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Prediction of the Dst index from solar wind parameters
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Using the Elman-type neural network technique, operational models are constructed that predict the
Dst index two hours in advance. The input data consist of real-time solar wind velocity, density, and
magnetic field data obtained by the Advanced Composition Explorer (ACE) spacecraft since May 1998
(http://www2.crl.go.jp/uk/uk223/service/nnw/index.html). During the period from Febru-
ary to October 1998, eleven storms occurred with minimum Dst values below −80 nT. For ten of these storms the
differences between the predicted minimum Dst and the minimum Dst calculated from ground-based magnetometer
data were less than 23%. For the remaining one storm (beginning on 19 October 1998) the difference was 48%.
The discrepancy is likely to stem from a imperfect correlation between the solar wind parameters near ACE and
those near the earth. While the IMF Bz remains to be the most important parameter, other parameters do have
their effects. For instance, Dst appears to be enhanced when the azimuthal direction of IMF is toward the sun. A
trapezoid-shaped increase in the solar wind density enhances the main phase Dst by almost 10% compared with the
case of no density increase. Velocity effects appear to be stronger than the density effects. Our operational models
have, in principle, no limitations in applicability with respect to storm intensity.

1. Introduction
Accurate quantitative short-range prediction of space

weather has recently become increasingly important because
of expanded level of human activity at high latitudes and
in space. Several empirical methods of time-series analy-
sis have been used as prediction techniques. Time series
analyses are useful because they do not require full under-
standing of the physical processes involved in the interac-
tion between the solar wind and the magnetosphere. If this
relationship were linear, the response of the magnetosphere
would not be hard to calculate. If the linearity holds in this
relationship, the response can be obtained by convolution
of the input data with an empirical impulse-response func-
tion. Iyemori et al. (1979) described a useful average lin-
ear impulse-response function that shows roughly 40-minute
time lags in disturbance indices. Blanchard and McPherron
(1992) described an interesting model based on bimodal rep-
resentation of the response function relating the solar wind
electric field to the AL index. In order to take into account of
nonlinear response of the magnetosphere to the solar wind,
many researchers have tried to obtain accurate geomagnetic
disturbance responses—for the Dst, Kp, AE, and AL indices,
for example—by using time-series analyses.
The disturbance indices Dst and Dst∗ have been predicted

by the method of Burton et al. (1975), using time varying
filter coefficients to incorporate nonlinear responses (e.g.,
Klimas et al., 1997, 1998), or by using other simulation mod-
els in which intense ring current particles are injected from
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the plasma sheet (Ebihara and Ejiri, 1998, 2000). The neu-
ral network (NN) method, an artificial intelligence (AI) ap-
proach, has also been used to investigate the response of the
Dst index to the solar wind. Lundstedt and Wintoft (1994),
for example, have shown that a feed-forward NN method
with a single hidden layer can predict Dst during geomag-
netic storms. Wu and Lundstedt (1997a, b) developed a par-
tially recurrent NN method that during periods of geomag-
netic activity, mainly magnetic storms, results in cross cor-
relations of about 0.9 between the predicted values of Dst
and the Dst values deduced from actual geomagnetic obser-
vation data. For the input parameters, these authors used the
solar wind density N and velocity V, the magnitude of the in-
terplanetary magnetic field (IMF), and the By and Bz com-
ponents of IMF. Kugblenu et al. (1999) used a multi-layer
feed-forward error back-propagation algorithm in their study
and obtained good results considering that the training time
series consisted of only 20 storms.
In August 1997, NASA launched the Advanced Composi-

tion Explorer (ACE) spacecraft into a halo orbit around the
first Lagrangian point, 1.50 million km (0.01 astronomical
units) from the earth in the direction of the sun. The Na-
tional Oceanic and Atmospheric Administration makes con-
tinuous real-time solar wind data from ACE (Zwickl et al.,
1998) available. We have been predicting Dst, using ACE
data obtained by the solar wind electron proton alpha mon-
itor (SWEPAM) (McComas et al., 1998) and the magnetic
field (MAG) instrument (Smith et al., 1998).
An operational model to be used for prediction has to be

constructed for all times even when there are gaps in data,
and must produce good predictions at all times. We have
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Fig. 1. Architecture of the Elman neural network. (Modified from figure 1 in Wu and Lundstedt, 1997a, b).

therefore constructed many trial models for prediction, and
after careful examination and comparison, we have chosen
an Elman-type NN model (Elman, 1990; Wu and Lundstedt,
1997a).
In Section 2, we show the equations for the Elman-type

NN model used to predict Dst. We describe in Section 3 the
ways in which different versions of this model depend on
the conditions of the training time series and explain why we
chose the version evaluated in this paper. In Section 4, we
discuss the predictions based on this version for the period
from February through October 1998. In Section 5, we
check the effect of velocity and density, and explain how
this version’s predicted Dst depends on the direction of the
azimuthal angle of the IMF component in the x-y (GSM)
plane. In Section 6, we compare the NN model with the
Burton type method. In Section 7, we give a summary of our
results.

