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Chipping of cratons and breakup along mobile belts of a supercontinent
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Probably one of the most significant heterogeneities of a continental lithosphere is the noticeable difference
in the thickness and properties of its cratonic and mobile parts. The trans-continental mobile belts (Paleo-
orogens/paleo-sutures) represent a relatively thinner, warm, wet and weak lithosphere, which makes it more
vulnerable to episodic mantle (or plume) upwellings and compressional forces. Here evidence is presented
from the Indian continental lithosphere to show that these properties of mobile belts (MB) facilitate channeling
of thermomagmatic fluxes (TMF) in both lateral as well as vertical directions. This, to a major extent, can
account for the observed concentration (or focusing) of geophysical anomalies, tectonomagmatic features and strain
along these MBs. In addition, a closer examination of the three continental breakups of Greater India since the
Cretaceous reveals that the combination of a sufficiently weakened MB and mantle plume could become ‘fatal’ for
the supercontinental stability. On the other hand, the thick (>200 km) or deep-rooted continental lithosphere
beneath cratons is characterized by a relatively cold and dry lithosphere, which resists remobilization. From
this relative impenetrability, TMFs are channeled mostly through the MBs following the long-term stability of
the cratonic lithosphere. This difference in cratonic and MB regimes results in strongly heterogeneous thermal
blanketing. However, in certain situations, the edge of a cratonic region may also get chipped-off following a
number of thermotectonic rejuvenations of adjoining MBs—as exemplified by the breakup of the Antongil and
Masora cratonic blocks (now lying on the Madagascar) from the Western Dharwar craton (India) during the India-
Madagascar separation. From the study of supercontinental dispersals, it seems that the processes of breakup along
pre-existing mobile belts may be globally applicable. This is, at times, also accompanied by chipping of cratons.
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1. Introduction

The two-layer convection process inside the Earth and the
resulting motion and dynamics of the overlying lithosphere
(which has been termed plate tectonics) are able to explain
most of the geophysical, geological and tectonic manifesta-
tions along the plate boundary. However, many intraplate (or
mid-continental) features are not explicable in terms of plate
tectonics alone and necessitate other processes like plume
tectonics. For example, where and how a supercontinent
splits is still not clear. The breakup apparently involves
characterization of the internal structure of the continental
lithosphere (CL) and a force external to it. It has been sug-
gested that the required forces (external to the CL) are often
due to mantle plumes (White and McKenzie, 1989; Storey,
1995; Courtillot et al., 1999; Dalziel et al., 2000); while the
internal structure of the CL is defined by the pre-existing
weak zones and/or palaeo-orogenic corridors, as emphasized
by Dunbar and Sawyer (1989), Dalziel er al. (2000) and
Tomassi and Vauchez (2001). The combination of these
two factors, which could govern the breakups, however, re-
quires further investigation. Around 130 Ma India, along
with Madagascar and the Seychelles, separated from Eastern
Gondwanaland.

Copy right(© The Society of Geomagnetism and Earth, Planetary and Space Sciences
(SGEPSS); The Seismological Society of Japan; The Volcanological Society of Japan;
The Geodetic Society of Japan; The Japanese Society for Planetary Sciences; TERRA-
PUB.

491

2. Three-Phase Breakup

The Indian CL consists of four Archaean cratons, viz.
Dharwar, Bastar, Singhbhum, and Bundelkhand (Radhakr-
ishna and Naqvi, 1986), surrounded by MBs (Fig. 1(a)).
These MBs represent palacoconvergence (or suture) zones
(Naqvi and Rogers, 1987). The idea of hotspots was put for-
ward in a classical paper by Wilson (1963) to explain the
intraplate, the Hawaiian volcanism and associated magmatic
(OIB type) island chains. This study was extended by Mor-
gan (1971) to the concepts of a mantle plume which involves
upwelling of cylindrical (~100 km diameter) plume conduits
from the lower mantle and, on reaching the base of the litho-
spheric plate, the head of this plume can spread laterally
to a large dimension (1000-2000 km diameter). Many ge-
ological, geochemical and isotopic features—which do not
find explanation in the plate tectonics—could be explained
by plume tectonics (Davies, 1999). White and McKenzie
(1989) have attributed the rifting of supercontinents and as-
sociated flood basaltic magmatism to the presence of plumes
near the breakup or triple junctions (Burke and Dewey,
1973). Campbell and Griffiths (1990) have also discussed the
evolution of flood basalts due to mantle plumes. Ernst and
Buchan (2001) and Condie (2001) describe various aspects
related with mantle plumes, in particular an episodic growth
of the crust during superplume activities. Larson (1991a, b)
has described the consequences of the late Cretaceous super-
plume.

