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Scale similarity of MHD turbulence in the Earth’s core
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Turbulent motions in the core, being highly anisotropic because of the influence of the Earth’s rotation and its
magnetic field, cause the eddy diffusion of large-scale fields much more effectively than the molecular diffusion.
Reliable estimates of the eddy diffusivities, or the subgrid-scale fluxes, are therefore of significance. In this
paper, scale similarity of magnetohydrodynamic turbulence in a rapidly rotating system is investigated to model
subgrid-scale processes, as used in large-eddy simulations. The turbulent flux has been computed by taking an
ensemble average of results of direct numerical simulations, which are to be employed in this paper, over the
computational box which represents a small region in the Earth’s core. The anisotropy of turbulent flux computed
after averaging over segments into which the box is divided remains unchanged even when the size of segments
changes. Dependence of turbulent flux computed from fields to which a spatial filter is applied on its width indicates
that subgrid-scale flux can be evaluated through extrapolation. This method will be useful for performing global
geodynamo simulations taking into account subgrid-scale processes.
Key words: MHD turbulence, Earth’s core, subgrid scale, scale similarity.

1. Introduction
The geodynamo, which is a generation mechanism of the

Earth’s magnetic field, has been understood through three-
dimensional self-consistent magnetohydrodynamic (MHD)
dynamo simulations in rapidly rotating spherical shells (e.g.
Roberts and Glatzmaier, 2000; Kono and Roberts, 2002). For
the first stage, it was of significance to examine basic phys-
ical processes of magnetic field generation and structures of
the velocity and the magnetic fields; for example, colum-
nar convection cells parallel to the rotational axis occur in
a rapidly rotating spherical shell, and convergence of flows
into those with negative axial vorticity near the equatorial
plane works upon confinement of the magnetic field there.
Helical flows within such convection cells are very important
for the magnetic field to be generated through advection and
stretch of the field (e.g. Kageyama et al., 1995; Kageyama
and Sato, 1997; Olson et al., 1999; Takahashi et al., 2001).
In the meantime, systematic survey of MHD dynamo behav-
ior was made (Christensen et al., 1999), and furthermore
even a dynamo benchmark, which provides a standard so-
lution of a three-dimensional, self-consistent spherical shell
MHD dynamo model, was constructed (Christensen et al.,
2001).

Non-dimensional parameters used in numerical simula-
tions, however, have been very far from those of the real
Earth. For instance, the Ekman number, E = ν/2�D2,
where ν is the kinematic viscosity, D the thickness of a ro-
tating spherical shell, and � its angular velocity, ranges from
O(10−1) to O(10−6), although E of the Earth’s core is of
the order of 10−15 (ν = 10−6 m2/s, D = 2.27 × 106 m, and
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� = 7.29 × 10−5 rad/s). No one knows what arises from
the obvious difference. To understand the realistic Earth’s
dynamo, much smaller Ekman numbers and much larger
Rayleigh numbers must be adopted in numerical simulations.

In reality, because of very small molecular diffusivities, it
is likely that the Earth’s liquid core is in a turbulent state; that
is, a range of spatial scales of convective motions in the core
is very broad, from global core scales to dissipative scales.
Core turbulence is also expected to be highly anisotropic be-
cause of the influence of the Earth’s rotation and its magnetic
field (e.g. Braginsky and Meytlis, 1990; Matsushima et al.,
1999; Roberts and Glatzmaier, 2000). Such anticipated tur-
bulent motions can never be ignored, since large-scale fields
are diffused much more effectively by anisotropic turbulent
eddies than by molecular diffusive processes. At the present,
however, it is impossible to carry out global geodynamo sim-
ulations taking into account molecular diffusivities because
of limited spatial resolution and computational power. In-
stead, the expedient of using eddy diffusivities has usually
been adopted, which is one of methods to parameterize phys-
ical processes where the unresolved subgrid scales (SGS) are
involved. Artificial hyper-diffusivities, which work more ef-
fectively upon smaller-scale fields, were also used for very
small E (e.g. Glatzmaier and Roberts, 1995a, b), although it
was pointed out that they can alter the essential features in
MHD dynamo simulations (e.g. Zhang and Jones, 1997). In
this sense global geodynamo simulations carried out so far
have aimed at examining the evolution of large-scale fields
alone, and can be regarded as a kind of large-eddy simula-
tion.

