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Observations and modeling of 630 nm airglow and total electron content associated

with traveling ionospheric disturbances over Shigaraki, Japan
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Southwestward-propagating medium-scale traveling ionospheric disturbances (MSTIDs) observed over Shi-
garaki (34.85°N, 136.10°E) in Japan on the night of May 22, 1998 are analyzed in detail. The MSTIDs were
detected with a 630.0 nm (OI) all-sky imager at Shigaraki and a large number of GPS (Global Positioning Sys-
tem) receivers distributed around Shigaraki. Each GPS receiver provided total electron content (TEC) between the
GPS altitude (20,200 km) and the ground. MSTID amplitudes varied in space and time, and showed decay and
enhancement during the southwestward propagation, suggesting that amplitudes of atmospheric gravity waves and
the interaction process between gravity waves and F' region plasma were highly variable. It is found that spatial
and temporal fluctuations of the 630 nm intensity are well correlated with those of GPS-TEC except for a certain
period of time. The Scheffield University Plasmasphere Ionosphere Model (SUPIM) is used to obtain theoretical
relationships between the 630 nm airglow intensity and GPS-TEC and between their fluctuation amplitudes. The
results indicate that the fluctuation amplitudes observed in weak airglow regions are caused by an electron density
fluctuation of about £20% occurring around an altitude of 250 km, where the 630 nm emission rate reaches a max-
imum, below the F layer peak altitude. Highly enhanced 630 nm intensity and GPS-TEC within a bright airglow

region are due to an electron density enhancement of about 150% occurring at altitudes below 300 km.

1. Introduction

Since Hines (1960) suggested the important role of atmo-
spheric gravity waves in inducing large-scale wavy struc-
tures (say, >100 km) in the ionospheric plasma, traveling
ionospheric disturbances (TIDs) in the F' region, which are
ionospheric manifestations of atmospheric gravity waves,
have been extensively observed using radio techniques such
as ionosonde, incoherent scatter radar, HF Doppler, satel-
lite beacon wave reception, etc.; see reviews by Hunsucker
(1982) and Hocke and Schlegel (1996). These techniques
have disclosed various characteristics of TID structure and
propagation although most of the observations have been
made at a fixed location with a single method.

The recent advent of new observation techniques using
all-sky CCD imagers and Global Positioning System (GPS)
satellite signals has brought about new insights into the two-
dimensional properties of TIDs. In particular, in Japan we
have a network of 630.0 nm (OI) airglow imagers and an ex-
tremely dense GPS network (GEONET; GPS Earth Obser-
vation Network) consisting of about 1000 receivers capable
of measuring total electron content (TEC) between the GPS
altitude (20,200 km) and the ground. This network, cover-
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ing the mid-latitudes around Japan, has been very useful for
finding new features of two-dimensional TID characteristics
over a very wide area (Saito e al., 1998, 2001, 2002; Kubota
et al., 2000) that were never found in previous observations
(e.g., Maeda and Handa, 1980; Shibata and Okuzawa, 1983;
Ogawa et al., 1994; Oliver et al., 1995).

The first FRONT (F region Radio and Optical mea-
surement of Nighttime TID) campaign to study TIDs over
Japan and their physical processes was conducted in May
1998. On the night of May 22, clear medium-scale TIDs
(MSTIDs) were observed with both the 630 nm all-sky im-
ager network (Kubota et al., 2000) and GEONET (Saito et
al., 2001). The spatial and temporal MSTID structures ob-
served with the imagers were similar to those detected with
the GEONET. This fact is expected because 630 nm airglow
and TEC are closely related to the F' region electron density.
Such ground-based observations, however, cannot generally
provide the altitude profile of electron density fluctuations
associated with TIDs, which is essential for the study of
physical processes of the interaction between gravity waves
and the ionosphere (Hooke, 1968, 1970).

In this paper we analyze the May 22, 1998 MSTID event
in detail, focusing on the MSTIDs over Shigaraki (34.85°N,
136.10°E). We first analyze simultaneous data from a 630
nm imager at Shigaraki and GEONET to clarify dynami-
cal features of the MSTIDs and to obtain spatial and tem-
poral relationships between the 630 nm intensity and TEC.
Then we use an ionospheric-plasmaspheric electron density
model, the Scheffield University Plasmasphere lonosphere
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Model (SUPIM), to calculate the airglow intensity and TEC
variations induced by electron density fluctuations. The
model results are compared with the observations.