Following Storey (1995), and for T>130 Ma, it is known
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THE MOBILE

BELTS OF THE COMFOSITE
INDIAMN CONTIMENTAL
LITHOSPHERE FROM ADJIOINING
CONTINENTAL BLOCKS

Cratons (C) and first order mobile belts (MBs) of the Indian continental lithosphere (I-CL). It may be noticed that there is a concentration

of faults/lineaments (dashed line) and axes of gravity high (thick line) within the MBs. Abbreviations: DAMB—Delhi Aravalli, STMB—Satpura,
EGMB—Easternghat, SGMB—Southern granulite, GDMB—Godavari, MNMB—Mahanadi, MWMB-—Madagascar west coast, HMMB—Himalayan
mobile belts and BC—Bundelkhand, WDC—Western Dharwar, BBC—Bastar Bhandara, SC—Singhbhum cratons. Probable positioning of mantle
plumes (Ru—Reunion, Kg—Kerguelen and M—Marion) at different geological times is also depicted. Flow direction of thermomagmatic flux is shown

by arrow.

that India lay close to a number of hotspots (Kergue-
len/Crozet, Marion and Reunion), possibly part of a Cre-
taceous superplume (Fig. 1(a)). A number of geophysical
anomalies and geotectonic features have been attributed to
the interaction of the Indian lithosphere with these plumes
since the Cretaceous (Raval, 1989; Kent, 1991; Basu et al.,
1993; Singh and Meissner, 1995; Storey et al., 1995; Atchuta
Raoeral., 1996; Mall et al., 1999; Mishra et al., 1999; Cour-
tillot et al., 2000; Raval and Veeraswamy, 2000, 2003; Anil
Kumar et al., 2001; Tewari et al., 2001; Mukhopadhyay,
2002; Roy, 2004; Mahoney et al., 2002). These plumes (P)
appear to have affected the MB network of India.

2.1 Separation from Antarctica (~130-120 Ma)

The separation from Antarctica took place along the Pro-
terozoic Easternghat Mobile Belt (EGMB) during this phase
and, the Kerguelen/Crozet/Marion plumes lay close to the
EGMB (Fig. 1(a)). Interaction between the plumes and
the overlying CL results in doming above the plumehead.
A consequent extension would significantly affect the MBs
which fall in the extensional field caused by doming (Burke
and Dewey, 1973). The corresponding crust-mantle interac-
tion evidently reached a level beyond the threshold breaking
stress and resulted in the separation of India from Antarctica
along the EGMB, as shown in Fig. 1(a) (Larson, 1991a,b).
A large, igneous province (LIP) at ~117 Ma (Baksi, 1995)
indicates a long incubation for the Kerguelen plume.

2.2 Separation from Madagascar (~90 Ma)

Here the influence of the Marion plume has been in-
voked (Storey et al., 1995). Continuity between the south-
ern Granulite mobile belt (SGMB) of India and Madagascar
(Fig. 1(a)); and episodic mobilizations of the Madagascan
lithosphere since the late Archaean (Collins et al., 2001),
imply that, prior to breakup (T>90 Ma), Madagascar also
constituted a part of the mobile network of Greater India
(Raval, 1995), which linked the northern and southern MBs
of Greater India. It implies that in the breakup along India’s
western margin too, a mobile belt and plume were involved.
The trace and outburst of the Marion plume over Greater In-
dia is supported by large-scale magmatism (at ~90 Ma) over
juxtaposed mobile parts of the Madagascan and Indian CL
(Storey et al., 1995; Radhakrishna et al., 1999; Anil Kumar
et al., 2001). To further examine the similarity between In-
dian mobile belts and Madagascar, the geophysical anoma-
lies, juxtaposition and geotectonic data over the Madagascan
and Indian mobile belts are compared:

(a) Gravity: The average Bouguer gravity anomaly
(BGA) values over different mobile belts of India are much
higher (STMB: —30 mgal; DAMB: —20 mgal; EGMB: —20
mgal) than that over cratons (Western Dharwar: —110 mgal;
Bundelkhand: —70 mgal; Bastar-Bhandara: —70 mgal),
while over the Madagascan mobile belt (Woollard, 1972),
BGA exhibits an average value of —30 mgal (Fig. 1(b)),
which is similar to that over the MBs of India.



Fig. 1(b). Concentration of axes of Bouguer gravity anomaly highs along
value over mobile belts is ~—30 mgal, which is higher than the average
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the mobile belts (modified from Verma, 1985). The average Bouguer gravity
value over the cratons (<—70 mgal). It suggests that, as compared to cratons,

the lithosphere beneath the mobile belts is thinner and denser; further the crust-lithosphere regime of Madagascar matches with the mobile belts of India.

Values over Madagascar have been taken from Woollard (1972).

(b) Moho depths: Using the receiver function analysis,
Moho depths under the eastern Dharwar craton (EDC) and
other mobile belts have been estimated to be ~34-40 km
(Ravi Kumar et al., 2001; Gupta et al., 2003). From Fourno
(1987), the Moho depths under Madagascar also do not ex-
ceed 40 km, thus the crustal thickness under Madagascar re-
semble that under the EDC and Indian mobile belts.

(c) Seismicity and Tectonics: The distribution of epicen-
ters over India reveals a conspicuous concentration (or chan-
neling) of seismic deformation along the mobile belts (Raval,
1995). Distribution of seismic epicenters over most of Mada-
gascar also supports its mobile nature (Fourno, 1987), while
the WDC exhibits a lack of epicenters, thus indicating the
stability (i.e. low strain rate) of the cratonic nuclei. Simi-
larly, near-absence of epicenters over the Antongil and Ma-
sora blocks corroborates their cratonic characteristics.

(d) Juxtapositioning between India and Madagascar
and use of geophysical anomalies: Studies into juxtaposi-
tioning invariably utilize geological, structural and/or meta-
morphic evidence. It is seen that in localizing the Archaean
blocks over Madagascan (viz. Antongil and Masora—as sug-
gested by Collins and Windley, 2002), vis-4-vis the WDC,
use of the geophysical anomalies may provide additional
constraints. For example, the two gravity lows (L1, L2) over
the WDC seem to match those of the Antongil (AB) and Ma-
sora (MCB) cratonic strips. Further, the fast velocity zones
(50-175 km depth) over the WDC, inferred from teleseis-
mic tomography (Srinagesh, 2000), correlate with the gravity
lows over WDC (NGRI, 1975) and these geophysical signa-
tures appear quite contiguous with the cratonic strips or chips
(Antongil and Masora) over Madagascar.

(e) Breakup of the western edge of WDC: The migra-
tion of magma along the base of the cratonic keel towards
the marginal MBs explains the concentration of kimberlites
(and/or other fluids rising from deeper regions) near craton-
mobile belt interfaces (Raval, 1998).

Similar chipping of cratons appears to have occurred also
during the separation of Africa from Antarctica wherein
a small chunk of the Kaapval part of the Kalahari cra-
ton in the Dronning Maud Land (Maudheim province, viz.
Grunehogna province of Antarctica) appears to have chipped
(Groenewald et al., 1991). Such chippings may be important
in assessing the ancestry of cratonic strips/blocks which, at
present, are widely separated. However, further confirmation
of the chipping process necessitates comparison of geochem-
ical/isotopic characteristics.