In large-eddy simulation (LES), which is known as a tur-
bulence simulation method, a spatial function is used to elim-
inate small-scale components, or SGS components, that con-
tribute to the energy dissipation. It is then required to model
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their effects on large-scale components. In numerical cal-
culations of magneto-convection in a rapidly rotating sys-
tem, Buffett (2003) examined four SGS models for LES;
the eddy diffusivity model, the hyper-diffusivity model, the
Smagorinsky model, and the similarity model. In the eddy
diffusivity model, spatially constant eddy diffusivities were
defined on the basis of the characteristic length and veloc-
ity. In the hyper-diffusivity model, the diffusivities were in-
creased with decrease in the length-scale. In the Smagorin-
sky model, the diffusivities were expressed in terms of the
characteristic length-scale and the strain-rate tensor. These
three models are all based on eddy diffusivities. In the sim-
ilarity model, as provided by Bardina et al. (1980) and sim-
plified later by Germano (1986), the unknown SGS flux is
approximated by terms calculated from the resolved field
to which an additional spatial filter is applied. In fact, the
scale similarity model is based on two assumptions; one is
that components of the maximum subgrid-scale are similar
to those of the minimum grid-scale, and the other is that
subgrid-scale components immediately below the minimum
grid-scale have the greatest influence on those of the grid-
scale. Buffett (2003) concluded that the similarity model was
much more successful in reproducing the anisotropy in the
SGS estimates. However the constants in the scale-similarity
model were determined by referencing to those of direct nu-
merical simulations (DNS) with LES. We need a better eval-
uation of the constants.

We investigate in this paper the scale similarity of MHD
turbulence in the core, aiming at finding a simple method to
evaluate the SGS flux which can be anisotropic. We use re-
sults of DNS of magneto-convective turbulence in a rapidly
rotating system carried out by Matsushima (2001), who at-
tempted to model subgrid-scale processes like turbulent heat
flux. We examine the dependence of turbulent fluxes on a
grid scale and a filter width by taking an ensemble average
over the whole computational box for DNS. Such a relation
will be helpful to carry out numerical simulations taking into
account SGS processes.

2. Results of Direct Numerical Simulations
We have been performing direct numerical simulations in

a rapidly rotating system to examine the MHD turbulence
possibly taking place in the Earth’s core. To represent a very
small region in the fluid outer core, a rectangular box with
periodic boundaries is adopted, and its location is defined
by the direction of gravity, or the colatitude, λ, in the core.
A uniform magnetic field has been imposed to represent a
large-scale magnetic field generated by dynamo processes.
Turbulent motions are driven by large-scale buoyancy field,
or a temperature gradient parallel to the direction of gravity.
Local Cartesian coordinates, (x, y, z), are defined; the z-
coordinate is aligned in the direction of the rotation axis, and
the y-coordinate in the azimuthal direction (Fig. 1). Then
basic equations have been solved by using a control volume
method (Matsushima et al., 1999).

Scaling length by a (the size of the computational box in
the z-direction), time by a2/η, magnetic field by B0, pressure
by 2�ηρ, and temperature by βa, where η is the magnetic
diffusivity, ρ the density of core fluid, and β the large-scale
buoyancy gradient, the basic equations to be solved are given
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Fig. 1. Schematic pictures of the computational box and its relation to the
Earth’s core.

as

εη {∂t v + (v · ∇)v} = −∇ p − 1z × v
+
(∇ × b) × (1B + b)

+Raθ1r + εν∇2v,
(1)

∂t b + (v · ∇)b = {(1B + b) · ∇} v + ∇2b, (2)

∂tθ + v · ∇θ = −v · ∇� + Pq∇2θ, (3)