2. Observations

The 630 nm OI airglow imager at Shigaraki was de-
veloped at the Solar-Terrestrial Environment Laboratory,
Nagoya University, as part of the Optical Mesosphere Ther-
mosphere Imagers (OMTI) (Shiokawa et al., 1999). This
imager, consisting of an all-sky cooled-CCD camera
equipped with a 512 x 512 chip, has a bandwidth of 1.82 nm
and a sensitivity of about 0.053 counts Rayleigh™! s~! and
automatically provides all-sky images about every 200 s.
The imager was calibrated using a 2-m integrating-sphere
to know absolute 630 nm intensity in units of Rayleigh (R)
(Shiokawa et al., 2000a). The observed emission intensity
(I) is contaminated by background sky emission (/p) that
is considered to be independent of wavelength. To get I
every 30 min, the all-sky imager measures the intensity at
572.5 nm (bandwidth = 1.77 nm) around which no emis-
sion bands of molecules and atoms in the atmosphere occur
(Shiokawa et al., 1999, 2000a). We hereafter use I — I as
the intensity of 630 nm airglow.

GPS total electron content data were obtained from
GEONET of the Geographical Survey Institute of Japan.
The GEONET has about 1000 GPS receivers distributed in
Japan (average distance between two receivers ~25 km) and
provides TEC with a time resolution of 30 s. This TEC,
however, includes an unknown bias due to satellite and re-
ceiver hardware systems. This bias must be removed to get
absolute value of TEC (hereafter called GPS-TEC) between
the ground and GPS satellite. Otsuka ef al. (2002) have re-
cently developed a new method to derive approximate GPS-
TEC from observed TEC. This method is very useful for the
studies of ionospheric and plasmaspheric TEC (Shiokawa et
al., 2000b; Balan et al., 2002). The present paper also uses
this method to obtain the GPS-TEC.

Geomagnetic activities on May 22, 1998 were a little
disturbed because 3-hour Kp indices were 3+, 1, 1, 2—,
2,3—, 1,1 (ZKp = 14).

2.1 630 nm airglow

All-sky images obtained at Shigaraki were mapped onto
a horizontal plane in a geographic coordinate system by as-
suming an emission altitude of 250 km around which the
volume emission rate of 630 nm airglow has a maximum
(see below). Figure 1 displays time variation of the intensity
(I — Ip) map from 1301 to 1535 UT (from 2201 to 0035
LT) on May 22, 1998. Each map covers 32.50°-37.62°N
(570 km) in latitude and 134.00°-139.12°E (470 km) in lon-
gitude. In mapping the all-sky images onto geographic co-
ordinates, the images were flat-fielded (Garcia et al., 1997)
and not corrected for the Van Rhijn effect that is negligible
in Fig. 1 because each map displays the data within a field
of view of ~45° around the zenith.

A faint TID, whose phase front extends in the northwest-
southeast direction, is discernible in the eastern sky in the
1301 UT map. This TID that propagates at 80 m s~! to-
ward the southwest passes over Shigaraki at about 1323 UT,
begins to brighten at about 1331 UT and disappears from
the field of view at 1438 UT (see Fig. 2 in more detail). At

1322 UT two TID signatures, one extending from (36.5°N,
137.0°E) to (34.0°N, 139.0°E) and the other around the up-
per right corner, appear in the northeastern sky: the intensi-
ties of these TIDs increase strongly as they propagate toward
the southwest at about 80 m s~'. The latter TID passes the
zenith of Shigaraki at 1452 UT (160 R; see below) and then
becomes faint. At 1408 UT an additional TID appears at
around (33.5°N, 139.0°E). As seen in the 14221434 UT
maps, this TID extends from the northwest to the southeast
although its brightness is faint over Shigaraki. A bright TID
appears in the upper right corner at 1431 UT. It increases
the intensity during the southwestward propagation, but be-
comes faint before reaching over Shigaraki. Note a very
bright spot at around (37.5°N, 135.8°E) in the 1442 UT map
that migrates to the southeast along the northern edge of the
bright TID and finally merges into the bright TID. This spot
is due to cloud. The maps shown in Fig. 1 thus indicate the
dynamical growth and decay features of the MSTIDs and
suggest that the interaction between gravity waves and iono-
spheric plasma is not uniform even in a relatively small area
(570 km x 470 km) due to the spatial and temporal variabil-
ities of gravity waves and the F' region electron density.

