puzzling and is difficult to explain in the
context of a 2-D steady-state earthquake cycle model. Future observational and modeling studies should examine
this apparent discrepancy to gain more understanding of the earthquake cycle in subduction zones.

1. Introduction
Subduction zone plate boundaries are divided into the shal-

low seismogenic and the deeper creep zones. For those sub-
duction zones that generate large underthrusting earthquakes,
the down-dip edge of the seismogenic zone ranges in depth
from 25 to 50 km (Tichelaar and Ruff, 1993). The seismo-
genic portion of the plate boundary is characterized by stick-
slip behavior as the plate interface is locked during most of
the earthquake cycle. In detail, some parts of the seismogenic
plate interfacemay slip aseismically. The largest sub-regions
of the seismogenic plate boundary that are locked during the
earthquake cycle are the asperities and they control the recur-
rence time and size of the largest earthquakes. The deeper
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portion of the plate boundary—from the seismogenic zone
edge down to the base of the overlying lithosphere—is aseis-
mic. While there are usually plentiful intra-plate earthquakes
in the Wadati-Benioff zone just below the plate interface,
there are no under-thrusting earthquakes located on the plate
interface in this region, hence plate boundary slip occurs as
creep. We do not know the creep law that governs plate slip
in this portion. Candidate laws vary from the simplest linear
creep law to arbitrarily complicated ones that are capable of
producing creep events from a smooth loading history. The
rate-and-state-dependent friction law is one example of an in-
terface constitutive law that can produce creep events (e.g.,
Dieterich, 1981; Rice and Tse, 1986). Several investigators
have applied this complicated law to subduction zones to ex-
amine the loading of the seismogenic zone by aseismic slip
in the deep creep region (e.g., Stuart, 1988). This friction
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Fig. 1. Map of the Shikoku segment of the Nankai subduction zone, Japan. Several tectonic features are shown, including the main asperity of the 1946
great earthquake (Satake and Tanioka, 2001) and the portion of the deep creep plate interface that displayed rapid post-seismic creep after the 1946
earthquake (Sagiya, 1999).

law has a few parameters that must be specified to enable
velocity weakening (stick-slip) within the seismogenic zone
and velocity strengthening (creep) in the deeper zone. At
the transition between regions, the interface behavior might
be described as “conditionally stable” (see Scholz, 1990, for
discussion).
Creep on the deep plate interface interacts with the shallow

seismogenic zone via the elasticity of the surrounding rock.
Steady creep increases the elastic shear stress on the locked
portions of the seismogenic zone which eventually causes
the large underthrusting earthquakes. Conversely, the static
stress drop of these large earthquakes causes a step change in
the stress state acting on the creeping interface. This interac-
tion between the seismogenic and deep creep zones during
the earthquake cycle has always been of great interest and
there are many observational and theoretical studies. Most
of the observational studies have focussed on just one sub-
duction zone segment: the Shikoku segment of the Nankai
zone (Fig. 1)where the Philippine Sea Plate subducts beneath
Japan (Seno et al., 1993). In this paper, I will present yet an-
other model of the seismogenic and creep zone interaction.
But in contrast to most of the other papers on this topic, I
shall focus on the simplest possible model of this interaction
which produces analytic formulas that connect several key
parameters to observations. There are a couple of surprising
results that emerge from this simple model that should be
tested by other more sophisticated models.

1.1 Observations of slip in seismogenic and creep zones
There is a great asymmetry in our observational constraints

on the plate boundary. Seismologists have been able to de-
termine several aspects of earthquake occurrence in the seis-
mogenic portion. In a well-characterized zone such as the
Nankai, the recurrence time of great earthquakes is known
for several earthquake cycles (Ando, 1975), and the distribu-
tion of slip and static stress drop is well-determined for the
last pair of great earthquakes that occurred in 1944 and 1946
(Ando, 1982; Satake and Tanioka, 2001). The methodology
is well-developed for using slip across a finite fault in an
elastic half-space to match co-seismic changes in stress and
strain. On the other hand, all the seismological and geodetic
studies cannot tell us the absolute level of shear stress act-
ing on the seismogenic interface. We must use other more
indirect methods, such as heat flow modeling (Tichelaar and
Ruff, 1993; Peacock, 1996) or force balancing (Wang and
He, 1999, and references therein), to infer something about
absolute stress levels.
There are a few geodetic observations of post-earthquake

strain changes that offer constraints on the character of the
deep creep region. The advent of GPS methods and net-
works will certainly produce more and better observations
in the future. At this time, the Nankai subduction zone is
the best-studied example with some information on the pre-
seismic, co-seismic, post-seismic, and inter-seismic phases
of deformation (see Hyndman et al., 1995; and Sagiya and
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Thatcher, 1999, for review and discussion). At the risk of
over-simplifying the picture, it is possible to summarize the
results as follows: the pre-seismic accumulation is detected
by surveys prior to the 1946 earthquake, but there is still
some discussion over the spatial and temporal distribution of
slip as to whether there was a creep event prior to the earth-
quake (Mogi, 1985); fault-averaged co-seismic slip of the
1946 Nankai event is about 4 m (Ando, 1982), though slip
was concentrated at the down-dip edge in an asperity that
is about 45 km wide and 180 km long (Satake and Tanioka,
2001; though Sagiya and Thatcher, 1999, offer a different so-
lution); there was a rapid post-seismic slip in the deep creep
plate interface just downdip of the asperity, the total accu-
mulation of slip in this rapid phase is about 2 m (Savage and
Thatcher, 1992) up to 3 m (Sagiya, 1999), and a quantita-
tive fit to uplift data by Savage and Thatcher (1992) give a
simple exponential function with a characteristic time of 4.7
years; the inter-seismic phase, from the 1950’s to the present
consists of steady linear motion in the deep creep segment
while the 1946 main asperity remains locked to the subduct-
ing Philippine Sea plate and is moving toward N50◦W at a
rate of about 45 mm/year with respect to Eurasia, consistent
with the plate rotation pole of Seno et al. (1993), though
there is considerable spatial variation across the seismogenic
zone (see results in Sagiya, 1999; Ito et al., 1999; and Tabei,
1999).
1.2 How to model seismogenic/deep creep interaction
As argued by Savage (1995), all aspects of the geode-

tic results for the Nankai trough can be easily and success-
fully modeled by a fault interface in an elastic half space.
Of course, we understand that the mantle beneath the litho-
sphere does display creep behavior and that this steady creep
provides the basic plate tectonic velocity to the seismogenic
region. This large-scale system of sinking slabs and mantle
flow can be summarized by the kinematic boundary condi-
tion of plate interface slip velocity imposed at a depth close
to the base of the lithosphere. Placing this kinematic bound-
ary condition at a depth of 100 km or so is a good choice,
given some geodetic results that measure plate motion across
an entire subduction zone (e.g., Dixon, 1993; Sagiya, 1999;
Tabei, 1999). If our main interest is in the strain changes
associated with the earthquake cycle, then condensing all the
complications of slab dynamics and mantle flow into an im-
posed velocity is clearly the best way to proceed. My simple
model uses this kinematic condition to drive the system. In
fact, my model is patterned after the Savage model, except
that I replace the elasticity of the half-space with just two
springs. At the end of the paper, I will argue that the Savage
model can be modified with a different kinematic boundary
condition that better describes the deep creep history in the
earthquake cycle.