2. Elman Recurrent NN
The Elman NN is a two-layer back-propagation network

with feedback connections from the hidden layer to its input
layer (Elman, 1990; Wu and Lundstedt, 1997a, b). The
network architecture is shown in Fig. 1, which is the same
as Fig. 1 in Wu and Lundstedt (1997a, b), but modified to
suit the present context. The input layer is divided into two
parts: the true input units and the context units. The context
units hold a copy of the activations of the hidden units from
the previous time step. Feedback (or recurrence) usually
appears as an integral property in an NN, suggesting that
the system has strong time continuation. When R and S are
the number of true inputs and the number of hidden units,
respectively, and when there is one output unit (Dst), the
output of a hidden unit at time t in an input time series is
given by the following equations:

V t
j = tanh

[
R∑

k=1

wk j I
t
k +

R+S∑

k=R+1

wk j V
t−1
k−R

]
(1)

Dst =
S∑

j=1

WjW
t
j . (2)

Where Ik(t) is the input of true input unit k at time t , Vj (t−1)
is the output of hidden unit j in response to the (t −1)th step
of the input time series, andwk j is the weight (the connection
strength) between input unit k and hidden unit j . Wj is the
weight (the connection strength) between the hidden unit j
and output unit Dst (Eq. (1) is the same as equation (1) in
Wu and Lundstedt, 1997a, b).
Constructing an NN model to be used for prediction is

equivalent to deciding on a suitable set of wk j and Wj val-
ues through training involving over 100,000 iterations. Our
initial model (model A) used a training time series that in-
cluded three parameters: the solar wind velocity V , solar
wind density N , and the southward IMF Bz component given
in solar magnetospheric coordinates (GSM). At the end of
training with a time series obtained from the OMNI data of
the National Space Science Data Center (NSSDC/NASA),
the cross correlation coefficient between the predicted and
observed quantities was 0.89. Using real-time solar wind
(RTSW) data from the ACE spacecraft, prediction by
Model A was made open to the public via Web from
April to November 1998 (http://www.crl.go.jp/
uk/uk223/service/nnw/index.html). This pre-
diction model performed reasonably well as seen in the cross
correlation of 0.89 indicated above. With an intention of im-
proving the prediction we constructed two models (model B,
model C) as the next steps, using six parameters in the train-
ing time series. Our next two models (models B and C) used
six parameters in the training time series.

3. Dependence of Prediction on the Training Time
Series

The characteristics of the training time-series data for
models A, B, and C are listed in Table 1. Models A and
B were trained on 5077 hours of data, mainly covering 50
storm periods. Because the operational model has to per-
form well during periods of moderate activity as well as dur-
ing periods of strong activity, model C was trained on 9058
hours of data with 50 active periods including both stormy
and moderately active periods. For almost half (44%) of the
time, the magnitude of Dst was less than 50 nT (i.e., Dst was
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Table 1. Characteristics of the training time-series data for three models.

Model Conditions Duration Parameters Working period

A mainly storm 5077 h Velocity, density, IMF Bs Version 1 model Apr. 1998–Nov. 1998

B mainly storm 5077 h Velocity, density, and IMF Bx, By, Bz, Bt

C storm and quiet 9058 h Velocity, density, and IMF Bx, By, Bz, Bt Version 2 model Dec. 1998–

Bs: southward IMF component Bz (the northward component was set to 0).

Bt: magnitude (total) of IMF.
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Fig. 2. Dst calculated from ground-based data beginning at 12 UT on 02 August 1978 and the corresponding Dst predicted by models B and C.

greater than −50 nT). We examined models with 10, 20, 30,
and 40 hidden units, and the 20-unit version of model C gave
the best result, the cross correlation coefficient being greater
than 0.9 at the end of training. Models B and C were evalu-
ated for periods in 1978 and from February through October
of 1998.
When applied to the RTSW data in the main phase of all

storms, the error of the minimum value of Dst predicted by

model A two hours in advance was within 23% of the Dst
calculated from the data obtained at ground stations. An
Elman-type NN model (models A, B, and C) needs data for
a continuous span of time. If calculation starts immediately
after the minimum Dst of a storm (i.e., during the recovery
phase), the predicted Dst would be at or near moderate levels
(Dst > −50 nT) because by this time the interplanetary Bz
would have turned northward. Calculations for the predic-
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Fig. 3. For each solar rotation (Bartels number) from February to October 1998, Dst calculated from ground-based data (black curve) and Dst predicted
by model C (green curve). Periods labeled with capital letters are shown in more detail in Fig. 4.

tion of Dst must therefore start in the quiet period before a
magnetic storm.
The performance of the three NN models depended on the

characteristics of the data used for the training. An example
of a quiet period is shown in Fig. 2; it covers 120 hours
starting from 12 UT on 2 August 1978. The black line in
the top panel shows the Dst calculated from data obtained at
ground stations. The velocity (indicated by the blue curve
in the middle panel over the range from 0 to 1000 km s−1)
increases from 270 km s−1 at 12 UT on 2 August to 578
km s−1 at 20 UT on 6 August. The density (plotted in
green in the middle panel over the range from 0 to 50 cm−3)
reaches a peak of about 41 cm−3 at 03 UT on 3 August. The
full scale in the bottom panel is ±15 nT, and the IMF Bx,
By, and Bz components are shown, respectively, by blue,
green, and red lines. This panel shows a situation in which
Bz was weakly negative; it covered a quiet/quasi-quiet period
(Dst > −30 nT).
As shown in the top panel, the curve produced by model

C fits the Dst curve calculated from data recorded by ground
stations better than does the curve produced by model B.
This indicates that the use of training data, which include
moderately active as well as fully active periods, produces
a better model. When the final processed solar wind data
gathered after February 1998 were used, model C produced
more accurate predictions during both active and quiet peri-
ods than did models A and B. Since December 1998 we have
therefore been using model C to predict Dst indices from
RTSW data.