∇ · v = 0, ∇ · b = 0, (4)

where v is the velocity field in a coordinate system ro-
tating with angular velocity, ��� = �1z , 1z the unit vec-
tor in the z-direction, b the magnetic field, p the reduced
pressure, and θ the temperature deviated from a large-scale
field, � (a variable with an overbar is a mean field). Non-
dimensional numbers appeared in these equations are the
magnetic Ekman number, εη = η/2�a2, the Elsasser num-
ber, 
 = B2

0σ/2�ρ, the modified Rayleigh number, Ra =
αgβa2/2�η, the Ekman number, εν = ν/2�a2, and the
Roberts number, Pq = κ/η, where σ is the electrical con-
ductivity, α the coefficient of thermal expansion, g the grav-
ity, and κ the thermal diffusivity. We have examined the ef-
fect of the turbulent heat transport, v · ∇θ , on the mean field,
�. Using (4), we have v · ∇θ = ∇ · θv = ∇ · I, where
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Fig. 2. The computational box divided into (2n)3 segments, where n = 1, 2, 3, and 4.

I = θv is the turbulent heat flux; the flux of heat created
by the turbulent motions. Results of numerical simulations
are summarized in Matsushima et al. (1999) and Matsushima
(2001). In the following, we investigate the scale similarity
using the results thus obtained so far.

3. Investigation of Scale Similarity
3.1 Dependence on grid scale

We have considered the computational box as a very small
region in the core; that is, its size may correspond to a grid
spacing for a global geodynamo simulation. We have eval-
uated the turbulent heat flux, I, by taking a volume integral
over the computational region of volume V as

I = θv = 1

V
∫

θvdV. (5)

To investigate the scale similarity, we divide the computa-
tional region into (2n)3 parts, where n = 1, 2, 3, 4, and 5,
as shown in Fig. 2 (a view for n = 5 is not illustrated). We
first take ensemble averages over these segments, and obtain
mean values, θ̆ and v̆, which are regarded as representatives
for respective segments. Then using θ̆ and v̆ thus obtained,

we calculate the turbulent heat flux, I
(n) = θ̆ v̆, for n = 1 to

n = 5. We here define the relative grid scale as, for example,
l(n)
x /Lx , where l(n)

x and Lx are lengths of a segment for cer-
tain n and the whole region, respectively, in the x-direction.
In this study, the number of division is identical in the three
directions, and we have l(n)

x /Lx = l(n)
y /L y = l(n)

z /Lz = 2−n .
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Fig. 3. The relation between the relative grid scale and the turbulent heat
flux, (〈I x 〉, 〈I y〉, 〈I z〉), for λ = π/6, Ra = 240, 
 = 10, εν = 10−3,
εη = 10−2, and Pq = 10−1. The error bars represent the standard
deviation for temporal averages.

Figure 3 shows the relative grid-scale dependence of the

turbulent heat flux, 〈I
(n)

x 〉, 〈I
(n)

y 〉 and 〈I
(n)

z 〉 for λ = π/6,
Ra = 240, 
 = 10, εν = 10−3, εη = 10−2, and Pq = 10−1,
where 〈 〉 denotes the ensemble average as averages over
one magnetic diffusion time. There seems to be a linear
relationship between the turbulent heat flux and the relative
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Fig. 4. The relation between the relative grid scale and the turbulent heat
flux, (〈I x 〉, 〈I y〉, 〈I z〉), for λ = π/3, Ra = 240, 
 = 10, εν = 10−3,
εη = 10−2, and Pq = 10−1. The error bars represent the standard
deviation for temporal averages.
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Fig. 5. The relation between the relative grid scale and the turbulent
momentum flux, 〈τ i j 〉, for λ = π/3, Ra = 240, 
 = 10, εν = 10−3,
εη = 10−2, and Pq = 10−1. The error bars represent the standard
deviation for temporal averages.

grid scale of a segment over which the first ensemble average
is taken. The same relationship can also be found for λ =
π/3 (Fig. 4). These results indicate that the direction of the
turbulent heat flux remains unchanged for spatial filtering;
that is, the anisotropy is conserved. The magnitude, however,
decreases by smoothing spatial distribution of fields, θ and v,
onto coarser grid points.