2. The Model
The fundamental model is a dipping plate interface em-

bedded within an elastic half-space—the Savage model. Al-
though many investigations are now using more complicated
two- and three-dimensional models for the Nankai and other
subduction zones (Thatcher and Rundle, 1984; Sato and
Matsu’ura, 1992; Dmowska et al., 1996; Yoshioka, 1999;
Hirahara, 1999; Stuart and Sagiya, 1999), my interest is

in the basic interaction between the seismogenic and creep
zones, hence a 2-D cross-section geometry is best. Since we
know the subduction geometry and elastic moduli, the focus
is on the constitutive laws that connect stress and slip across
various portions of the interface. For the quasi-static treat-
ment, earthquakes are represented by either the stress drop
or co-seismic slip on the rupture area. Green’s functions are
available to calculate stress and strain everywhere in the 3-D
elastic half space due to a change in slip or stress on any patch
of the plate interface. In the 2-D model that I use, the plate
interface is divided into two portions: the upper seismogenic
zone where the constitutive law is stick-slip, and the deeper
portion where the constitutive law is linear creep, i.e., where
shear stress is proportional to slip velocity across the plate
interface. With this plate interface division, one can still use
the complete Green’s functions, but I will group the elasticity
response into just two springs, as illustrated in the lower part
of Fig. 2. This simplification results in just two displacement
functions, u(t) and v(t), and we can pretend that the asso-
ciated strains are the observable space-averaged horizontal
strains above the seismogenic and deep creep zones. One ad-
vantage of this discretization is that we can easily calculate
the equivalent constant shear stress acting on each plate in-
terface portion by dividing the interface force by the contact
area, yetwe still have a single displacement function between
each block. When using the complete Green’s functions, it
is common to perform some spatial integration across each

Fig. 2. View of geometry and plate interface in a subduction zone (top)
with the 2-D two-block model that I use to examine seismogenic/deep
creep interaction (below).



310 L. J. RUFF: STRESS ON THE PLATE INTERFACE

fault patch to achieve a finite set of functions to evaluate (e.g.,
Stuart, 1988). Here, I just carry this procedure to its largest
possible spatial scale. This same approach of using a small
number of the largest possible blocks has already proven
useful in studies of stress interaction within the seismogenic
zone (e.g., Ruff, 1992; Nomanbhoy and Ruff, 1996). Al-
though this two-block model for seismogenic/creep interac-
tion is very simple, I give the complete development and
all equations below so that others may easily use the final
analytical formulas.
Model spring constants depend only on the geometry and

elastic parameters of the overlying plate. Since we are us-
ing 2-D models, the force balance equations are written as
force per unit length along the strike of the subduction zone.
The spring constant units are then the same as for the shear
modulus. The spring force equations are:

f1(t) = k1u(t)

f2(t) = k2v(t), (1)

where f1(t) and f2(t) are the spring force along the slab dip
direction (per unit length along trench strike), and a positive
force refers to outward directed force dipole. Thus a positive
f1 imparts a positive force to the creep block and a nega-
tive force to the seismogenic block. The displacement func-
tionsmeasure the contraction between the “seismogenic” and
“creep” blocks (i.e. u(t)), and the “creep” and “back” blocks
(i.e. v(t)). Referring to the geometry of Fig. 2, use the W1

and W2 length scales to discretize the elastic stress-strain re-
lation for the block interaction in the overlying plate; then
the spring constants per unit length can be written as:

k1 = (8/3)μ sin δ(2W1/(W1 + W2))

k2 = (8/3)μ sin δ((W1 + W2)/W2) (2)

where μ is the overlying lithosphere shear modulus and a
Poisson solid is assumed. Note that the ratio of spring con-
stants for a constant dip plate interface and similar widths of
the seismogenic and creep portions is two, i.e. k2/k1 = 2.
Hence the k2 spring is stiffer than k1. This basic result is also
easily obtained for a dipping fault in an elastic half-space,
and it plays a key role for inter-seismic strain accumulation.
The linear creep law for the deep interface is:

σcreep(t) = ζ s ′(t) (3)

where s ′(t) is the slip velocity across the plate interface and
ζ is the interface viscosity. For those more familiar with
viscosity, η, we can view ζ as the effective viscosity across
a uniformly shearing fault zone of width j , hence ζ = η/j .
However, since we cannot separate η and j from any obser-
vations, it is best to just use ζ as our fundamental physical
property of the interface zone. Frictional constitutive laws
also use this idea of an interface viscosity, though they typ-
ical use some non-linear connection between stress and slip
velocity.
To translate the linear constitutive law of Eq. (3) into force

per unit length along the subduction zone strike, we multiply
both sides of (3) by W2 to obtain:

fcreep = W2ζ s
′(t) = W2ζ(R − v′(t)) = ψ(R − v′(t)) (4)

where we define ψ to be (W2ζ ), and note that s ′(t) equals
(R−v′(t)) in the two-block model, where v′(t) is the deriva-
tive of v(t).
The equation of motion is derived from the force balance

on the two active blocks of the overlying plate. For the
seismogenic block, the k1 spring exerts a force in the negative
direction for positive u(t), and this force is transmitted to the
plate boundary contact where it is balanced by an equal but
opposite force across the interface. This force can increase
until it reaches ffail, then the “earthquake” happens which
allows the seismogenic block to slip back and decrease the
value of u(t) by �u and the interface force by � f = k1�u,
which is related to earthquake stress drop. Three forces act on
the creep block: the k1 and k2 spring forces, and the viscous
force across the interface due to slip velocitymismatch across
the interface, s ′(t) = R − v′(t). This force balance is:

f1 + f2 + fcreep = 0

k1u(t) − k2v(t) + ψ(R − v′(t)) = 0. (5)

During any particular earthquake cycle, we have the kine-
matic constraint equation:

(u(t) − u(0)) + (v(t) − v(0)) = Rt (6a)

where “t” is now the time since the previous earthquake and
u(0) and v(0) are the initial values at t = 0. The velocity
version of Eq. (6a) is:

u′(t) + v′(t) = R (6b)

where ′ is used to denote the derivative with respect to time.
Now use Eq. (6a) to eliminate u(t) from Eq. (5), and the
equation ofmotion reduces to just a singlefirst-order ordinary
differential equation for v(t):

v′(t) = R + k1(u(0) + v(0))/ψ + k1Rt/ψ

− ((k1 + k2)/ψ)v(t). (7)

One of the key facts that we can extract from Eq. (7) is the
characteristic creep time τ :

τ = ψ/(k1 + k2), (8)

or equivalently:

τ = ζW2/(k1 + k2).

With this substitution of τ back into Eq. (7), we can write the
analytical solution for this simple differential equation as:

v(t) = C + (k1/(k1 + k2))Rt + (v(0) −C) exp(−t/τ) (9)

where:

C = Rτ(k2/(k1 + k2)) + (k1/(k2 + k1))(u(0) + v(0)).

Recall that “t” is the timewithin the earthquake cycle. Wecan
use the kinematic constraint (Eq. (6)) together with Eq. (9)
to obtain the solution for u(t) and for the velocity functions
u′(t) and v′(t).