4. Prediction Accuracy of Model C
As has been mentioned, all three models were trained us-

ing data gathered during a period of maximum solar activ-
ity (1978–1982), but we evaluated model C’s ability to pre-
dict Dst during a period in which solar activity is increasing
(since February 1998). As is shown in Fig. 3, we used data
continuously gathered by the ACE spacecraft from Febru-
ary to October 1998. Model C takes into account both the
time it takes for the solar wind to travel 1.5 million km from
the first Lagrangian point to the earth magnetosphere and the
response time of the magnetosphere. In Fig. 3, Dst and its
predicted values are plotted for each solar rotation, the solar
rotation number and the starting date being indicated to the
left of each line; the number of days from the start is shown
at the bottom. Plotting in this manner, recurrent activity can
readily be found. The Final Dst (determined by World Data
Center for Geomagnetism, Kyoto, based on data gathered
from ground stations) is shown by the black curves in Fig. 3.
The Dst predictions by model C, shifted to the right by two
hours to compensate for the time lag, are shown by the green
curves. We see that the pattern of the predicted Dst follows
very closely the actual Dst curve.
During the period covered by Fig. 3, there were eleven

storms with a minimum Dst of less than −80 nT. The dif-
ferences between the minimum predicted Dst and the Dst
calculated from the ground data are less than about 23% for
ten of these eleven storms. The remaining one event, start-
ing on 16 October, shows a 48% difference, which probably
is due to a non-perfect correlation of the physical conditions
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Fig. 4. Solar wind velocity (Blue curve) and density (green curve) and the Z component of the interplanetary magnetic field (red curve) during periods
labeled with capital letters, A to H in Fig. 3. The start date for a four-day time span is indicated in each panel. The arrows show the minimum Dst in the
boxed periods of Fig. 3. The downward-pointing triangles indicate noteworthy features.

between the location of ACE (the L1 point) and the vicinity
of the Earth’s magnetosphere. Apart from this exception, the
predicted Dst was in approximate agreement with the actual
Dst during various phases of solar activity.
Figure 4 shows more detailed views of the behavior of the

solar wind parameters in the eight boxed periods of Fig. 3,
each of which spans four days. In each panel of Fig. 4, V
(blue curve), N (green curve), and IMF Bz in the GSM co-
ordinates (red curve) are plotted over ranges of, respectively,
0 to 1000 km s−1, 0 to 100 cm−3, and −25 to +25 nT, ex-
cept in panel C where Bz is plotted over a range of −50 to
+50 nT because of the greater magnitudes of Bz during this
period. The 0 level for Bz is indicated by black line in each
panel. Gaps in solar wind density and velocity curves indi-
cate no data in panels B and C. The blue and black arrows
indicate the Dst minima for the boxed periods of Fig. 3 after
adjusting for the time lag of the prediction.
Each Dst minimum occurred towards the end of a negative

Bz valley rather than exactly at the minimum of the Bz. This

suggests that Bz has a decisive effect on negative Dst values.
(10–13 February) Figure 4(A): The density is ∼10 cm−3,

with a peak at 20 cm−3 at 23 UT on 10 February. A fast
solar wind, caused by a coronal hole, reached a velocity
of 552 km s−1 at 22 UT on 11 February (as indicated by
the downward-pointing triangle). Despite the relatively high
velocity of the solar wind during this period, Fig. 3 shows
that Dst activity was low (quiet: > −29 nT) because of the
small magnitude of Bz (about −3 nT). As can be seen in
Fig. 3, the difference between the predicted and calculated
Dst values is very small for this period.
(9–12 March) Figure 4(B): After 03 UT on March 10

(there is a long data gap of solar wind plasma before 03 UT
on 10 March), the velocity increase from 300 km s−1 to over
500 km s−1 after 15 UT because of the same coronal hole re-
sponsible for the solar wind observed one solar rotation ear-
lier (Fig. 4(A)). Two pressure pulses occur at 04 and 09 UT
on 10 March corresponding to the solar wind density peaks
of greater than 42 and 55 cm−3. Large changes in dynamic
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pressure are more often caused by changes in density than
changes in velocity. Bz turned to the south at 13 UT and is
−15 nT at 15 UT on 10 March; it stayed below −11 nT for 3
hours. Around the peak of the disturbance (at the start of the
recovery phase indicated by the arrow in Figs. 3 and 4(B)),
Dst is −116 nT at 20 UT March 10. The prediction differ-
ence was about 22% in this event.
(2–5 May) Figure 4(C): This period included one of the