The detailed northeast-southwest propagation character-
istics of TIDs are discernible in Fig. 2 which gives time vari-
ation of the emission intensity from 1300 to 1600 UT along
the NE (36.5°N, 138.0°E)-SW (32.5°N, 134.0°E) direction
(~600 km) shown in Fig. 1. Shigaraki is located close to
the 300 km point. A series of MSTIDs propagating from the
northeast to the southwest are clearly seen until 1530 UT al-
though the intensity varies in time and space. The strongest
intensity with 200 R or more appears at around 1420 UT
in the southwestern sky. It is interesting to note that (1) all
the airglow bands are enhanced during 1400-1500 UT, and
(2) the faint TIDs that have propagated from the north in-
tensify in the south of Shigaraki after 1400 UT while the
bright TIDs that have also propagated from the north be-
come faint near Shigaraki after 1500 UT. On this night, the
middle and upper atmosphere (MU) radar observed electron
density over Shigaraki (see figure 7 of Saito et al., 2002).
The F layer peak altitude descended from 380 km at 1300
UT to 360 km at 1345 UT after which, unfortunately, strong
sporadic E layer prevented the F region observations below
400 km. The sporadic £ layer disappeared at about 1545 UT
at which time the F layer peak altitude was 410 km. Then
the peak altitude descended gradually to attain to 330 km at
1700 UT. It is thus inferred that (1) the airglow enhance-
ments during 1400-1500 UT were caused by the downward
movement of the F region and (2) its decay after 1500 UT
was due to the F region uplift.

The physical parameters of the MSTIDs estimated from
Fig. 2 are: horizontal wavelength = 200-300 km, period =
30-50 min, and phase velocity = 80-100 m s~!. The simple
dispersion relation of internal gravity waves given by Hines
(1960)is (L /L.)> = (T/T»)*> — 1 where L, and L. are the
horizontal and vertical wavelengths, respectively, T is the
wave period, and 7}, is the Brunt-Viisild period (~15 min
in the F region). This relation yields the vertical wavelength
of the order of 100 km.

Time variation of /g (background 572.5 nm intensity)
at the zenith of Shigaraki is shown in the upper panel in
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Fig. 1. Time variation of 630 nm intensity map in geographic coordinates (32.50°-37.62°N, 134.00°-139.12°E) from 1301 to 1535 UT (from 2201 to
0035 LT) on May 22, 1998. An emission altitude of 250 km is assumed to map the all-sky images into geographic coordinates. The position of Shigaraki

is marked by the white square.
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Fig. 2. Time variation of 630 nm intensity along the NE (36.50°N, 138.0°E)-SW (32.50°N, 134.0°E) direction (~600 km) shown in Fig. 1. The thick
vertical bars denote the times when the background 572.5 nm intensity was measured. Shigaraki is located close to the 300 km point.

Fig. 3. The lower panel shows time variation of / — Iz (630
nm emission intensity from the ionosphere). This intensity
varies between 60 and 80 R with fluctuation amplitudes of
a few-6 R (i.e., relative amplitudes of a few-8%) during
1300-1620 UT except for the period between 1430 and 1500
UT when the intensity is largely enhanced up to 160 R
(almost twice the quiet value of 80 R). This enhancement
is obviously related to the passage of the brightest 630 nm
region over Shigaraki (Figs. 1 and 2). The rapid intensity
increase after 1630 UT is due to cloudy sky.

2.2 GPS-TEC

Simultaneous observations of GPS-TEC were made at a
receiving station in Nagoya (35.17°N, 136.97°E), 85 km east
of Shigaraki. Figure 4(a) shows the 630 nm intensity maps
(every 15 min) picked up from Fig. 1. Also marked are 300-
km subionospheric points of the ray paths from two GPS
satellites (PRN#08 and 09) to the Nagoya receiver. The
subionospheric points move gradually toward ENE while
the TIDs propagate toward SW.

Time variation of vertical GPS-TEC at the subionospheric
point for each GPS ray path is shown in Fig. 5(a). Vertical
GPS-TEC is derived by applying the Otsuka et al. (2002)
method and is defined as (slant TEC) x S. Here, S is the
slant factor that is determined as a ratio of the assumed iono-
spheric thickness (250 km) to the ray path length between
the 300 and 550 km altitudes. The vertical TECs in Fig. 5(a)
are highly variable in space and time, reflecting the fact that
the ray paths cross the highly structured ionosphere. Com-
parison of Figs. 5(a) and 4(a) indicates the following facts:
(1) when the GPS ray paths lie within the bright (dark) air-
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Fig. 3. Time variations of (upper) background 572.5 nm intensity (every 30
min) and (lower) 630 nm intensity at the zenith of Shigaraki from 1300
to 1700 UT (from 2200 to 0200 LT). The 630 nm intensity enhancement
after 1620 UT is due to cloudy sky.
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Fig. 4. (a) Time variation of 630 nm intensity maps in geographic coordinates. Also shown are the 300-km subionospheric points of ray paths from two
GPS satellites to a receiver in Nagoya. The bright spot at around (37.0°N, 136.0°E) at 1445 UT is due to cloud. The positions of Shigaraki and Nagoya
are marked by the black square and circle, respectively. (b) GPS-TEC fluctuation maps at the same times as Fig. 4(a).
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Fig. 5. (a) Time variations of vertical GPS-TEC observed in Nagoya

using two GPS satellites. (b) Deviation of the vertical GPS-TEC from
two-hour running mean for each GPS.