The solution for v(t) contains just three terms: a constant,
a positive linear growth term, and an exponential decay term
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that can be positive or negative. A key aspect of the solution
will be if the time to failure, tfail, of the seismogenic block is
less than or greater than τ . If tfail 
 τ , then the exponential
term decays to zero and we are left with a steady linear com-
pression of the k2 spring at a rate of (R/3)while the k1 spring
compresses at a rate of (2/3)R (these specific rate numbers
are for the case of k2 = 2k1). But for times shorter than τ ,
it is possible for the creep block to move trenchward if the
(v(0) − C) factor is negative and can overwhelm the linear
compression term. Given the dependence of (v(0) − C) on
both initial values u(0) and v(0), we cannot say any more
about the solutionuntilwehave some information about these
initial values. Furthermore, we must regard ufail (or tfail) as
an unknown parameter.
2.1 Constraints on ufail, u(0), and v(0)
Our solution for v(t) depends on three independent un-

known parameters: u(0), ufail = u(tfail), and v(0). The
initial and failure values for u(t) depend directly on the final
and failure stress of earthquakes. While seismologists cannot
directly determine the absolute value of shear stress, it is pos-
sible to estimate the static stress drop, which can be translated
into the force drop or displacement drop, �u = ufail − u(0),
of the simple mechanical model.
For the seismogenic interface, the earthquake stress drop

average over the full seismogenic zone width is:

�σ = � f1/W1 = (k1/W1)�u. (10a)

Ifwe suppose thatmost of the co-seismic stress changeoccurs
on the asperity part of the seismogenic interface, then we can
write the asperity stress drop as:

�σasp = � f1/Wasp = (k1/Wasp)�u. (10b)

Wecan use the basic seismological rule that static stress drops
of large underthrusting earthquakes are a fewMPa (Kanamori
and Anderson, 1975) to fix the �u model parameter. Even
better, observations of coseismic slip for the previous earth-
quake in a particular plate boundary segment specify the �u
model value. We are still left with one unknown parameter
value for either u(0) or ufail that fixes the absolute stress level
on the seismogenic interface. This value remains as a funda-
mental unknown in subduction zones, and hence also in this
mechanical model.
We now turn to the v(0) parameter. When you start this

mechanical model, you can freely choose from a wide range
of v(0) values for the first earthquake cycle. After that, the
v(0) for the next earthquake cycle is the value of v(tfail)
from the previous earthquake cycle. The mechanical system
will evolve to find the long-time steady-state system cycle,
whereby v(0) will be the same from one cycle to the next.
The system path in the u(t) and v(t) space then re-traces
itself. The kinematic condition for this steady-state behavior
is simply that v(0) is the same from one earthquake cycle to
the next, and can be written as: v(tfail) = v(0). I refer to
this special v(0) value as: vss(0). Another way to write this
kinematic condition is that the integral of v′(t) from t = 0
to t = tfail must be zero. This condition implies that v′(t)
is negative over part of the earthquake cycle. I have applied
this kinematic constraint to Eq. (9) to find the analytical form
for vss(0). Then substitute this value for v(0) back into the

solution to obtain the final formula for v(t) after any artificial
start-up effects have decayed away:

vss(t) = Rτ(1+κ1κ2 J )+κ1u(0)+κ2Rt+Rτκ2 J exp(−t/τ)

with:

κ1 = (k1/k2)

κ2 = k1/(k1 + k2)

J = (tfail/τ)/(1 − exp(−tfail/τ)). (11)

Since �u and ufail are the same for each earthquake cycle,
the steady-state solution nowgives a constant recurrence time
between successive earthquakes, which is:

Trecur = tfail = �u/R. (12)

Although the functional dependence of our steady-state so-
lution is fairly simple, the algebraic expression in Eq. (11)
makes it difficult to fully perceive system behavior. There
is considerable algebraic reduction if we take a derivative to
obtain the steady-state velocity function, v′

ss(t):

v′
ss(t) = κ2R[1 − J exp(−t/τ)]. (13)

Note that we can easily construct uss(t) and u′
ss(t) by use

of the kinematic constraint equation (Eq. (6)). To probe the
behavior of this steady-state solution a bit further, a key vari-
able is the “J” function. The numerical value of this function
is plotted in Fig. 3 as a function of (tfail/τ). This function
is always greater than one. Thus at t = 0, v′

ss will be neg-
ative: this is the post-seismic “backslip” in the deep creep
region. We can imagine that v′

ss(t)would be the geodetically
observed horizontal strain in the inner region, butmost histor-
ical geodetic results are from the coastal region. Thus, there

Fig. 3. Graph of the “J” function that appears in the steady-state solution for
v′
ss(t). “J” is plotted as a function of the ratio between two times: great
earthquake recurrence time and deep creep characteristic time (Trecur/τ ).
A value of 1 is shown by the dashed line. The fact that “J” is 1 or
larger implies that—in the steady-state solution—the creeper blockmoves
trenchward immediately after a large earthquake.
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Fig. 4. Graph of u′
ss(t), which is related to horizontal strain rate in the

“coastal” area, as a function of time through the earthquake cycle. Dif-
ferent u′

ss curves are for different values of the (Trecur/τ ) ratio.

is greater interest in the u′
ss(t) function, plotted in Fig. 4 from

t = 0 to tfail for a variety of (tfail/τ) values. We see that large
values of (tfail/τ) lead to a large and rapid post-seismic creep
that re-loads the seismogenic zone to a significant fraction
of its failure force. But note that this re-loading fraction is
limited to about (1/3) of the failure value even in the limit as
(tfail/τ) goes toward infinity. The remainder of the re-loading
occurs as inter-seismic loading, which here can be defined
as the contribution of the linear loading term in u′

ss(t). The
analytical solution of Eq. (11) makes it easy to integrate the
relative contributions of the post-seismic and inter-seismic
terms. There is no need to graph the post-seismic reloading
contribution as a function of (tfail/τ), because it is identically
equal to κ2 for any and all values of (tfail/τ)! This is one of
the more surprising theoretical results from this simple linear
model. But if we translate this information to the practical
world of strain observations, we will see that a distinction
would be made between the extreme cases of (tfail/τ) � 1
and (tfail/τ) 
 1.