greatest disturbances in 1998. There are two peaks in the
solar wind velocity which reaches 646 km s−1 at 09 UT on 2
May and 824 km s−1 at 04 UT on 4 May. The two principal
valleys of Bz, whose minima are −12 nT at 12 UT on 2
May and −32 nT at 03 UT on 4 May, correspond to the two
valleys of Dst which seem to be caused by a coronal hole and
a magnetic cloud. The minimum Dst and the difference in
the prediction for these events are, respectively, −85 nT and
22% at 17 UT on 2 May and −205 nT and 21% at 05 UT on
4 May, as each indicated by a downward-pointing arrow in
Fig. 3(C).
(29 May to 1 June) Figure 4(D): The velocity of the solar

wind increases to 705 km s−1 at 00 UT on 30May because of
a solar flare. A plateau lasting over seven hours can be seen
in the earlier Bz readings. The shallow valley that followed
had a minimum at −5.0 nT. Thereafter the general trend
for Bz is toward zero and weak positive values. Both the
predicted Dst and the Dst calculated from measurements at
ground stations are small despite the very high solar wind
velocity. As can be seen in Fig. 3, the difference between
these values was very small. That is, model C performed
well.
(28–31 July) Figure 4(E): This period has one of the

largest solar wind densities in 1998. The peak density is 57.3
cm−3 at 16 UT on 31 July. Corresponding to the positive lev-
els of Bz, 11.4 nT and 14.4 nT at 13 UT and 19 UT on 31
July, the predicted Dst values and the Dst values calculated
from ground measurements were very small, as was the dif-
ference between them.
(5–8 August) Figure 4(F): The density has a peak of 43

cm−3 at 10 UT on 6 August. Despite the almost constant
solar wind velocity (360–500 km s−1), three deep valleys
of Bz (−19.2 nT at 08 UT and −11.7 nT at 21 UT on 6
August, and −9.2 nT at 03 UT on 7 August) caused one
large major storm and a superimposed minor storm with Dst
of −138 nT at 11 UT on 6 and −108 nT at 05 UT on 7
August, as indicated by the two blue arrows in Fig. 3 which
correspond to two black arrows in Fig. 4(F). The difference
at 11 UT between the predicted Dst and the Dst calculated
from ground measurements was only 6%.
(24–27 September) Figure 4(G): The enormously high

velocity (peak: 819 km s−1) and the long period of highly
negative Bz (peak: −18 nT) indicate a large violent storm.
The Dst predicted for 09 UT on 25 September (−169 nT) is
within 18% of the actual Dst for that time (−207 nT).
(16–19 October) Figure 4(H): Velocity is almost uniform

throughout this period. The density had a large peak, 68
cm−3 at 01 UT on 19 October, before Bz turned from a
positive value to an extremely large negative value (< −11
nT). This is one of the largest and longest lasting negative
values in 1998. The Bz measured by ACE remained below
−11 nT from 02 UT to 15 UT on 19 October and then slowly

recovered to a positive value at 20 UT. On the other hand, the
WIND spacecraft (located near ACE at Xse = 95 Re, Yse =
32 Re, and Zse = 6 Re) measured Bz values below −15
nT from 02 to 15 UT. Correspondingly, the Dst prediction
using the ACE (and WIND) data indicates (reasonably) a
large storm of −166 nT, but the Dst determined from ground
stations is smaller, only −112 nT. The predicted Dst differed
by ∼48% from the Dst calculated from ground-based data.
Thus the correlation between the environment of the ACE
spacecraft and that of the earth may not have been so good.

5. Effects of the Solar Wind Parameters
Whether or not NN methods are effective for events that

are very different from those in the training patterns is a dif-
ficult question. However, a good NN model trained on a
statistically broad range of natural events should reflect the
properties of actual events. Conversely, this supposition con-
firms the model’s prediction capability. A model that effec-
tively predicts a majority of storms should be a good simple
simulator for various storm patterns. This capability is very
important for reflecting the effects of solar wind parameters,
which may be buried under the stronger effects of other pa-
rameters such as Bz. We want to be able to isolate the effect
of a parameter from the effects of other parameters. How-
ever, it is practically impossible to find and compare two ac-
tual storms that have a very similar pattern in terms of all
but one of their components. Our predictions were within
about 20% of the values calculated from actual data. This
discrepancy may be due to an imperfect correlation between
the solar wind parameters at the earth and near the L1 point
in 1998–1999. We may add that the cross correlation coeffi-
cient between the actual Dst and the Dst predicted from the
solar wind parameters near the earth was over 0.91 for the
time interval from 1978 to 1982 including quiet, non-storm
periods.
We now examine the effects of solar wind parameters on

the effectiveness of an NN model. Because the velocity and
the density are major parameters of the solar wind, represen-
tative values of these parameters are used in the analysis. In
the first trial we set the velocity (V ), density (N ), and IMF
Bx and By at constant values of 400.0 km s−1, 3 cm−3, and
10 and 0 nT, respectively. As illustrated by the dotted curves
in Figs. 5(B) and 5(C) and the solid curve in Fig. 5(D), Bz
changes its sign at point S and drops to −12 nT over a 2-
hour interval, stays at −12 nT for 15 hours, and then recov-
ers to +3 nT over a 2 hour period with no change in N or
V . The computed result for Dst is shown as a dotted curve
in Fig. 5(A). This type of storm is often encountered. Be-
cause the dynamic pressure does not increase, the calculated
Dst curve does not show a pressure pulse (initial phase) pro-
duced by an enhancement of the Chapman-Ferraro current.
In this case, the minimum Dst of about −130 nT was near
the end of the negative Bz. In other words, Dst continued
to decrease until close to the time when the direction of Bz
turned northward from southward as seen in the actual cases
shown by the arrows in Fig. 3 and in panels B, C, D, F, G, H
of Fig. 4.
Next we perform a simple simulation that takes into ac-