2.3 Separation from the Seychelles (~64 Ma)

Prior to breakup, the Seychelles and contiguous north-
western India lay close to a triple junction (Burke and
Dewey, 1973; Biswas, 1987) between three MBs, as shown
in Fig. 1(a), which came under the influence of the Réunion
plume between 68—64 Ma (Sivaraman and Raval, 1995).
Tucker et al. (2001) have considered the Seychelles as part
of a larger MB consisting of NW India, Mozambique and
Madagascar.

Thus, all these three separations of Greater India exhibit
that its MBs became the foci of continental rifting and vol-
canism during various plume-CL interactions. To understand
it further, the structure and properties of cratons and MBs
need to be examined.
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Fig. 2(a). Variation of seismic wave velocity (Vp in km/s) and density (in g/cc) with depth beneath different MBs of the Indian subcontinent (modified
from Kaila and Bhatia, 1981; Kaila et al., 1990; Tewari et al., 1991) is shown, vis-a-vis, as a variation of these parameters under the WDC. Both seismic
wave velocity and density are greater beneath the MBs as compared to that under the cratonic region.

3. Cratons and Mobile Belts

A CL is composed of thick (>180-250 km), cold and rigid
Archaean cratons and relatively weak, warm, hydrous and
thinner (~80-180 km) younger (Proterozoic/Phanerozic)
MBs along which the cratons are sutured/amalgamated
(Raval, 1995; Tommasi and Vauchez, 2001). Thus, they
would be vulnerable to reactivation. The cratons repre-
sent deep-rooted parts of the lithospheric column (thickness
>180-250 km), and are relatively cold, dry and rigid (Jor-
dan, 1975). Owing to these characteristics, the impressed
thermomechanical forces find it difficult to penetrate/deform
the cratons. In contrast, the mobile belts lithosphere is rela-
tively thin (70-150 km), warm, weak and hydrous (or wet).
In the case of Litho-Asthenosphere (including mantle plume)
interaction, the non-uniformity of the geometry of the Litho-
Asthenospheric boundary (LAB) may play a critical role.
The continental lithosphere (CL) is thicker under the cra-
tons (>200) but relatively thinner beneath the mobile belt
(150-70 km, depending upon its tectonic age). The un-
dulation due to a significant difference in thickness, would
obviously facilitate the decompressional melting (from an
upwelling asthenosphere) into and along the thinner mo-
bile belt part of the CL. It clearly implies that the ther-
mal energy (heat) and magmatic phase would be focused
(or guided) along the thinner mobile belts (which often rep-
resent the palaco-boundaries). This concentration of reac-
tivation along the mobile belts has been termed as chanel-
ing of the Thermo-Magmatic Flux (TMF). This is strongly
supported by the conspicuous concentration of geophysi-
cal anomalies and tectonic/geological features evidenced all
along the Indian mobile belt network (Raval, 1995). A num-
ber of such reactivations would gradually make the MBs
weaker which implies that their vulnerability to episodic re-

juvenations would eventually bring the mobile belts to the
critical state while it becomes quite prone to rifting/breakup.

The contrasting properties of cratons and mobile belts
make a lithosphere strongly heterogeneous, both laterally
as well as vertically. An example of this is the significant
difference in observed heat transfer or thermal blanketing.
Such heterogeneities would obviously govern the geodynam-
ics and tectonic development of the lithosphere.

4. Geophysical and Tectonic Evidence of Channel-
ing

Geological and geochemical characteristics can provide
direct manifestation of the Plume-CL interaction (Wilson,
1989; Hoffman, 1997). However, if the latter is intense
enough, then it is possible that the deep geophysical struc-
tures of the CL may also become modified, as has been in-
ferred from deep geophysical probings.