Consider the extreme case of (tfail/τ) � 1, where the
interface viscosity is relatively very high and the creep block
acts more or less as a rigid extension of the back block.
This situation concentrates the upper plate deformation to
the coastal zone. Then (v′

ss/R) is always close to zero, plus
and minus a little bit, while (u′

ss/R) is nearly 1.0 over the
entire seismic cycle (see case of tfail/tau = 0.3 in Fig. 4).
In this case, the measured coastal horizontal strain would
reflect a nearly linear increase at the full tectonic rate R, but
the analytical formulas show that just (1 − κ2)R of this rate
is due to the linear inter-seismic term, the other κ2R nearly-
linear contribution is the post-seismic term. Because the
variation in v′

ss(t) is so small for the (tfail/τ) � 1 case, the
strain observations might be consistent with a simple linear

strain re-loading throughout the entire seismic cycle.
Now consider the other extreme where (tfail/τ) 
 1,

which implies that the interface viscosity is relatively low.
The earthquake recurrence time is now much greater than
the creep characteristic time, and the creep block experi-
ences large motions during the earthquake cycle (see Fig. 4).
There will be a rapid and large post-seismic adjustment with
large “backslip” velocity, but just for a short time since τ is
much smaller than Trecur. Then the motion of the creep block
reverses and it compresses back during the inter-seismic in-
terval. The proportion of the earthquake slip (�u) that is re-
acquired in this post-seismic phase is exactly κ2. As (tfail/τ)

becomes larger, the post-seismic backslip velocity becomes
greater, but since the duration of this rapid post-seismic de-
formation is smaller, the integral effect is the same for all
(tfail/τ) values. Thus, unless you catch the post-seismic de-
formation just after the earthquake, all you would see is the
linear re-loading of the seismogenic zone, albeit at an ob-
served strain rate in the coastal region that is about (2/3)—or
in detail, (1 − κ2)—the tectonic rate even though the seis-
mogenic block is locked to the lower plate. The other part of
the reloading was acquired very quickly in the post-seismic
phase by the rapid motion of the creep block. A geodetic
survey across the entire system would see the complete pic-
ture where the seismogenic block is in fact moving landward
(with respect to the back block) at a constant rate of R, while
the creep block is also moving landward at a rate of about
(1/3)R. We shall return to this aspect later in the section
where we consider a modified Savage model.

3. Connection to Observations
The simple two-blockmechanicalmodel cannotmatch any

spatial details of observed deformation, but itmight be able to
match integrated quantities such as: ratios of earthquake re-
currence time to characteristic creep time, ratio of integrated
post-seismic back-slip to total slip, and segment averaged
stresses. I will show that the observed value of (tfail/τ) for
the Shikoku segment allows us to infer other model parame-
ters and make predictions for other observable ratios.
3.1 Ratio of post-seismic slip to co-seismic slip
The earthquake recurrence time for the Shikoku segment

of the Nankai zone is variable: the last two intervals are
147 years and 92 years. By comparison, the characteris-
tic time of rapid post-seismic creep is much shorter; e.g.
Savage and Thatcher (1992) fit coastal uplift data with a
combination linear reloading and rapid exponential reload-
ing with a characteristic time of about 5 years. Thus, the
observed ratio of (tfail/τ) in the Shikoku segment is about
20 or so; clearly in the parameter space of (tfail/τ) 
 1.
If we choose model parameters to mimic the Shikoku seg-
ment geometry, κ2 = (1/3), and the model predicts that the
(�upost/�ucoseismic) ratio is about (1/3). Average co-seismic
slip is about 4 m (Ando, 1982), but�ucoseismic is about 6 m in
the main asperity beneath the coast of Shikoku (Satake and
Tanioka, 2001; though it may be as large as 11 m, Sagiya and
Thatcher, 1999). The total post-seismic “backslip” embod-
ied in the geodetic analysis of Savage and Thatcher (1992)
is less than 2 m, and the (�upost/�ucoseismic) ratio from their
uplift data is close to (1/4). Another estimate of the inte-
grated backslip is provided by Sagiya (1999) who estimated
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up to 3 m backslip. With the range in co-seismic and post-
seismic slip estimates, the (�upost/�ucoseismic) ratio ranges
from about (1/4) to more than (1/2); and the predicted ratio
of (1/3) falls in the middle of this range. For any subduc-
tion zone segment similar to Shikoku with a relatively short
characteristic time for deep creep, you should expect �upost
to be a substantial fraction of the co-seismic displacement.
Of course, there ismore than just onemodel that canfit this

pair of non-dimensionalized values. There is no doubt that
more complicated models for the deep creep constitutive law
could match these values (e.g., Stuart, 1988). Nonetheless,
themain point here is that the simplest possiblemodel of seis-
mogenic and deep creep interaction can also approximately
match the observed ratio of integrated post-seismic backslip
in the deep creep zone to coseismic slip in the seismogenic
zone.
3.2 Interface viscosity in the deep creep segment
Interface viscosity is an obscure property of the deep creep

interface that depends on many hidden variables. One could
extract some values from the rate-and-state friction constitu-
tive law if you are willing to extrapolate the internal parame-
ters down to the deep creep conditions. Indeed, simulations
of seismogenic/creep zone interaction such as those by Stuart
(1988) and others must calculate the effective ζ inside their
computer programs. What we really need to do is find some
way tomeasure ζ with observations—we can do that! Glanc-
ing back at the solution for v(t) (Eq. (11)), we see thatψ only
affects the deformation through its appearance in τ . Recall
that:

τ = ψ/(k1 + k2), (8, again)

and we re-arrange this to solve for ζ :

ζ = τ(k1 + k2)/W2. (14a)

Given that W2, k1, and k2, are set by subduction zone geom-
etry, the main challenge is to observe τ . The best way to
obtain a good estimate for τ is to measure the characteristic
time of the deep creep post-seismic transient. As discussed
above, that has been done for the Shikoku segment with the
result that τ is about 5 years.
Thus, with τ now directly measured, the only other vari-

able in Eq. (14) is ζ . We can substitute for k1 and k2 to have
an explicit formula for ζ that depends on the subduction zone
geometry and elasticity:

ζ = τ((8/3)μ sin δ)(2W1W2 + (W1 + W2)
2)/

(W 2
2 (W1 + W2))) (14b)

and for the special case when W1 = W2, the formula is:

ζ = τ(8μ sin δ)/W2 (W1 = W2). (14c)

The units of ζ are 〈stress/velocity〉, and hence the SI units
will be 〈Pa/(m/s)〉. The units of this interface viscosity also
can be viewed as 〈Pa s/m〉, and interpreted as 〈bulk viscos-
ity/interface thickness〉. But it is more practical to think of ζ

as an interface property that gives the slip velocity response
to an imposed shear stress across the interface.
Now, lets calculate the numerical value of ζ for the creep

portion of the plate interface beneath Shikoku. With W2 =

150 km and μ = 5 × 1010 Pa (compromise between crust
and mantle values), and τ = 5 years, we find:

ζ = 8.4 × 1013 Pa/(m/s).

Tomy knowledge, this is the first time that the interface creep
viscosity has been estimated directly from observations in
Shikoku, or in any other subduction zone. Note that other in-
vestigators of seismogenic/creep zone interaction must have
used some comparable value in their calculations, but they
have chosen not to emphasize this aspect of their studies. In
the context of the simple linear model, it is remarkably easy
to “invert” the observed value for τ into a value for inter-
face viscosity. The theory is certainly trivial and it is easy to
specify the subduction zone geometry, but finding a good es-
timate for τ is the difficult part. Here, I have used the results
of 50 years of geodetic measurements in the Nankai region
as analyzed by a long list of distinguished investigators. In
a later section, I shall calculate ζ for the Alaska and Chile
subduction zones based on less-scrutinized estimates for τ .
A challenge for the future is to obtain good estimates for τ

in many other subduction zones.
3.3 Stress in the deep creep plate interface
The absolute stress level in the seismogenic zone over the