We have so far examined the scale similarity of the tur-
bulent heat flux. The characteristics may also be found in
the Reynolds stress, τ i j = viv j , or the turbulent momen-
tum flux. Hence we calculate τ

(n)
i j = v̆i v̆ j in the same man-

ner. Figure 5 shows the relative grid-scale dependence of the
Reynolds stress, 〈τ (n)

i j 〉, for λ = π/3, Ra = 240, 
 = 10,
εν = 10−3, εη = 10−2, and Pq = 10−1. It should be re-
marked that a similar relationship is found between all the
components of τi j and the relative grid-scale.

3.2 Dependence on filter width
In LES, as described above, subgrid-scale components are

eliminated by using a spatial filter as

v̂(r, t) =
∫

Ĝ(r − r′)v(r′, t)dr′, (6)

where Ĝ is a filter function. Upon applying the filter function
to the energy equation, without a large-scale temperature
gradient, for example,

∂tθ + v · ∇θ = Pq∇2θ, (7)

one obtains that for large-scale fields,

∂t θ̂ + v̂ · ∇ θ̂ = Pq∇2θ̂ − ∇ · I∗, (8)

where I∗ denotes the SGS heat flux given as

I∗ = θ̂v − θ̂ v̂. (9)

The scale similarity model is based on scale invariance that
certain features of the fields remain the same in different
scales; that is, the structure of fields at subgrid scales is pos-
tulated to be similar to that at grid scales. Hence approxima-
tion of I∗ in the similarity model of Germano (1986) is given
as

I∗ = CI (
˜̂θ v̂ − ˜̂θ˜̂v), (10)

where CI is a constant and the tilde denotes a wider filter.
Similarly, the SGS momentum flux, τ ∗

i j , is given as

τ ∗
i j = Cτ (˜̂vi v̂ j − ˜̂vi˜̂v j ), (11)

where Cτ is another constant.
There are many studies, in which the scale-similarity

model is proposed and used, although only the SGS stress
tensor is modeled in most of them. For example, expan-
sion of the grid-scale velocity field to subgrid-scales in spec-
tral space yields an estimation of a velocity field with un-
resolved scales (Domaradzki and Saiki, 1997). This proce-
dure is extended to that in physical space (Domaradzki and
Loh, 1999). In these models a grid-scale field is expanded to
that with subgrid-scales which are two times smaller than the
smallest resolved scale. In the meantime, Horiuti (1997) pro-
posed a new dynamic subgrid-scale mixed model, in which
an improved Bardina model as a scale-similarity model was
linearly combined with the Smagorinsky model, for the SGS
Reynolds stress.

It should be pointed out that the anisotropy of the SGS
fluxes of both heat and momentum can be reproduced by the
scale-similarity model, but not by the SGS models in terms
of scalar eddy diffusivities (Buffett, 2003). It is probable that
the turbulent eddies in the Earth’s core are highly anisotropic
due to the influence of the Earth’s rotation and the strong
magnetic field, and that they result in the turbulent fluxes
which are highly anisotropic also (Braginsky and Meytlis,
1990; St. Pierre, 1996; Matsushima et al., 1999). In this
sense, the scale-similarity model is appropriate to the SGS
fluxes of heat and momentum in rotating magneto-convective
turbulence. Buffet (2003), however, determines the constants
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CI and Cτ in (10) and (11), respectively, to adjust the ampli-
tude of the predicted fluxes of heat and momentum to those
obtained from DNS. Some method of determining the con-
stants or alternative one is therefore required.

The results obtained so far in this study, as shown in
Figs. 3–5, suggest that the scale similarity model in terms
of the relative grid scale is helpful in estimating the subgrid
scales. Keeping the scale similarity in mind, the computa-
tional region has been divided into segments, whose size has
been presumed to be subgrid scales. In reality, however, the
minimum length scale in numerical simulations corresponds
to the grid spacing, and a finer one is not defined. Moreover,
the relationship between the turbulent flux and the relative
grid scale must hold good not only on the temporal average
but also every moment. Hence, as done by Germano (1986),
we apply a spatial filter to the grid-scale fields using a filter
width larger than the grid spacing. Then the subgrid-scale
fields are to be estimated. In this study, we use a top-hat
filter whose function is defined as