glow regions, the vertical TECs are enhanced (decreased),
suggesting one-to-one correspondence between the airglow
intensity and TEC variations (that is, the airglow intensity
is strongly dependent on the F region electron density);
(2) between 1330 and 1530 UT when the TIDs are active
(Fig. 2), the average vertical GPS-TECs are roughly 14-15
TEC units (TECU; 1 TECU = 10'° electrons m~2) within
and around the enhanced airglow regions and are roughly
11-13 TECU around the suppressed airglow regions. Fig-
ure 5(b) shows deviation of GPS-TEC from two-hour run-
ning mean for each GPS satellite. Wavy structures with pe-
riods of 10—40 min can be seen. Fluctuation amplitudes are
about 0.5 TECU (a few % of the background) in and around
the weak airglow regions and are about 2.5 TECU (20%) in
the brightest regions. Note that our TEC fluctuation ampli-
tudes are larger than those of MSTIDs studied by Saito et al.
(1998).
2.3 Comparison of 630 nm intensity and GPS-TEC

We constructed a spatial distribution of GPS-TEC fluctu-
ations (deviations from two-hour running mean) by apply-
ing the Saito et al. (1998) method to GPS-TEC data avail-
able from the GPS receivers located in the central part of
Japan. The GPS-TEC fluctuation maps at the same times

as Fig. 4(a) are displayed in Fig. 4(b) where the data with
satellite elevation angles larger than 45° are used. Compar-
ison of Figs. 4(a) and 4(b) indicates that the following fea-
tures: (1) before 1500 UT there is clear spatial coincidence
between the bright (dark) airglow regions and the positive
(negative) TEC fluctuation regions; (2) after 1500 UT the
airglow intensities are generally faint whereas the TEC fluc-
tuation amplitudes keep high values. The latter fact suggests
that the high-amplitude electron density fluctuation regions
ascend to the higher altitudes after 1500 UT where the 630
nm emission rate is low. This ascent can be related to the
upward motion of the F' region peak as inferred from the
MU radar observations (Subsection 2.1).

Figure 6 shows the TEC and 630 nm fluctuation distri-
butions at 1430 UT along the NE (36.5°N, 138.0°E)-SW
(32.5°N, 134.0°E) direction (~600 km) shown in Fig. 4. It
is clear that the enhanced (depleted) TEC fluctuation regions
coexist well with the enhanced (depleted) airglow regions;
that is, a 70 R variation (from 150 to 80 R) at distances be-
tween 200 and 300 corresponds to 1 TECU and a 90 R vari-
ation (from 80 to 170 R) between 300 and 500 km does to
1.5 TECU. Such correlation is expected from the possible
relationship between enhancements in the F' region electron
density and 630 nm intensity. In Subsection 2.1 we have
estimated the TID vertical wavelength of about 100 km. If
this were the case, there should appear a significant phase
difference in time and space between the airglow intensity
and TEC. Our observations indicate that the apparent verti-
cal wavelength was far longer than 100 km.

GEONET measures TEC from one GPS satellite simul-
taneously at many receiving stations. This capability en-
ables us to construct a time history of GPS-TEC at a fixed
location. Figure 7(a) displays time variation of GPS-TEC at
the zenith of Shigaraki observed with PRN#09 whose 400-
km subionospheric points were close to Shigaraki between
1310 and 1510 UT. Comparison between Figs. 2 and 7(a)
indicates that (1) the small GPS-TEC maxima at around
1330 and 1410 UT correspond well to the weak airglow re-
gions, and (2) GPS-TEC reaches a maximum of 13 TECU
at around 1450 UT when the brightest airglow band passes
over Shigaraki. Figure 7(b) shows GPS-TEC deviation from
two-hour running mean together with the 630 nm intensity
(lower panel in Fig. 3). A 80 R enhancement centered at
around 1452 UT corresponds well to the enhancement of
3 TECU (that is, no phase shift between the airglow inten-
sity and TEC), and the small-amplitude fluctuations in the
630 nm intensity (<5 R) before 1430 UT are correlated with
those in GPS-TEC (<1 TECU).

2.4 Summary of observations

The observations at Shigaraki are summarized as follows:

1. A series of MSTIDs propagating from NE to SW were
detected in the 630 nm airglow maps. TID parameters are:
horizontal wavelength = 200-300 km, period = 30-50
min, and phase velocity = 80-100 m s~!.

2. The MSTIDs grew and decayed even in a small area
of 570 km (latitude) x 470 km (longitude) due to spatial
and temporal variabilities of gravity waves and/or electron
density. There was one-to-one correspondence between the
airglow intensity and GPS-TEC before 1500 UT, but after
1500 UT this correspondence was a little unclear, perhaps
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because of upward motion of the F layer.