earthquake cycle must fall between σo and σfail; which for
the two-block model is set by the choice of either u(0) or
ufail. Thus, the seismogenic interface average stress level is
an “external” parameter. In contrast, the stress level at the
creep zone interface is determined internally by the system
as its finds the stable system path. The creep interface force
is proportional to slip velocity across the interface. Thus,
the k1 and k2 springs could both exert a high force on the
creep block, but if these elastic forces balance, then this high
level of background stress has no effect on the creep interface
stress level. So what does determine the stress level on the
creep interface?
During the earthquake cycle, there can be a large variation

of force on the creep interface, though the force will always
be directed landward for the steady-state solution. If the in-
terface is weak (small ζ ) so that the subducting plate can
slide past with only small stresses at the interface, then the
shear stress would be small during most of the earthquake
cycle. But just after the earthquake occurs, force balance
on the creep block makes it “backslip” at a fast enough rate
to generate a creep interface stress that is comparable to the
earthquake stress drop. Thus, for the case of a very weak
creep interface, the average stress over the earthquake cycle
will be somewhere between zero and the earthquake stress
drop. At the other extreme, if the creep interface viscos-
ity is very high such that high stresses are required to make
the overlying plate slip across the subducting plate, then the
systemwill evolve to where the k2 spring is much more com-
pressed than the k1 spring. This elastic force mismatch can
then balance the viscous drag force. In the extreme limit
where the seismogenic block forces are tiny compared to
this viscous drag, then the steady state solution will be that
v′(t) is zero throughout the earthquake cycle and the slip
velocity at the deep creep interface will be about R. Hence
the creep interface force will be about ψR. For the above
extreme cases, the average creep zone force will either fall
between 0 and � f , or be about ψR.
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Lets now consider the general solution to the two-block
model and look further into the average creep interface stress.
Given the steady-state solution for v′

ss(t) in Eq. (13), it is
straightforward to construct the force acting across the deep
creep interface through the earthquake cycle:

fcreep(t) = ψ(R − v′
ss(t)) (4, again)

then integrate this force from t = 0 to t = tfail and divide
by tfail to find the average creep force. Since we can do this
analytically, we can then view the explicit dependence of the
average force on all the system variables. But the answer is:

fcreepAV = ψR. (15)

Yes, the deep creep interface force averaged over the earth-
quake cycle is completely independent of all other parame-
ters. The easiest way to see that this result must be true is to
consider the kinematic constraint condition on v′

ss . Given the
above discussion, there is no surprise that fcreepAV is (ψR) for
parameter choices that make (tfail/τ) � 1, but the curious
result is for the case of a weak creep zone such that fcreepAV
should be between zero and the earthquake force drop. It
turns out that (ψR) must be precisely within this range at the
correct quantitative value to equal fcreepAV. Of course, this
cannot be a coincidence. We will first explore this facet, and
then make use of it in the next section.
While we can analyze the system equations to derive

fcreepAV = ψR, perhaps the best insight is gained by ex-
amining the graphical solution for u(t) and v(t) at steady-
state (Fig. 5). Two key iso-force lines are drawn in this
graph. When the spring forces are equal and opposite (for
v = (k1/k2)u), then the creep block force balance requires
that v′ = R and u′ = 0. Hence, the system cannot follow a
path along this iso-force line. The arrows in Fig. 5 show the
direction of system trajectories from this iso-force line point
“up”. The other key iso-force line is for a net spring force on
the creep block of (−ψR) in the trenchward direction. This
requires a viscous drag force at the creep interface of (+ψR),
which means that v′ = 0. Given that the seismogenic block
moves landward at a rate of R, the k1 spring will continue to
compress which will move the system off this iso-force line.
The system trajectories are plotted in Fig. 5 and they point
to the “right”. From these considerations, it is clear that the
mechanical system will be attracted to some path between
these two iso-force lines. The earthquake will occur when
the system path hits the vertical line for ufail, then v remains
the samewhile u jumps back by�u. A complete steady-state
earthquake cycle path is shown. Note that the system is at-
tracted to a path such that the earthquake jump places it above
the v′ = 0 iso-force line: v′ is negative above this iso-force
line, and this trajectory is the post-seismic phase of backslip.
Once the system crosses the v′ = 0 iso-force, the trajec-
tory points toward +v and +u and it follows a nearly linear
trend until it hits ufail again. Figure 5 shows two choices for
ufail, where all other system variables are the same. While
the average force level on the seismogenic interface depends
directly on this “external” choice for ufail, the steady state
system path is balanced about the v′ = 0 iso-force line for
any choice of ufail. Figure 5 clearly shows the force acting
on the creep interface varies about the value of (ψR)—and
then the analytic solution shows that it is exactly ψR.

Fig. 5. Plot of creep block displacement (v) versus seismogenic block
displacement (u). Two iso-force lines are shown, with the resultant in-
stantaneous block velocities indicated. Open-headed arrows show in-
stantaneous system trajectories at various points in (u, v) space. The
“earthquake” occurs when u increases to the failure value, ufail. �u
is the displacement jump associated with earthquake stress drop. The
bold lines and curves schematically plot the steady-state earthquake cy-
cle paths for two different choices of ufail. Note that for a steady-state
system, creep interface force varies about the (ψR) iso-force line for any
choice of ufail.

System path trajectories in Fig. 5 show that the system
will be attracted to its steady-state path no matter what initial
values wemight choose for u and v; though it may takemany
earthquake cycles. Other investigators who use sophisticated
models of seismogenic/creep interaction must allow those
models to evolve over many earthquake cycles to find their
long-term solution, otherwise you have a model that is still
dominated by its transient response to the un-natural human-
imposed initial conditions. The time lost for systemevolution
can be reduced by “pre-stressing” themodel tomake the deep
creep zone stress compatible with the constitutive law and
plate tectonic rate.
3.4 Average creep interface stresses from observations
Wenow turn to another facet of the result that average creep

force is exactly (ψR). As discussed above, we cannotfind the
absolute stress on the seismogenic plate interface based on
seismological/geodetic observations, but the surprising result
is that weCANmeasure the absolute stress for the deep creep
plate interface! The first step in this procedure is described in
the above section where we realize that creep interface force
is independent of the background stress level acting through
the lithosphere above it. In other words, deep creep interface
stress is independent of the absolute stress level acting on
the seismogenic plate interface. Furthermore, the average
stress over the earthquake cycle has the surprisingly simple
formula derived above:

fcreepAV = ψR. (15, again)

We can rewrite this formula (see Eq. (3)) for the average shear
stress acting on the deep creep interface over the earthquake
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cycle as:
σcreepAV = ζ R. (16)

Given that we know R, it is trivial to calculate σcreepAV if
we know ζ—and we do know it. In Subsection 3.3 above,
I derived a simple formula that uses the τ estimate in the
Shikoku segment to calculate ζ . All we need to add is the
plate tectonic velocity of 45 mm/year (Seno et al., 1993) to
calculate a “direct” estimate of the average absolute level of
shear stress acting on the deep creep portion of the Shikoku
subduction zone:

σcreepAV = 1.2 × 105 Pa (or, 1.2 bars). (17)