(a) Density structure: The Bouguer gravity anomalies
(NGRI, 1975) over India (Fig. 1(a)) seem to be confined
mostly to the MBs (Raval, 1995). Figure 2(a) shows the
density-depth profiles for different MB-regions delineated
from deep seismic and gravity investigations (Tewari et al.,
1991, 1997; Mishra et al., 1995); as well as for the Dharwar
craton (Kaila and Bhatia, 1981). It reveals a high density
layer (2.85-3.15 g/cc) beneath MBs (Fig. 1(a))—a reflection
of magmatic underplating. MBs (Fig. 1(a)) thus represent
corridors of greater extension and eventual rifting. As in
the case of most of the orogenic (or mobile) corridors, the
temporal duration of the magmatic underplating evidenced
here may be somewhat difficult to constrain. As a matter of
fact, a geophysical anomaly in the deep crust would be the
superposition of many thermomechanical and tectonomag-
matic episodes that would have affected the continental litho-
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Fig. 2(b). Surface heatflow values and epicenters of seismic disturbance

over the I-CL also show a concentration of seismic deformation and higher

heatflow in the MBs (modified from Khattri ez al., 1987; Ravishanker, 1988; Gupta et al., 1989).

sphere during its long geological history. Separation of the
timings of various temporal contributions from the observed
anomaly/image is indeed a formidable task. However, there
could be much indirect but substantial evidence (geological,
geochemical and isotopic), which could constrain the tim-
ings. More specifically, in the present case, the orogenic
corridor is of the Proterozoic period, whereas a number of
alkaline complexes (Bose, 1980; Krishnamurthy and Udas,
1981; Sethna, 1989; Srivastava, 1989; Subrahmanyam and
Leelanandam, 1989; Rathore and Venkatesan, 1991; Basu et
al., 1993; Dessai, 1994; Anil Kumar et al., 2003) having ages
between 120-50 Ma, have been reported along various mo-
bile belts affected by the plume activity. The ages of large
igneous provinces (Rajmahal, Madagascar-South India and
Deccan traps) by Ar-Ar methods (Basu et al., 1993; Baksi,
1994, 1995; Storey et al., 1995; Radhakrishna et al., 1999;
Anil Kumar et al., 2001) also lie between Cretaceous to early
Tertiary times.

Further, these alkaline complexes are associated with rel-
atively long wavelength gravity highs (Tewari et al., 1991;
Raval and Veeraswamy, 1997; Suryaprakasa Rao, 2003) and
are strongly suggestive of deep-seated magmatic underplat-
ing which is also corroborated by the cospatial high velocity
layer inferred by deep seismic studies (Tewari et al., 1991;
Singh and Meissner, 1995). In addition, these corridors,
which were affected by the crust-mantle interaction, also ex-
hibit tectonic uplift which, according to McKenzie (1984),
is caused by magmatic underplating. Thus, some evidence
points out that magmatic underplating has occurred deep in

the mobile belt regime of the Indian plate, since the Creta-
ceous.

(b) Seismic wave velocity structure: The high density
structure is corroborated by coincident high seismic wave ve-
locity (6.8-7.2 km/s) inferred (Fig. 2(a)) at the mid-to-lower
crustal depths (Kaila et al., 1990; Tewari et al., 1997). Creta-
ceous volcanism obtained from the lithologies in the oil wells
of Mahanadi MB (Fig. 1(a)), also suggest plume-induced
crust-mantle interaction (Tewari, 1998). A high velocity
deep crust is inferred beneath the Bengal basin too (Kaila
et al., 1992), which also exhibits a gravity high anomaly
(~20 mgal) sub-parallel to 90°E ridge. These features ob-
viously reflect modification of the crustal properties follow-
ing interaction between this part of Indian CL and the Ker-
guelen/Crozet plumes that resulted in the LIP consisting of
the Rajmahal/Sylhet/Bengal traps. Analysis of DSS results
(Mall et al., 1999, Fig. 3)—reveals (i) an up to 10 km thick
volcanic layer (Vp = 4.8 km/s) beneath recent sediments,
and (ii) an ~4 km thick underplating (Vp = 7.5 km/s) near
Moho which is also deduced from the plume-CL interaction.
The presence of high velocity and high density crustal lay-
ers within the MB and away from the center of the plume
outburst (Fig. 1(a)) supports channeling and partitioning of
the TMF along MB (Fig. 1(a)). Long distance channeling
of TMF from a plume head was also suggested by Sleep
(1996), and applied to the African continent (Ebinger and
Sleep, 1998).