3. Absolute airglow intensity between 1300 and 1620 UT
was 60—80 R with fluctuation amplitudes of a few-6 R (rela-
tive amplitudes of a few-8%). The airglow bands in the Shi-
garaki field of view were simultaneously enhanced between
1400 and 1500 UT, perhaps due to downward movement of
the F' layer. This movement is expected from the simultane-
ous MU radar observations.

4. Average vertical GPS-TECs were 14—15 TECU within
and around enhanced airglow regions and about 11-13
TECU around suppressed airglow regions. GPS-TEC
showed clear wavy structures with periods of 10-40 min
and fluctuation amplitudes of 0.5-2.5 TECU (relative am-
plitudes of a few-20%). The amplitude became higher with
increasing period.

5. In particular, when the brightest airglow band passed
over Shigaraki, the airglow intensity and vertical GPS-TEC
increased by 80 R and 3 TECU, respectively.

3. Modeling of Airglow and GPS-TEC

Our ground-based observations give no information on
the altitude profiles of the 630 nm emission rate Vg30(z)
and electron density N.(z). Modeling work is necessary
to understand the relationships between these quantities
and also between V7 (= [ Ve30dz) and TEC (= [ N, dz)
that are measured on the ground. In this paper we use
the SUPIM to model the background N.(z) (Balan and
Bailey, 1995). Then, we add an altitude-dependent electron
density perturbation to N, to calculate 630 nm intensity and
GPS-TEC variations and compare the results with the obser-
vations.
3.1 The SUPIM model

Using SUPIM we model N.y(z) in the background iono-
sphere and plasmasphere at altitudes between 150 and
20,200 km (GPS altitude) at 1400 UT (2300 LT) on May
22, 1998 at the zenith of Shigaraki. Some parameters input
into SUPIM are: geomagnetic latitude = 26°N, geographic
longitude = 135°E, 10.7-cm solar flux (F10.7) = 101, and
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10.7-cm solar flux averaged over three solar rotations (81
days) = 85. Neutral densities and temperatures are obtained
from MSIS86 (Hedin, 1987). North-south neutral winds in
SUPIM are taken from the HWM90 model (Hedin et al.,
1991). Using these parameters we calculated the 630 nm
intensity and GPS-TEC over Shigaraki and found that these
are 43.5 R and 18.8 TECU, respectively, which are different
from the observed values of about 80 R and 11-15 TECU.
Then we reduced the HWM90 N-S wind during 1100-2000
UT to 25% to obtain the results rather consistent with the
observations.

Figure 8 plots altitude profile of the SUPIM electron den-
sity at 1400 UT. This profile gives a GPS-TEC of 16.0
TECU that is a little larger than the value of 11-15 TECU
observed over Shigaraki at 1300-1500 UT (Fig. 7(a)). The
profile below 500 km is enlarged in Fig. 9 where the O pro-
file is also shown. The electron density has a maximum of
2.8 x 10° cm™3 at 300 km. The MU radar observations on
this night showed that the F' layer peak altitude descended
from 380 km at 1300 UT to 360 km at 1345 UT (see Sub-
section 2.1).

3.2 630 nm emission rate

To calculate the 630 nm OI emission rate Vg3 (photons
em™ s7!) using SUPIM, we adopt the following equation
given by Sobral ef al. (1993).

B 0.756 £ ('D)k3[02]N,
T (Ne/[OTD [1 + (k2[N2] + ks[O2] + keNe + k7[0])/Aip]’

(1

V3o

where f('D) = 1.1 is the O('D) quantum yield in O;r
dissociative recombination and Ajp = 7.45x 1073 s~ ! is the
Einstein transition coefficient for O(' D) state. The k; values
are the reaction coefficients of the following reactions:

0,+0" — 0f +0 (ks =1.06 x 107" em’s™), (2)
O('D) + N, » OCP) + N,

(ky =2.30 x 107 ecm’s™1), 3)
O('D) + 0, — OCP) + O,

(ks =3.20 x 107! cm’s™1), “)
O('D) +e — OCP) +e¢

(ks = 6.60 x 1071 cm’s™1), (5)
o('D)+0 — OCP)+0

(k7 =92 x 10713 cm’s™"). (6)

Figure 10 plots altitude profiles of the deactivation rates of
O('D) appearing in Eq. (1) together with the k3[O,] profile.
The estimated altitude profile of Vg3 is plotted in Fig. 9.
The emission layer exists at altitudes between 150 and 400
km where the k;[N,] term in the denominator in Eq. (1) is
predominant, and Vg3 reaches 8 photons cm™ s~! at 250
km, being 50 km (about one scale-height) below the F' layer
peak (300 km). Using a two-station triangulation method,
Kubota et al. (2000) derived the 630 nm emission altitude of
260 + 10 km at 1420 UT on May 22. This altitude is very
consistent with our result (250 km).