While many other studies of seismogenic/creep zone interac-
tion in the Nankai must have a similar stress estimate internal
to their numerical calculations, this is (to my knowledge) the
first “direct” estimate of creep interface stress based on ob-
servations and a simple model. The plate interface stress
level of a few bars is a familiar number to many geophysi-
cists because it is just about the same value as earthquake
stress drops for large underthrusting earthquakes.
Letme review the procedure to obtain absolute shear stress

estimates in the deep creep plate interface in subduction
zones: (i) find a geodetically measured value of τ , the char-
acteristic time for post-seismic backslip in the deep creep
interface; (ii) look at a cross-section of the subduction zone
geometry to obtain δ, W1, and W2; (iii) then calculate ζ , the
creep interface viscosity, with Eq. (14); (iv) and then use
this value of ζ , the plate tectonic rate, R, and in Eq. (16), to
find σcreepAV. The simple model that I have used produces
algebraic relations that are easily manipulated to calculate
the absolute stress level on the plate boundary. In a sec-
tion below, we will consider the robustness of this simple
procedure.
3.5 Ratio of deep creep stress and earthquake stress

drops
Our creep interface stress estimate in the above section is

at the lower end of observed earthquake static stress drops
(Kanamori and Anderson, 1975), yet within the range of ob-
served quasi-dynamic stress drops for underthrusting earth-
quakes (Ruff, 1999). If we reflect back on the qualitative
discussion in Subsection 3.3 and recall that (tfail/τ) 
 1, we
would expect that the creep interface stress in Nankai should
fall between zero and the earthquake stress drop. In fact, we
can manipulate Eqs. (16), (8), and (10) to derive an expres-
sion for the ratio of σcreepAV to model earthquake stress drop,
�σEQ:

(σcreepAV/�σEQ) = (W1/W2)(1/κ2)(τ/tfail). (18)

Given our assumed geometry and the measured (τ/tfail) ratio
of (1/20) for the Shikoku region, Eq. (18) predicts that the
(σcreepAV/�σEQ) ratio is about (1/7). Then given the numeri-
cal value of σcreepAV, the model prediction for �σEQ is about
8.4 × 105 Pa (or, 8.4 bars).
We can calculate the model stress drop of the 1946 earth-

quake in the Shikoku zone from the results of Ando (1982)
or Satake and Tanioka (2001). Ando (1982) gives an average
displacement of about 4mover the entire fault area. If we use
Eq. (10) withW1 = 150 km,�uEQ = 4 m, andμ = 5×1010

Pa, then the model stress drop is:

�σEQ = 7.1 × 105 Pa.

On the other hand, if we estimate the asperity stress drop
from the parameters in Satake and Tanioka (2001), we find
that:

�σasp = 35. × 105 Pa.

As expected, the model stress drops agree reasonably well
with the predicted value fromEq. (18). Note that thesemodel
stress drops refer to the simplistic 2-D representation of the
overlying plate elasticity; others might derive slightly differ-
ent numbers for the more correct continuum 3-D model.
Could it be a coincidence that the creep stress is within

an order of magnitude of earthquake stress drop? The creep
stress directly depends on creep interface viscosity and plate
tectonic velocity. Thus, if we seek some deeper understand-
ing of the near-coincidence of the stress drop and creep stress,
then it must come from an examination of what controls
earthquake stress drop and creep interface viscosity. Could
the order-of-magnitude equivalence of stress drop and creep
stress be a consequence of a unified constitutive law? The
answer to this question is beyond the scope of this paper.
3.6 Application to Alaska and Chile
Given how easy it is to estimate amodel interface viscosity

and creep interface stress, it is tempting to apply this proce-
dure to other subduction zones. However, we must remind
ourselves that it is difficult to extract a reliable estimate of
the post-seismic creep characteristic time. Despite this warn-
ing, I shall proceed to estimate ζ and σcreepAV at two other
subduction zones. Previous studies have found evidence for
post-seismic deep creep after the two greatest earthquakes of
the 20th century: the 1960 Chilean (Mw = 9.5) and 1964
Alaskan (Mw = 9.2) earthquakes.
3.6.1 Alaska There is good evidence of co-seismic up-

lift and subsidence in and around the 1964 Alaska earth-
quake (Plafker, 1972), mostly due to the clever use of natural
sea level markers. In addition, many follow-up studies and
geodetic work have provided some evidence of rapid post-
seismic creep and its characteristic time. As summarized in
Brown et al. (1977) and Savage et al. (1998), the best esti-
mate we can make is that the post-seismic rapid creep had
a characteristic time of about 5 years—quite similar to the
Shikoku value—and that the total slip in the deep creep zone
over this time was about 2.3 m. While there are many mod-
els of co-seismic slip for the 1964 earthquake, I will use the
overall average value of 12 m from Brown et al. (1977) for
the sake of internal consistency. Of course, the only geodetic
observation we need to calculate both ζ and σcreepAV is τ , but
I will also check the (�upost/�ucoseismic) ratio for compati-
bility with the model. Since the subduction zone geometry
and size varies from Nankai to Alaska, I use the Alaskan ge-
ometry shown in Fig. 6 with μ = 5× 1010 Pa (the geometry
is from Brown et al., 1977). Now, put the Alaska values for
W1, W2, δ, and τ into Eq. (14b) to obtain:

ζAlaska = 1.6 × 1014 Pa/(m/s).

This creep viscosity estimate is about twice the value we
found for Nankai even though τ is the same; the difference is
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Fig. 6. Model predictions for interface viscosity and deep creep zone
stress for Nankai, Alaska, and Chile subduction zones. Cross-section
sketches show the subduction zone geometry used to calculate the k1 and
k2 constants. Absolute shear stress estimates for the creep interface are
slightly less than earthquake stress drops.

mostly due to the smaller W2/W1 ratio for Alaska. We now
use a plate tectonic rate of 55 mm/year at Alaska to give a
deep creep stress estimate of:

σcreepAV→Alaska = 2.8 × 105 Pa (2.8 bars).

Since the rate is about the same for Nankai and Alaska, the
factor of two increase in stress level for Alaska is mostly due
to the larger ζ estimate.
Newer models of Alaska co-seismic and inter-seismic de-

formation (e.g., Savage et al., 1998) use a subduction zone
geometry that differs from what I used in Fig. 6. However,
the key variable is τ . If the τ estimate remains at around 5
years, then the above numbers will not change too much.
There is still some controversy over the recurrence time for

the great Alaska earthquake, but it is longer than 100 years.
Thus, the model system ratio (tfail/τ ) is much larger than 1,
and we would expect to see that the geodetically measured
ratio of (�upost/�ucoseismic) is (1/3.4). The measured value
of this ratio (from Brown et al., 1977) is (2.3/12), or about
(1/5). This estimate falls just out of the range of various
estimates from Nankai.
3.6.2 Chile Given the coseismic fault displacements

of 20 m or more, there is considerable natural evidence for
the pattern of coseismic uplift and subsidence for the great
1960 Chile earthquake (Plafker and Savage, 1970). Geodetic
surveys are somewhat sparse in Chile, so there is poor spatial
control on subsequent post-seismic deformation. Barrientos
et al. (1992) used two tide gauge stations—one at the edge
and one in the middle of the rupture zone—to detect and
quantify post-seismic slip in the deep creep interface. The
post-seismic deformation could be reasonably fit by a single
exponential function with a characteristic time of 15.6 years,

though Barrientos et al. (1992) also show that a quadratic
curve couldfit the data. Theymodeled the post-seismic creep
by extending the edge of the creeping zone to deeper depths
through time. I can use their summary model parameters
where they found the total slip in the postseismic deformation
phase is about 3 to 5 m over an interface width of about
100 km.
I use the Chile geometry shown in Fig. 6withμ = 5×1010

Pa (the geometry is from Barrientos et al., 1992). Now, put
the Chile values forW1,W2, δ, and τ into Eq. (14b) to obtain:

ζChile = 6.5 × 1014 Pa/(m/s).