(c) Electrical conductivity: Geomagnetic and magne-
totelluric sounding studies (Arora et al., 1993; Rao et
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Fig. 3(a). The cartoon depicts the interaction of a mantle plume with a laterally heterogeneous (composite) continental lithosphere. Owing to the significant
difference in the rheology, thickness and other properties, it is seen that the interaction between the plume and continental lithosphere is greater under
the MBs as compared to cratonic block. Abbreviations: C1, C2—Cratonic blocks; MB—Mobile belt; R1, R2—Cratonic roots; VF—Vertical and

LF—Lateral flow of the thermomagmatic flux.

al., 1995; Gautam Gupta et al., 1997) reveal conductiv-
ity anomalies over the Delhi-Aravali (DAMB) and Satpura
(STMB) MBs. Similar higher electrical conductivity in
the regions of Phanerozoic mobilization, suggests the pres-
ence of fluids released from thermal reactivation (Hyndman,
1988); thus the conductivity anomalies could corroborate
plume-CL interaction.

(d) Surface Heatflow: From Fig. 2(b) high surface heat-
flow manifests mostly along the MBs (Raval, 1989). As dis-
cussed, the difference in the properties of cratons and MBs
results in heterogeneous blanketing of the internal heat. The
remobilizations could replenish the crust resulting in higher
heat generation along MBs, which also form corridors of hot
springs. Lowman and Jarvis (1999) also suggest that the
mantle heating mode and history of continental assemblages
(MBs) affect the location of continental rifting. Higher man-
tle heat flow has recently been reported from the MB in
the southernmost part of the subcontinent (Rao and Srini-
vasan, 2000); it represents a terrain boundary and breakups
(at ~130 and 90 Ma) and plume activity (~90 and 65-60
Ma).

(e) Tectonics: Since TMF is facilitated by the MBs,
implying that stresses, faults, fractures and dyke emplace-
ments during extension, would be focused along the MBs
(Fig. 1(a)) and act as conduits for volatiles and heat. This
is supported by the concentration of hotsprings, seismicity
along MB (Fig. 2(b)) rifting, sedimentation (subsidence) and
uplifts along the MBs—a sort of rheological wave-guide.
The term wave-guide has been used here for clearer visu-
alization of the litho-asthenosphere interaction. This is be-
cause, as is well known, in the case of a wave-guide, most of
the energy flux (elastic, sound or electromagnetic) remains

confined. Similarly in the present case, the thermomagmatic
flux (the heat energy and the magmatic activity) seems to
be channeled mostly along the base of the mobile belt litho-
sphere (please see Fig. 3(a)). Lowman and Jarvis (1999)
have used similar argument to explain the stability of the
supercontinents. Thybo et al. (2000) also show that simi-
lar focusing of seismicity is evidenced across the craton-MB
transition between the western region (mobile type) and east-
ern/central cratonic parts of North America.

5. Composite Continental Lithosphere and Waveg-
uide Type Transcontinental MBs

Figure 3(a) sketches interaction between a composite
lithosphere and mantle (or plume) upwelling. If it is kept in
mind that there is a significant difference in the lithospheric
thicknesses under the Archaean cratons (180-300 km) and
the mobile belt (70-180 km) parts of the continental litho-
sphere, then the mantle upwelling will evidently have a much
easier upward passage due to far greater decompressional
melting that follows from the shallow base under the mo-
bile belts. On the other hand, near the base of the deep
rooted cratons, the partial melting would be meager due to
large pressure at those depths. These differences explain the
undisturbed nature of cratons and the relatively vulnerable
nature of the mobile belts which allow the channeling of
thermomagmatic flux and, hence, manifestation of most of
the geological, geophysical, geochemical and tectonic signa-
tures. The rigid and refractory nature of the cratonic base re-
sists the diffusion of thermomagmatic flux, which therefore
moves towards the adjoining and thinner MBs (Fig. 3(a)).
This partitioning makes the splitting of craton less probable,
while a thinner (80—150 km) MB-lithosphere allows larger
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Fig. 3(b). Transcontinental Mobile belts (modified from Unrug, 1996) and position of hotspots.

decompressional melting and long-distance channeling; al-
ternatively, MBs help in maintaining cratonic stability (Low-
man and Jarvis, 1999).