count the variation in N and V . The simulation should re-
semble typical cases which have changes in dynamic pres-
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sure and the electric field (V × Bz) induced by the IMF. As
shown by the solid curve in Fig. 5(B), at 3 hours before S the
density increases from 3 to 20 cm−3 over 2 hours and stays
there for 20 hours before falling back to 3 cm−3.
The solid line in panel C of Fig. 5 shows that 3 hours

before S the velocity increased from 400 to 600 km s−1 in
2 hours, and stayed there for 30 hours, and then fell back
to 400 km s−1 in 10 hours. The Bz time series is the same
as for the previous simple case and is shown in Fig. 5(D).
The calculated Dst is shown as a solid curve with an initial
phase of about +7 nT in panel A. The minimum value is
about −185 nT near the end of the period of negative Bz.
The increased density and velocity resulted in a large Dst
decrease during the period of negative Bz.
5.1 Density effect
Figure 6 shows an extended summary of Fig. 5(A) for five

cases of calculated model storms (dotted curves in Fig. 5),
in which Bz remained at the −12 nT level for durations
of 5, 10, . . . , 25 hours in 5-hour steps, and in which solar
wind density and velocity are assumed to have no variations
(Figs. 5(B) and 5(C)). Since there is no increase in the dy-
namic pressure in the input data, no initial phase increase
is produced in the Dst calculated (as is evident in the dot-
ted curve in Fig. 5(A)). At the end of the negative Bz pe-
riod for each of the five cases, the calculated Dst time series
has a minimum value corresponding to the final point of the
main phase of the storm. For instance, for the case in which
the duration of the Bz valley is 15 hours, the minimum Dst
is about −130 nT, as the dotted curve in Fig. 5(A) shows.
The end of the negative Bz period signifies the beginning of
the recovery phase as seen in Fig. 6 (and in Fig. 7 to be ex-

5

10

15
20 25 Hours

Hours

End of density plateau
S

Fig. 6. Summary of storms that would occur during the period when
Bz is −12 nT, the period of minus Bz increases in 5-hour steps. The
solid (dotted) curve shows Dst with a density plateau (without a plateau).
One of the five cases having negative Bz valley of 15 hours in duration
corresponds to the case of Fig. 5(A).

plained in the next section). The slope of the predicted Dst
curve in the main phase becomes gentler as the duration of
the Bz depression is lengthened. These curves resemble the
exponential curves produced by a simple differential equa-
tion as has been shown by Burton et al. (1975). Usually, a
northward turning of Bz, which means the vanishing of the
injection term (V × Bz = 0), stops further development of
the storm. If the injection term continues to increase for a
longer time, the decay term increases and becomes compa-
rable with the injection term. Then Dst stops to develop and



1270 S. WATANABE et al.: DST PREDICTION BY A NEURAL NETWORK

5

10
15 20 25 Hours

Hours

End of density plateau

S

Fig. 7. Summary of Dst curves corresponding to Fig. 6 with a velocity
plateau (600 km/s) and a density plateau (20 cm−3).

begins to return towards more moderate levels.
Next, we input a time series that includes a density in-

crease with a plateau at 20 cm−3 lasting for 20 hours as in-
dicated by the solid curve in Fig. 5(B); however, the velocity
is kept unchanged. The resultant five Dst time series are rep-
resented by solid curves in Fig. 6. A positive variation of
about 10 nT appears which corresponds to the initial phase.
Take the case in which the negative Bz valley lasts for 15
hours. In this case, the density plateau makes the intensity of
the storm, i.e., the minimum Dst, 10 nT stronger than for the
case of no density change.
These simple tests show that a solar wind density increase

enhances the storm intensity. In the recovery phase (approx-
imately during the period of positive Bz) the density increase
pushes the solid curve upward (toward less disturbance) until
the end of the density increase; this feature is well demon-
strated in Fig. 6 for the cases of 5, 10, and 15 hours of density
increase. These properties of the calculated Dst curves cor-
respond to well-known physical features of magnetic storms.
In the initial phase, the higher dynamic pressure caused by
an increase in the solar wind density makes the Chapman-
Ferraro current stronger and pushes the Dst curve up. A neg-
ative Bz causes a strong earthward E×B drift of the magne-
tospheric and plasma sheet plasma. The resulting enhanced
convection provides the seed of the ring current by increas-
ing the plasma sheet density with a certain time lag from the
increase in the solar wind density (Ebihara and Ejiri, 2000).
If the solar wind density effect in the main phase is stronger
than the effect of the Chapman-Ferraro current, the Dst level
would be lower than it would be if there were no density in-
crease. The results shown in Fig. 6 seem to indicate that this
is indeed the case. Figure 6 shows that each Dst curve has a
different Dst level at the end of the density plateau relative to
the level where the Dst is at when there is no density change
(i.e., the dotted curves). In other words, the solid curves do
not return exactly to the dotted curves at the end of density
plateau. This indicates that Dst has a strong hysteresis.
5.2 Velocity effect
In Fig. 7 we show an extended summary representation

of five pairs of model storms with and without velocity and
density plateaus as indicated in Fig. 5. Usually, rises in
velocity are accompanied by density increases as a solar