This creep viscosity estimate is about a factor of eight larger
than the value we found for Nankai; the increase is due to a
combination of the larger τ and the assumed geometry. We
now use a plate tectonic rate of 84 mm/year at Chile to find
a deep creep stress estimate of:

σcreepAV→Chile = 17.3 × 105 Pa (17.3 bars).

The factor of ten increase in stress level for Chile compared
to Nankai is mostly due to the larger ζ estimate.
For Chile, the great earthquake recurrence time is more

than about 120 years. Thus we have a (tfail/τ ) ratio of
more than 8, which again implies that observed post-seismic
slip in the creep zone should be about (1/3.3) of the co-
seismic amount. Estimates of co-seismic slip for the Chile
earthquake vary from about 20 m up to possibly 40 m (see
Barrientos et al., 1992, for discussion and references), hence
the observed ratio of (�upost/�ucoseismic) is bounded by
(1/13) to (1/4). Clearly, this number should be more re-
fined before we can claim that the simplemodel matches—or
not—the (�upost/�ucoseismic) ratio in Chile.

4. Further Testing of the Model Stress Estimates
The simple two-blockmodel provides formulas to estimate

the plate interface viscosity and the absolute stress state on
the deep creep part of the plate boundary. The results seem
quite reasonable, so it is tempting to accept these numbers
for stress. But before we do so, we must consider the robust-
ness of these results. How sensitive are the final numbers
to small changes in other model parameters or model behav-
ior? The sensitivity to model parameters is directly seen in
the simple formulas. Since we do know subduction zone
geometry and basic elastic constants quite well, there is no
significant source of error there. On the other hand, the sim-
plicity of the model enforces a uniform creep over the entire
downdip length of W2. Realistic deep creep models (e.g.,
Stuart, 1988) show that the post-seismic creep decays with
depth. Hence, the post-seismic characteristic time measures
the creep viscosity of the upper part of the deep creep inter-
face. To probe the impact of this effect, we can perturb the
simple model by concentrating all the plate boundary stress
into a smaller width (Wsmall), similar to using asperities in the
seismogenic zone to concentrate the stress drop. Since we
must convey the same force across the plate boundary, both
the interface viscosity and interface stress will increase by
the factor of W2/Wsmall. How small can Wsmall be? Again,
probably the best constraints are from the Shikoku region.
The spatial-temporal modeling of Sagiya (1999) shows that
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Fig. 7. Robustness of deep creep stress estimate. The assumed linear creep law is shown in (a), the earthquake stress drop interrogates the constitutive law
over the stress/creep velocity range shown as the bold line. (b) through (d) show non-linear variations in the creep law for velocities less than (2/3)R,
and compares the “true” absolute shear stress (σtru) to the stress estimate (σest) from (a).

the post-seismic creep is consistent with a downdip width of
the creep zone of at least 50 km. Most continuum theoretical
models produce post-seismic slip that decays in the downdip
direction with a characteristic distance related to the seismo-
genic zone width; hence a creep zone width of 50 to 150 km
is grossly compatible with the predictions of any smoothly
varying continuum model. If the resistive creep stress in
Shikoku is concentrated in the upper third of the assumed
deep creep zone, then σcreepAV increases from 1.2 to 3.6 bars.
If we also change the length scale for the elasticity constants,
then σcreepAV can increase to 6.6 bars. In conclusion, we an-
ticipate that models more accurate than the two-block model
might produce larger values for both ζ and creep interface
stress, but they should still agree to within a factor of five or
so.
Another potential source of error in these estimates would

be a non-linear constitutive law for the creep zone. The creep
law might follow a simple power law between stress and slip
velocity, or it may require much more complicated friction
laws such as those discussed earlier. Given the evidence for

a “creep event” somewhere in either the seismogenic or deep
creep zone before both the 1946 earthquake (Mogi, 1985) and
the 1960 Chile earthquake (Kanamori and Cipar, 1974; Ci-
fuentes and Silver, 1989), we must ponder the consequences
of non-linear creep laws. While some choices for non-linear
creep will not significantly affect the major conclusions here,
other choices could change our model estimates of absolute
stress in the creep region. It is difficult to find useful analyt-
ical solutions for most non-linear creep laws, but it is easy to
see how various classes of non-linear creep lawswould affect
our results. We obtain the creep viscosity and the absolute
stress level of the creep interface in a two-step process. Fig-
ure 7(a) shows the situation for a linear creep law. Basically,
the stress perturbation from the earthquake “interrogates”
the shape and slope of the interface constitutive law over the
range shown. A linear creep law results in the simple expo-
nential decay back to the pre-seismic stress level. Observing
the characteristic time of this decay response then fixes the
slope of the stress versus velocity relation (i.e. interface creep
viscosity). Then, we use this slope to find the value of abso-
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lute stress associated with the plate tectonic rate, R. Given
that all post-seismic creep observations are roughly consis-
tent with a linear creep law over the “interrogated” range, I
presume that all candidate creep laws are approximated by
a linear law in this range. Hence our estimate of ζ is prob-
ably correct. The other parts of Fig. 7 depict how various
non-linear creep laws may affect our estimate of the absolute
shear stress. Figure 7(b) shows the case where the estimate
for stress is correct even though the creep law is arbitrarily
complicated between a slip velocity of zero and R. Note that
the steady state system path will never visit the complicated
part of the curve at lower velocities. In contrast, Figs. 7(c)
and (d) show cases where the post-seismic deformation sees
a linear creep law with the same slope as in the purely linear
case, yet use of that slope to infer the absolute stress level
will yield values too high or low due to the large change in
slope at slip velocities less than R. Since observed earth-
quake stress drops are similar to or larger than our σcreepAV

estimates, the range of stress extrapolation is smaller than
the “interrogated” stress range. But of course, it is possible
that nature is using a deep creep constitutive law like those
in either Figs. 7(c) or (d).
Is there any way to “interrogate” the creep law in the low

slip velocity region? For the 2-D steady-state solutions, the
answer is “no”. Even if earthquakes randomly change their
stress drop from one cycle to the next, the creep system will
always be at velocities higher than about s ′ = (2/3)R. Look-
ing at the graphical (u, v) space of Fig. 5, we can only place
the system closer to the u′ = 0 line if some outside influence
perturbs the systemby a rapid decrease in f2 or increase in f1.
Thismay be possible with a 3-D systemwhere stress changes
in adjacent subduction zone segments might temporarily in-
crease the landward directed force on the creeper block, thus
allowing it to temporarily slow down and thus interrogate
the constitutive law between the origin and s ′ = (2/3)R. I
encourage the geodetic community to look for possible test
cases of this scenario. Until then, the abovevalues forσcreepAV

may be our best estimates of the absolute shear stress acting
on the deep creep interface of subduction zones.