In the case of ongoing mantle convection (both in plate
and plume mode; Davies, 1999) the shallow base of the
lithosphere under the mobile belts could facilitate large-scale
mantle upwelling (both passive and active types). The active
upwelling could be due to a mantle plume coming under the
lithospheric plate. It has been shown by Crough (1979, 1983)
that every lithospheric plate passes over a mantle plume ap-
proximately every 530 m.y. Hence, for a 1-3 Ga continental
lithosphere mantle, upwelling would apparently become an
episodic process. Recently, Condie (2001) outlined four time
zones of large crustal growth governed by superplume activ-
ity. Abbot et al. (1997) have also delineated certain long-
period episodicity of plume-lithosphere interactions.

The presence of intraplate magmatism of different ages,
e.g. Archaean komatiites and alkaline rocks and associated
tholeiites of different age groups (1600, 1100, 800, 120 and
60 Ma) over the Indian subcontinent (Naqvi and Rogers,
1987), provide sufficient evidence for the episodic nature of
the interaction between plume and Indian continental litho-
sphere. As discussed earlier, each time a mantle plume im-
pinges at the base of the mobile belt lithosphere, the result-
ing channeling of the thermomagmatic flux along the mobile
belt would weaken it so that it eventually reaches a critical
stage where the next upwelling of sufficient strength can re-
sult in a continental breakup along the mobile belt (Vauchez
et al., 1997; Raval and Veeraswamy, 2003). Further partial
melting, near the deep-rooted cratonic base, may be much
less (Davies, 1999) and, being rigid and refractory, it resists
the diffusion of TMF, which therefore moves towards the ad-
joining, thinner MBs (Fig. 3(a)). This partitioning makes
splitting of the craton less probable, while a thinner (80-150

km) MB lithosphere allows larger decompressional melt-
ing and long-distance channeling; alternatively MBs help in
maintaining cratonic stability (Lowman and Jarvis, 1999).
Episodic upwellings make MB lithospheres gradually thin-
ner and, in turn, greater decompressional melting follows.
Melting increases if the MB is hydrous which, in some cases,
gives rise to LIP/CFB (Gallagher and Hawkesworth, 1992;
Courtillot et al., 1999). This process finally leads to a greater
probability of breakup along the MBs. With respect to geo-
chemical/isotopic signatures along the MBs, it may be noted
that the asthenospheric mantle underlying the CL is normally
depleted (DM), but anomalously hot and enriched (EM) in
the case of plume upwelling from a deep mantle.

Thus, if the litho-asthenosphere boundary (LAB) beneath
the MB becomes optimally shallow due to episodic mobi-
lizations, and the concentration of heat and fluids make MBs
weak enough, then extension due to doming caused by the
asthenospheric upwelling could cross the threshold-breaking
strength of the MB lithosphere. But, the relatively cold,
dry and deep-rooted cratonic lithosphere escapes this pro-
cess and, hence, remains largely intact. These MBs could
be graded with respect to the time lapsed since their last re-
juvenation, thus first-order MBs would characterize recent
reactivation, while for higher-order MBs much longer time
would have lapsed since the last mobilization. Alternatively,
higher-order MBs tend to become cratonized.