Azimuthal angle from the sun-ward direction 
(degrees)

Fig. 8. Dependence of Dst on the azimuthal angle of the artificial interplan-
etary magnetic field.

wind with higher velocity compresses the preceding solar
wind that has a lower velocity. Since a high velocity plateau
without a density plateau that accompanies it seems to be
unreal, and since the training time series included few such
cases, we have not analyzed any cases of only a velocity
plateau with no accompanying density plateau.
The dotted curves in Figs. 6 and 7 are the same and con-

tain no density and velocity plateaus. The third solid curve
in Fig. 7 represents the same case as the solid curve in
Fig. 5(A). The length of the period in which Bz = −12 nT is
the same in Figs. 6 and 7. Clearly, a rise in velocity enhances
the severity of a storm. In the third case, the storm having a
negative Bz (−12 nT) for 15 hours had a Dst of about −185
nT (Fig. 7). Qualitatively, similar characteristics are found in
the Dst behavior at the end of the density plateau in Figs. 6
and 7. The effect of the velocity plateau on the dynamic pres-
sure is similar to that of the density plateau, but in Fig. 7 the
electric fields that increase the earthward plasma drift as part
of the magnetospheric convection and that seed the ring cur-
rent from the tail plasma sheet are more significant than the
density effect in Fig. 6.
We then considered the effects of velocity during unusual

periods. The minimum Dst during the 15-hour long neg-
ative Bz (−12 nT) periods that had only a velocity rise or
only a density rise was about −170 nT or −140 nT, respec-
tively. Although the relative rise in velocity (from 400 to 600
km/sec) was much smaller than that of the density (from 3 to
20 cm−3), its effect was greater. In our physical analysis, we
thus have to consider the hidden effect of the variable de-
cay time for the ring current which depends on the velocity,
density, and Bz in the NN analysis.
5.3 Effect of the azimuthal angle of IMF
By rotating the magnetic field components in the X-Y

(GSM) plane for the artificial magnetic storm event shown
in Fig. 5, we investigate the dependence of model C on the
azimuthal direction of the magnetic field. Here the azimuthal
angle is measured counterclockwise from the sunward direc-
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tion.
Figure 8 shows the dependence of the minimumDst on the

azimuthal angle of the magnetic field with a constant magni-
tude of 10 nT in the X-Y plane. When the azimuthal angle of
the magnetic field in the X-Y plane was in 10–30 degrees of
the direction of the sun (positive X-direction), the magnitude
of Dst appears to be greatest. The root-mean-square error
for model C is about 10 nT and the cross-correlation coeffi-
cient is over 0.9 when the solar wind data used in input are
those taken near the earth. The difference between the min-
imum and maximum values of Dst calculated with varying
azimuthal angle was about 20nT which is slightly above the
quantitative prediction error. If we take 15 nT as the mag-
netic field magnitude in the X-Y plane, the difference is over
30 nT. The larger the magnitude of the X-Y component the
larger the difference in the calculated Dst.
Model B shows the same property, so we contend that this

property qualitatively reflects the actual nature of storms.
We use the actual velocity, density, and Bz values (but not
those for Bx and By) from the strong storm on 29 Septem-
ber 1978 (a storm frequently referred to by researchers) as
part of the training data (Fig. 9). When we calculated Dst
for various azimuthal angles from the sunward direction un-
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(Degrees)
Azimuthal angle from the Sun-ward 

10:00 UT SEP 29, 1978

D
st

 (
nT

)

0

Fig. 10. Dependence of Dst on the azimuthal angle calculated from the
solar wind parameters for the storm on 29 September 1978.
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der a fixed magnetic field component of 10 nT in the X-Y
plane (Fig. 10), the difference between the maximum and
minimum of the peak Dst magnitude was about 20 nT. The
minimum Dst (i.e., the maximum Dst magnitude) is obtained
in the sunward direction.
Because Dst reaches a minimum at different times depend-

ing on the variable azimuthal angle in a complex storm, our
analysis was made only for a simple storm. For 17 storms
with a simple Dst variation which were selected from 1978
to 1982, we calculated the azimuthal angle of IMF corre-
sponding to the Dst minimum. Most of Dst minima occur
regardless of the storm magnitude when IMF on the X-Y
plane is within 45 degrees from zero azimuthal angle, i.e.,
the positive X direction. Models B and C, and other models
we have constructed, showed statistically similar properties
for these storms.