The total emission intensity observed on the ground is
given by

(%1000)
20 ¢

SUPIM

Altitude (km)
)

(=]

10° 10t 10° 10°
Electron Density (cm™)

Fig. 8. Electron density profile at altitudes between 150 and 20,200 km
over Shigaraki at 1400 UT on May 22, 1998 derived from SUPIM.
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Fig. 9. Electron and O™ density profiles at altitudes between 150 and 500
km over Shigaraki at 1400 UT on May 22, 1998 derived from SUPIM.
Profile of 630 nm volume emission rate is also plotted.

Vi = / Ve30 dz (photons em 2 s7h)

=107 / Veso dz (Rayleigh). (7

Substituting the Vg3 profile in Eq. (7) gives Vr = Vyp =
71.4 R that is comparable to 75 R observed at 1400 UT.
3.3 TID-induced airglow and GPS-TEC variations

A TID accompanies spatial and temporal changes of elec-
tron density (Hooke, 1968). Porter and Tuan (1974) gave a
complicated functional form of the density change. How-
ever, we estimate the airglow and GPS-TEC values when a
half-wavelength sinusoidal fluctuation along the altitude (z)
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Table 1. Absolute fluctuation amplitudes of 630 nm total emission intensity (|AVr|) and GPS-TEC (|JA GTEC) as a function of 4 (0.2, £0.5, +1.0,
and 42.0), 4 (150 and 250 km), and z (zg < z < z¢ + h; zop = 150, 200, and 250 km).

h =150 km h =250 km
|4 z AV |AGTEC| z AV |AGTEC|
(km) (R) (TECU) (km) (R) (TECU)
0.20 150-300 9.2 0.2 150-400 12.3 0.6
0.20 200-350 9.9 0.4 200-450 8.3 0.7
0.20 250-400 4.0 0.5 250-500 2.8 0.6
0.50 150-300 22.8 0.5 150-400 30.7 1.5
0.50 200-350 24.8 1.0 200450 20.7 1.7
0.50 250-400 9.9 1.2 250-500 6.9 1.5
1.00 150-300 45.8 1.0 150-400 61.5 2.9
1.00 200-350 49.6 2.0 200450 41.4 34
1.00 250-400 19.8 2.5 250-500 13.9 3.0
2.00 150-300 90.1 2.0 150-400 120.1 59
2.00 200-350 97.5 4.0 200450 81.1 6.8
2.00 250-400 38.5 4.7 250-500 27.2 6.1
500 .
SUP Ne(@) = No(@){1 + Asinlz — z0)/ b1} ;
. z0<z<zo+h, )]
N.(z) = Nyy(z) : otherwise, )
400 1 AN where 4 is the maximum fluctuation amplitude, 4 is the half
;é +K5102] of the fluctuation wavelength, and z, is the lowest altitude
;.; . of the fluctuation region. Substituting Egs. (8) and (9) into
g K3[021+, Eq. (1) gives the altitude profile of Vg3 including the fluctu-
< RN ation. In the calculations we neglect the TID (gravity wave)-
300 1 induced variations of the neutral gas densities in Eq. (1).
This because, as calculated in Appendix A, the variations
of these densities are less than the variation in the electron
, density except for TIDs propagating nearly perpendicular to
200 L , the geomagnetic field: in this case the electron density vari-
Ké el ation is largely suppressed. See, for example, a paper by
Hooke (1968) for the neutral density perturbations due to
! . ¢ ' gravity waves. Also, for simplicity we use the background
107 107 107 107 10°

Deactivation Rate (s™)

Fig. 10. Altitude profiles of deactivation rates of O(' D) in Eq. (1). k3[0,]
is also plotted.

is added to the background electron density (Thome, 1964;
Evans et al., 1983). Although such a simple fluctuation may
oversimplify the realistic one that was introduced by Porter
and Tuan (1974) and Porter et al. (1974), it gives us an im-
portant clue to the relationship among the electron density,
airglow, and TEC variations.

The electron density profile in our model is given by

values for the N,/[O*] term in Eq. (1).

We calculated V7 and GPS-TEC for various combinations
of 4, h, and zy; that is, 4 = £0.2, 0.5, +1.0, and +2.0;
h = 150 and 250 km; zy = 150, 200, and 250 km. The
h values adopted here are larger than 50 km correspond-
ing to a vertical wavelength of 100 km (Subsection 2.1).
As noted above, we need 4 far larger than 50 km to ex-
plain no appreciable phase shift between the ariglow and
GPS-TEC (Figs. 6 and 7(b)). We denote V7 as Vg (back-
ground; 71.4 R)+ A Vr (fluctuation) and GTEC (GPS-TEC)
as GTEC (background; 16.0 TECU) + AGTEC. The re-
sults of AV and AGTEC are summarized in Table 1. The
calculations indicate that for positive (negative) 4 less than
1.0, AV and A GTEC have positive (negative) values, and
moreover that their absolute values are almost equal for the
same positive and negative 4. So only the absolute values
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Fig. 11. Altitude profiles of Vg3o perturbed by electron density fluctuations with (a) 2 = 250 km, z9 = 150 km, and 4 = +0.5 (AN, = £50%), (b)
h = 250 km, zp = 150 km, and 4 = +1.0 (AN, = +100%), (c) & = 250 km, zp = 200 km, and 4 = 0.5, and (d) & = 250 km, zp = 200 km, and
A = +1.0. Profile of Vg3 for 4 = 0 is also shown in each panel. Numerical values of Vr = V5o + AVy and GTEC = GTECy + AGTEC are