5. Implications and Conclusions
The Savage model will continue to be the most effective

model to relate geodetic information to plate interface slip
in subduction zones. As shown in Fig. 8, the basic Savage
model assigns a uniform creep velocity to the deep creep
region, though Savage and others have allowed depth vari-
ations in the creep rate in some studies (e.g., Savage et al.,
1998). To date, most of the improvement in subduction zone
modeling has been to use a 3-D Savagemodel and data inver-
sion for “backslip” in the seismogenic zone (e.g., Yabuki and
Matsu’ura, 1992). Most current studies still assume uniform
creep rate in the deep creep portion, and they assume that
this rate is plate tectonic rate unless the data disagree with
this assumption. The continued expansion of GPS networks
will allow inversion for deep creep slip in future studies. In
the meantime, I suggest that a simple formula can be used to
prescribe the “backslip deficit” in the deep creep region over
the earthquake cycle. Figure 8(b) shows this modification
to the Savage model. The key idea is to use the simple for-
mula for the ratio of deep creep rate to plate tectonic rate as a

function of time through the earthquake cycle. As discussed
above, the two-block model predicts that geodetic measure-
ments would see an approximately linear strain rate in the
coastal region during the inter-seismic phase, but at different
rates as the (tfail/τ ) ratio varies from less than one to more
than one. The case of (tfail/τ) � 1 is exactly the situation
for the basic Savage model, where the deep creep slip veloc-
ity is nearly R throughout the entire seismic cycle. But for
the case of (tfail/τ) 
 1, the behavior is quite different as
there will be a distinct rapid post-seismic creep followed by
a nearly constant creep rate on the deep creep zone through
most of the earthquake cycle, but at a rate less than R. The
formula that gives the creep rate throughout the seismic cy-
cle depends on just two parameters; the (tfail/τ ) ratio and κ2,
which just depends on subduction zone geometry:

s ′(t; tfail/τ, κ2) = R[1 − κ2(1 − J exp(t/τ)].

Geodetic observations from the Nankai, Alaska, and Chile
subduction zones all show a rapid post-seismic deep creep
with a characteristic timemuch less than the great earthquake
recurrence time. If we generalize this result to all subduction
zones, then the case of (tfail/τ) 
 1 is the most prevalent
case. In most other subduction zones, there are no geodetic
observations of the rapid post-seismic deep creep, but there is
still a clue to its existence in the inter-seismic phase. Recall
that for (tfail/τ) 
 1, the inter-seismic deep creep quickly
obtains its asymptotic inter-seismic value of:

s ′(t > τ ; tfail/τ 
 1, κ2) ⇒ R(1 − κ2).

Thus, the prediction would be that geodetic measurements
made in the inter-seismic phase at a “typical” subduction
zone would be best matched by the modified Savage model
with a deep creep velocity of R(1 − κ2), not R. Recall that
(1 − κ2) has a value of about (2/3) for W1 = W2. It is
somewhat counter-intuitive that only in the extreme case of
high interface viscosity with creep stresses much higher than
earthquake stress drops that would we expect to see the basic
Savage model of Fig. 8(a).
There are some geodetic estimates of the deep creep slip

velocity in a few subduction zones. Note that a geodetic
survey that measures the absolute motion of a point above
the locked seismogenic zone to a point in the plate interior
(e.g., VLBI methods) should measure R; this measurement
will not be sensitive to the deep creep velocity. One must use
observations sensitive to the strain between the seismogenic
and creep block. Recent results for the Nankai and Alaska
appear to fit the coastal strain rate data with deep creep slip
rates close to—or possibly even larger than—the plate tec-
tonic rate of R (see references for Nankai and Alaska). Thus,
current geodetic results of the inter-seismic strain rate vio-
late this prediction of the model. On the other hand, since
large post-seismic creep was also observed at both Nankai
and Alaska, it seems that the geodetic observations are not
compatible with a steady-state system—independent of any
model which seeks to make a quantitative connection (see
Sato and Matsu’ura, 1992, for related discussion). I re-
gard this post-seismic/inter-seismic mismatch as one of the
more interesting mysteries about seismogenic/creep interac-
tion during the earthquake cycle.
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Fig. 8. The two-block model offers a formula for the slip rate in the deep creep plate interface. (a) shows the basic Savage model, where (b) shows
the modified Savage model (e.g., Savage et al., 1998), with the formula from the two-block model. This formula contains both the post-seismic and
inter-seismic phases of deep creep.

5.1 Summary of model results
The simple two-block model for seismogenic/deep creep

zone interaction with stick-slip and linear creep interface
behavior allows an analytic solution for the entire seismic
cycle in subduction zones. Spatial and temporal integrals
of the analytic solution are readily obtained, and the resul-
tant algebraic relations are easily inverted so that several key
model parameters can be estimated fromobservations. Aside
frombasic subduction zone geometry, themost important ob-
servation is τ , the characteristic time for post-seismic deep
creep. τ has been observed in several subduction zones. e.g.,
Nankai, Alaska, Chile, and possibly other zones (Kasahara,
1975; Heki et al., 1997), and it varies from 5 to 15 years.
Estimates for τ allow us to calculate the deep creep interface
viscosity, and then combined with another algebraic conse-
quence of the simple model, we can calculate the average
absolute level of shear stress acting on the deep creep inter-
face. Values for the Nankai, Alaska, and Chile range from
about 1 to 17 bars. To summarize how this procedure works,
the previous great earthquake provides a “stress test” for the
creep interface, and we extract the material property of in-
terface viscosity from the observed τ . Then, the average
creep stress is simply the product of the interface viscosity
and the plate tectonic rate. This last result, remarkable for its
simplicity and ability to produce a value for absolute stress
along the plate boundary, does assume that we can extrapo-
late the measured linear creep law back to zero velocity. This
assumption should be vigorously tested by future studies.
All of the observed values for τ are much smaller

than great earthquake recurrence times in these subduction
zones. Hence the key system ratio of (tfail/τ ) is much larger
than one, which then makes several predictions for deforma-
tion over the seismic cycle. The predictions for the

(�upost/�ucoseismic) ratio have values close to (1/3), obser-
vations of this ratio vary from less than (1/10) to more than
(1/2). The inter-seismic creep zone slip rate is a more se-
vere test for the model. For the case of (tfail/τ) 
 1, the
inter-seismic creep velocity across the deep creep interface
must be less than R, and should be about (2/3)R for the
subduction zones considered here. More complicated theo-
retical models should produce this same conclusion, though
the numerical value of the factor could be slightly differ-
ent. Yet many geodetic studies in several subduction zones
find that the strain data in the coastal region (i.e. above the
seismogenic/creep interface) can bematchedwith deep creep
velocities of R. Thus, there is a mismatch between themodel
prediction and the observed rates of deep creep. To construct
a better model to match observed inter-seismic creep rates,
one must violate one or more of the fundamental constraints.
For example, youmight argue that despite thousands of earth-
quake cycles in the Nankai, Alaska, and Chile subduction
zones, these systems are far away from the steady-state path.
Or, you could invent a stick-creep-stick constitutive law for
the deep creep interface that would produce a creep rate of
R over a portion of the seismic cycle. To make progress in
understanding the earthquake cycle and seismogenic/creep
interaction, we need many more high-quality geodetic re-
sults that can point us in the right direction.
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