6. Discussion
Many empirical differential equations have been formu-

lated based on the injection function and decay time constant
during the main and recovery phases of a storm. We exam-
ined the NN method using the classical model of Burton et
al. (1975) and its revised version (O’Brien and McPherron,
2000) the use of which is restricted to > −150 nT. The
Burton model is frequently referred to in discussions on sim-
ulations of geomagnetic storms using differential equations.
The model is as follows:

dDst∗

dt
= F(E) − Dst∗

τ
(3)

Dst∗ = Dst − b
√
P + c

here

F(E) = 0 Ey < 0.5 mV/m

F(E) = d(Ey − 0.5) Ey > +0.5 mV/m

b = 16 nT(nPa)−1/2, c = 20 nT

d = −5.4 × 10−3 nT(mVm−1)−1 s
−1

τ = 7.7 hours

Ey = V Bs

Dst∗ is the corrected Dst without the solar wind dynamic
pressure (P) and the ring current effect (c) in a quiet period.
F(E) is the injection term, V is the solar wind velocity, Bs
is the southward component of the interplanetary magnetic
field, and τ is the decay time. The parameter τ is important
for obtaining a deeper insight into the physics of the pro-
cesses that lead to particle losses from the ring current and
for estimating the rate of energy input and the total energy
input into the ring current during a magnetic storm.
We compared our NN model to the Burton model as a

simple reference model. Because of the fine resolution used
in the definition of Dst and for the sake of convenience for
comparison of the models for space weather forecasting for
a relatively short time span (1–8 hours) using data from the
ACE spacecraft, we adopt one hour as the time resolution for
the solar wind data. To solve Eq. (3) the Adams-Bashforth-
Moulton method with a predictor and a corrector was used.
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Fig. 11. Scatter plot of the minimum Dst as a function of the azimuthal
angle measured from the sunward direction (in degrees) for storms with
a simple Dst shape (1978 to 1982).

In many empirical models the value of τ depends on ε in-
put energy flux into the magnetosphere), U (rate of energy
supply to the ring current), and Dst (reviewed by Feldstein,
1992). We compare these models with the revised Burton
model discussed by O’Brien and McPherron (2000) (which
we refer to as the OM model) the applicability of which is
limited to Dst > −150 nT. The most important difference
between the Burton model and the OM model is that τ de-
pends on Ey (= V Bs) in the OM model:

τ = 2.40 exp[9.74/(4.69 + V Bs)]. (4)

Other coefficients are slightly changed so that:

F(E) = 0, Ey < Ec = 0.49 mV/m, (5)

F(E) = −4.4(V Bs − Ec), Ey > Ec = 0.49 mV/m

Dst∗ = Dst − 7.26P1/2 (nPa) + 11 nT.

If V Bs is zero (Bz toward the north), τ reaches its maxi-
mum value (19.2 hours) in the OM model. To compare the
NN, Burton, and OM models, we examined two storms that
began on 10 October 1980 and on 2 March 1982, and that
were analyzed by O’Brien and McPherron (2000) as their
figures 8(a) and 8(b). For these storms, the ground-station
observations showed −104 nT and −211 nT for the mini-
mum values of Dst. The decay time from the OM model
is longer than the constant decay time (7.7 hours) obtained
by the Burton model during the early main phase and in the
recovery phase.
Panel A of Fig. 12 shows the Dst calculated by WDC Ky-

oto from the ground-station data beginning on 10 October
1980 (the thick gray curve), and the Dst predicted by the
NN model (red curve), by the Burton model (green curve),
and by the OM model (blue curve). The curve from the OM
model corresponds to the multi-step curve given by O’Brien
and McPherron (2000) for the same situation. To calculate
the predictor in the Dst time series we need the four-step
starting values. For the initial four-step values we used the
actual data given by the ground stations. The starting time
for the integration is denoted by an arrow which is 24 hours
after the left edge of the panel. On the other hand, the cal-
culation of the NN model started about 24 hours before the
beginning for the Burton and OMmodels. The recurrent type
NNmodel needs a longer time for the initial stage, especially
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of solar wind. Panel D: Velocity (km/s) and density (cm−3) of solar wind. Panel E: Cartesian components (GSM) of the inter planetary magnetic field
(nT). Panel F: The prediction curves by three models for the period of 28 February to 2 March 1982 including a large storm.

when the calculation starts with a large negative value of Dst
especially when this happens to be in the recovery phase of a
storm. However, since the actual operation of real-time pre-
diction will continue for long periods of time (possibly sev-
eral months or years), this problem is of little consequence.
The OM model predicts storms (> −150 nT) as well as

the NN model as is seen in panel A. Here we specifically re-
port that the NN model works well for any event, which is an
important factor for use in actual operational space weather
forecasting. The calculated curves obtained from the Burton
model appear to represent the Dst better when data with a
fine time resolution (e.g., 2.5 minutes) are used than when
data with a one-hour time resolution are used. The Burton
model did not work well if data with a one-hour time resolu-
tion are used. We compared the three models with respect to
a storm of 10 October 1980, which is the same storm as that
shown in Fig. 8(a) of the article by O’Brien and McPherron