listed.

of A, AVy, and AGTEC are listed in Table 1. The gen-
eral tendencies recognized from Table 1 are: (1) V7 is most
enhanced when the electron density fluctuations with larger
amplitude and wider altitude-extent appear at altitudes cov-
ering the peak altitude (250 km) of the 630 nm emission
layer, (2) GPS-TEC is most enhanced when the electron
density fluctuations exist around the F region peak altitude
(300 km). Of course, these characteristics depend on the
assumed sinusoidal electron density variation along z.

As examples, Figs. 11(a) and 11(b) show altitude profiles
of Vezo for h = 250 km, zg = 150 km, and 4 = £0.5
(Fig. 11(a)) and +1.0 (Fig. 11(b)). In Fig. 11(a), V7 is
71.4 £ 30.7 R and GPS-TEC is 16.0 + 1.5 TECU, while in
Fig. 11(b), V7 is 71.4 + 61.5 R and GPS-TEC is 16.0 4 2.9
TECU. In these figures, V7 is maximized at 250 km. This
altitude is almost steady for other #, z(, and A combinations.
Figures 11(c) and 11(d) display V3 altitude profiles for
zog = 200 km (that is, the fluctuation region ascends by 50
km compared wtih Figs. 11(a) and 11(b)) while the other
parameters are the same as those in Figs. 11(a) and 11(b).
Vr is still maximized at about 250 km while A V7 decreases
and A GTEC increases.

3.4 Comparison between observations and modeling

Small-amplitude airglow region: The airglow intensi-
ties over Shigaraki were 60—80 R with fluctuation ampli-
tudes of a few-6 R. Our calculations show a background
intensity of 71.4 R that is comparable to the observed value.
The observed fluctuation amplitudes are also comparable to
the values calculated for the electron density fluctuations

with |4 = 0.2 and 150 < z < 300 km (see Table 1). The
observed GPS-TEC of 11-15 TECU is less than the model
value of 16.0 TECU. The observed TEC fluctuation ampli-
tudes are about 0.5 TECU, again consistent with the electron
density fluctuations with | 4| = 0.2.

Large-amplitude airglow region: The observed airglow
intensity and GPS-TEC were enhanced by 80 R and
3 TECU, respectively, above the background when the
brightest airglow region passed over Shigaraki. Table 1 sug-
gests that such high values are possible when 4 is about 1.5
and also the maximum electron density fluctuation appears
below the 300 km altitude.

As noted in Subsection 2.3, after 1500 UT the airglow in-
tensities are low whereas the TEC fluctuation amplitudes are
still high. Table 1 tells that such situation is possible when
the main electron density fluctuation regions exist above,
say, 250 km.

4. Discussion and Conclusions

We observed a series of southward-propagating MSTIDs
over Shigaraki on the night of May 22, 1998. Background
airglow intensity and GPS-TEC were 60-80 R and 11-15
TECU, respectively, and amplitudes of TID-associated air-
glow and GPS-TEC fluctuations were a few-6 R and 0.5-2.5
TECU, respectively. These amplitudes reached 80 R and 3
TECU when a bright airglow band passed over Shigaraki.
This bright region came from the north of the Japanese is-
land as observed by Kubota et al. (2000) and decayed in the
south of Shigaraki. Saito ef al. (2001) observed GPS-TEC
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fluctuations with amplitudes less than 2 TECU on this night
over Japan. Our results over Shigaraki are rather consistent
with these observations.

Decay and enhancement of MSTIDs were clearly de-
tected within the Shigaraki field of view (470 km x 570 km),
suggesting that amplitudes of atmospheric gravity waves
and interaction process between gravity waves and F' region
plasma were highly variable in space and time.