Combination of first-order MBs (Unrug, 1996) and
plumes which characterize the breakups of Greater India,
as discussed earlier, seems globally applicable because su-
percontinental splitting also appears to be guided by the
transcontinental MBs (Fig. 3(b)). In a few cases, how-
ever, the breakup has not occurred despite plume activity
(e.g. Siberial flood basalt) probably due to the association of
higher-order MBs (i.e. which are thicker and stronger or rela-
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tively cratonized). This is corroborated by the fact that while
the Neoproterozoic Mozambique belt gave way during the
Karoo actizty and breakup, the late Archaean Limpopo belt,
between the Zimbabwe and Kaapvaal cratons, remained in-
tact. Large-distance lateral channeling along transcontinen-
tal MBs explains the global scale propagation of mega ther-
momagmatic episodes. For example, the Pan African event
is evidenced over Madagascar, the Seychelles, MBs of India
(Fig. 1(a)), Srilanka, Antarctica, etc. Similarly, TMF from
the Karroo event traversed up to Tasmania via the Antarctic
mobile corridor (Duncan et al., 1997).

6. Chipping of the Craton

Normally, old cratons with their tectospheric keel have re-
mained undisturbed since the Archaean (or early Protero-
zoic) period. However, at the edges of a craton where it
meets the boundary (or suture) corridor consisting of a mo-
bile belt, the edges of the craton are likely to be affected
because of the episodic activations, of the mobile belts. In
such situations, edges of cratons (in this case, the western
part of the Dharwar craton) may become relatively weak-
ened as compared to the core (or central part) of the craton.
This process can, in turn, increase the probability of the cra-
tonic edges getting chipped away during a breakup. This
seems to be the case with regard to the Antongil and Masora
cratonic strips that appear to have formed the western edge
of the Dharwar craton before the separation of Madagascar
from India at ~90 Ma.

The India-Madagascar separation, as discussed above,

seems to be governed by the mobile nature of the Mada-
gascan lithosphere barring the two thin strips (viz. Antongil
and Masora blocks) of Archaean age and low-grade facies.
From Fig. 4 these two strips appear to be the westernmost
edge of the WDC. Owing to its mobile belt type, Mada-
gascar would be relatively thinner and weaker and, hence,
vulnerable to episodic reactivations. This implies that during
this process, the westernmost edge of the WDC would have
also become affected and weaker. On the other hand, greater
lithospheric thickness (d ~ 250 km) under the WDC resists
these episodic thermomagmatic fluxes, leaving its margins
undisturbed and stable. The difference in the response be-
tween WDC and Madagascar arises because a thermal up-
welling under a lithosphere consisting of craton and mobile
belts would mostly affect the younger and relatively weaker
(mobile) corridors first. The partial melting and channeling
of TMF will be concentrated near the cratonic edges which,
if it becomes sufficiently weakened, might also get chipped
off the craton, as seems to be the case where the Antongil
and Masora blocks form the westernmost edges of WDC and
were chipped out due to episodic reactivation of the Mada-
gascan lithosphere (Fig. 4).

7. Concluding Remarks

On the basis of geophysical and geotectonic data and
palaeo-juxtapositioning, this study tries to show that ex-
amination of the dispersal undergone by the mobile net-
work of Greater India since the early Cretaceous, provides
a very useful insight into the understanding of superconti-
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nental breakups, particularly into where and how they rifted
apart.

Owing to significant difference in the thickness, thermal
state and rheology of cratons and mobile belts, their ther-
momechanical response to impressed tectonothermal forces
(due to plate or plume tectonics) would vary substantially.
The mobile belts facilitate through them the channeling of
thermomagmatic flux, while cratons resist the rejuvenation
and episodicity of such events, thus eventually bringing the
mobile belts to a critical state. In this state, the presence of
an intense enough plume can be fatal for the stability of a
supercontinent.

The transcontinental mobile belts exhibit a wave-guide
type effect by allowing a large-distance migration along
them of the tectonothermal forces. The deep rooted refrac-
tory and cold craton, on the other hand, remains mostly intact
except in a few cases where the cratonic edges also become
affected by the episodic reactivations of the adjoining mo-
bile belts, as exemplified here by the India-Madagascar and
Africa-Antarctica separations.
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