(2000). Essentially, the southward component of the IMF
(Bz) shown in panel E determined the Dst index. As to the
increasing magnitude of southward Bz we consider this to
have happened in two steps and caused the disturbances of
10 October. Panel D shows the solar wind velocity (km/s)
and density (cm−3) with blue and green curves, respectively.
In this event, no shock front of the solar wind was encoun-
tered by the satellite. During the period of gradual increase
of the dynamic pressure of the solar wind, Bz was southward
but its magnitude was small. In such cases the pressure in-
crease in the initial phase is usually not obvious, as in the
case discussed here. The first minimum of southward Bz
that corresponds to the first Dst decrease of −63 nT which
occurred at 01 UT on 11 October. The second valley in Bz
caused the minimum Dst of −104 nT.
As is seen in panel A, the prediction curves from the NN

and OM models fit the ground-based Dst curve fairly well.
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The Burton model does not fit the Dst during the initial and
recovery phases of this storm. The OM model was given
a longer decay time, τ , than the Burton model (τ = 7.7
hours: constant) during the above mentioned period. Thus
the Dst predicted by Burton model recovers more quickly
than the prediction by the OM model as is expected from
Eq. (3). The decay time that is set constant does not seem to
represent the actual features of storms. This is a weak point
of the Burton model. Earlier, Kamide and Fukushima (1971)
had constructed models that used different values of τ in the
main and recovery phases.
Using the energy injection rate, ε,
Akasofu (2001) has classified storms as follows:
Weak storms ε ∼ 0.25 MW/s
Moderate storms ε ∼ 1.4 MW/s
Very intense storms ε ∼ 8.0 MW/s
Since ε (green curve) in panel C reached almost 1.5MW/s,

this storm was a ‘moderate storm’, according to Akasofu’s
scheme.
The storm of 1 March 1982 started at 11 UT with a clear

initial phase caused by a strong shock wave. This storm is
one of the cases studied by O’Brien and McPherron (2000).
As shown in panel F of Fig. 12, the Burton model cannot
predict the minimum Dst well. The OM model (blue curve)
gives a better prediction. However, O’Brien and Mcpherron
state that their model should not be used for storms having a
Dst minimum less than −150 nT. In the storm of March 1,
1982 the minimum was well bellow this value. Our NN does
not have any model applicability limitation of this nature.
The NN model represented by the red curve gives an even
better prediction than the OM model.
We considered possible reasons for Dst varying with the

direction of the interplanetary magnetic field in the GSM X-
Y plane. The variation of Dst is mainly due to the changes
of plasma injection (which is the seed of the ring current)
from the plasma sheet to the night side inner magnetosphere.
These changes are caused by the changes in the intensity of
the convection electric field which is influenced by the Z and
Y components of IMF. On the other hand, the X component
of IMF might also control the amount of magnetosheath and
plasma sheet plasma flow toward the earth. The reason for
the prediction of Dst being quite accurate from the initial
stage of the attempt in spite of many unsolved problems
seems to be that Dst reflects the macroscopic structures of
the solar wind.
An ideal model should be able to take into account all the

prevailing conditions and should produce good predictions
under any conditions. Our two-hour-prediction models for
Dst, which use the Elman-type NN, were trained using six
parameters: the velocity and density of the solar wind and
the magnitude and the Bx, By, and Bz components of IMF.
For our latest model, the time-series training data sets were
constructed from 50 active periods and many quiet periods
(44% of the training time series), over 9058 hours in total,
during the solar maximum-activity phase from 1978 to 1982;
however, it has been found that the model is applicable to a
much wider range of solar activity phases.
The NN method can in principle forecast Dst more than

six hours ahead of time, but it takes an hour for the solar wind
to travel from the location of L1 to the earth, and the time of

strong response of the geo-magnetosphere is one hour. We
therefore perform two-hour predictions. However, as longer-
term predictions would also be valuable, we now have plans
on constructing a longer-term prediction model using the NN
method. Thus far we have not used enough parameters in
calculating Dst; in the future we should include as inputs
the fluctuation terms, the temperature, and solar activity.
Also, use of other neural-network methods, especially non-
recurrent NNs, should be tested in a future program.

7. Summary
In this section we summarize our results.

(i) Using real-time data from the ACE spacecraft,
we have constructed a prediction model for
Dst, which has been working well since May
1998 (http://www.crl.go.jp/uk/uk223/
service/nnw/index.html).

(ii) During the period from February to October 1998, there
were eleven storms which had a minimum Dst of less
than −80 nT. For ten of these storms the differences
between the minimums Dst predicted using ACE data
and the minimum Dst calculated from data collected
by ground stations was less than about 23%. For the
remaining storm, which started on 19 October 1998,
the difference was 48%, perhaps because the solar wind
factors prevailing near the ACE spacecraft and those in
the vicinity of the earth were correlated only moderately
well.

(iii) The principal source of geomagnetic disturbances has
again been confirmed to be the Bz component of IMF.
However, a positive Bx component seems to increase
the magnitude of Dst. The NN prediction model might
be useful as a simple simulator to examine minor effects
such as those of Bx and By. Dst seems to be enhanced
when the direction of IMF is toward the sun.

(iv) An increased solar wind density tends to produce a pos-
itive change in the Dst index through the Chapman-
Ferraro current in the initial and recovery phases
(Fig. 6). On the other hand, the solar wind density en-
hances Dst almost 10% from the case of no density in-
crease plateau in the main phase when Bz is negative.

(v) The velocity effect appears to be stronger than that of
the density according to our NN model.

(vi) Our operational model, in principle, has no limitation in
application perhaps excepting storms of extreme inten-
sity.
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