Enhanced (depleted) airglow regions are well coincident
with enhanced (depleted) GPS-TEC regions, which means
that 630 nm intensity is strongly dependent on the F' region
electron density distribution. Brown and Steiger (1972) ob-
served phase differences in time between fluctuations of 630
nm intensity and ionospheric TEC associated with large-
scale TIDs. Porter et al. (1974) predicted such phase differ-
ences for large-scale TIDs. Our observations of MSTIDs,
however, do not indicate such behavior. We have estimated
a vertical wavelength of about 100 km from a simple disper-
sion relation of gravity waves. This means that the gravity
wave has a phase shift of 180° over 50 km in altitude to pro-
duce an appreciable phase difference between the 630 nm
intensity and GPS-GTEC, which is inconsistent with our re-
sult that indicates the apparent vertical wavelength far longer
than 100 km. One possibility to explain this inconsistency
is that under highly variable ionospheric conditions we can-
not use the simple dispersion relation to derive the vertical
wavelength. To resolve the problem simultaneous observa-
tions of F' region plasma density distribution, airglow inten-
sity, and TEC are needed.

We have used SUPIM to calculate theoretical relationship
between 630 nm intensity and GPS-TEC. The results are
reasonably consistent with the observations. The fluctuation
amplitudes of airglow and GPS-TEC in small-amplitude air-
glow regions are explained by an electron density fluctuation
of about 20% occurring around an altitude of 250 km where
the 630 nm emission is maximized. Highly enhanced air-
glow intensity (80 R) and GPS-TEC (3 TECU) within large-
amplitude airglow region seems to be caused by an electron
density fluctuation of about 150% appearing below the 300
km altitude. The 80 R enhancement is also possible when
the F layer simply descends down to lower altitudes to in-
crease the electron density at around 250 km; in this case,
however, no GPS-TEC enhancement is expected. Our sug-
gestion that the altitude range of the electron density fluctu-
ations is mainly below the F region peak is consistent with
the result of Saito et al. (2002). They have found from in-
coherent scatter observations of the MU radar that electron
density variations associated with MSTIDs occurred mainly
at and below the F' region peak.

It is expected from the current modeling works that when
electron density fluctuations exist at altitudes higher than
250 km, airglow intensity is low but TEC fluctuation is high.
Our observations indicate that such situation is possible.
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Appendix A. Electron and Neutral Density Pertur-
bations
For internal gravity waves, the first-order perturbation
(AN,) of the electron density from its unperturbed value
(Ngp) caused by the neutral atmospheric motion (U) is given
by (Hooke, 1970)

Neo(U - Tp) (k- Ip)
a) K

AN, =

(A.1)

where k is the wave vector, I, is a unit vector along the
geomagnetic field, and w is the wave frequency. Eq. (A.1)
is valid under the condition 4k> > 1/H?* where k. is the
vertical component of k and H is the neutral atmospheric
scale height (~50 km in the F region). This condition is
fulfilled for the vertical wavelengths less than 630 km. In
a coordinate system with x axis directed southward and z
axis directed upward in the northern hemisphere, Eq. (A.1)
is rewritten as

AN, _ Ucos(@ + I)cos(p+ 1)
NeO Vph

: (A2)

where V,;,(= w/k) is the phase velocity, / is the magnetic
dip angle (downward positive), 6 is the angle between x
axis and k, and ¢ is the angle between x axis and U. For a
southward-propagating gravity wave, both k and U are in the
x — z plane and k is directed southward and downward. The
asymptotic dispersion relation U,/ U, =~ —k,/k, (Hines,
1960), where U, = U cos¢, U, = —Ussing, k, = kcos9,
and k, = —ksin6, yields & — ¢ = £90°. Hence, Eq. (A.2)
becomes

‘ AN (A.3)

NeO

_ |Usin26 + 1)
B 2V,

Note that [AN,| = 0 when 6 + I = 90°, that is, when K is
perpendicular to the geomagnetic field.

The neutral atmospheric density perturbation (AN) from
its unperturbed value (V) is given by (Hines, 1960)

NoUs(y — 1)1/?
ian|~ Mo (y =1 ,
C

where C is the speed of sound and y is the ratio of specific
heats (= 1.4). Egs. (A.3) and (A.4) together with the rela-
tion 8 — ¢ = £90° gives

|AN,/Neol _ 0.8Csin2(0 + 1)
[AN/Nol ’

(A.4)

A5
Vpn siné (A.5)

The dip angle 7 at Shigaraki is about 45° that results in

|AN,/Ne| . 0.8C cos 20
[AN/Ny '

A.6
Vo sin® (A.6)

Since C at altitudes of 200—-300 km is about 600 m s~! and
Vi in our case is 100 m s™!, Eq. (A.6) becomes

|ANe/Neol  4.8cos20
AN /Nyl

- X. (A.7)
sin 6
For southward/downward-propagating gravity waves (0° <
0 <90°), X <1for4l° <0 < 50° (i.e., kis nearly perpen-
dicular to the geomagnetic field): in this case |[AN./AN|
is largely suppressed (see Eq. (A.3)). X > 1 for other 6’s.
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