G̃(r) = G̃(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

�∗
x�

∗
y�

∗
z

for |x | <
�∗

x
2 ,

|y| <
�∗

y

2 ,

|z| <
�∗

z
2 ,

0
otherwise,

(12)

where �∗
x , �∗

y and �∗
z are filter widths in the x-, y- and z-

directions, respectively. We apply top-hat filters with various
widths to θ and v obtained through DNS as

θ̃ 〈2n+1〉(r, t) =
∫

G̃〈2n+1〉(r − r′)θ(r′, t)dr′, (13)

where G̃〈2n+1〉 is given by (12) with �∗
x = (2n + 1)�x ,

�∗
y = (2n + 1)�y and �∗

z = (2n + 1)�z ; �x , �y and
�z are grid spacings in the x-, y- and z-directions, respec-
tively. The turbulent heat flux and the turbulent momen-
tum flux are computed by taking ensemble average over the

whole computational region, as I
〈2n+1〉 = θ̃ 〈2n+1〉̃v〈2n+1〉 and

τ
〈2n+1〉
i j = ṽ

〈2n+1〉
i ṽ

〈2n+1〉
j , respectively. We then investigate

dependence of these turbulent fluxes on the filter width at a
certain time.

Figures 6 and 7 show dependence of the turbulent heat
flux and the turbulent momentum flux, respectively, on the
filter width in units of the grid spacing for λ = π/3, Ra =
240, 
 = 10, εν = 10−3, εη = 10−2, and Pq = 10−1

at a certain time. As seen in these figures, the turbulent
fluxes approach to zero as the filter width becomes large,
and do not vary linearly. Nevertheless, these variations can
be approximated to straight lines as far as filter widths are

small. Hence I
〈0〉

, which may correspond to the turbulent
heat flux to be evaluated, can be derived from extrapolation

as I
〈0〉 = (3I

〈1〉 − I
〈3〉

)/2, provided that the relation can be
extended to zero filter width.

4. Discussion
Matsushima (2001) attempted to determine geophysically

realistic diffusivity tensors for use in global geodynamo sim-

0 8 16 24 32
Filter Width

−100

−50

0

50

100

150

Tu
rb

ul
en

t H
ea

t F
lu

x

I 〈2n+1〉
x

I 〈2n+1〉
y

I 〈2n+1〉
z
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and Pq = 10−1 at a certain time.

ulations, and modeled the turbulent heat flux in terms of sec-
ond moment closure. It was pointed out that the expression
of turbulent heat flux gives results that are correct to within
an order of magnitude in comparison with those of DNS.
In fact, the proposed model seems to be useful in quantify-
ing the effect of anisotropic turbulence on global geodynamo
models, since a diffusivity tensor, which is spatially and tem-
porally variable, can be determined from local parameters
only. It should be noted, however, that the Reynolds stress
obtained through DNS was used to estimate the turbulent
heat flux. Thus there remains room for improvement in the
model, which has not been used in numerical simulations yet.
In the meantime, Phillips and Ivers (2000) developed general
expressions of the turbulent diffusion tensor in spherical ge-
ometries. Complicated spectral interactions associated with
anisotropic viscous and thermal diffusion tensors were fur-
ther derived for use in spherical MHD dynamo simulations
in spectral space for rapid rotation (Phillips and Ivers, 2001)
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Fig. 8. The relation between the filter width and the x-component of
the turbulent heat flux, Ĩx , at eight adjacent grid points for λ = π/3,
Ra = 240, 
 = 10, εν = 10−3, εη = 10−2, and Pq = 10−1 at a certain
time.

and for a strong azimuthal magnetic field (Phillips and Ivers,
2003).

As another model for use in carrying out global geody-
namo simulations, the scale similarity was investigated in
this paper. The turbulent fluxes as ensemble averages spa-
tially over the computational region and also temporally keep
their anisotropic nature unchanged with increase in the rela-
tive grid scale of segments, for which θ̆ and v̆ are obtained as
representatives from θ and v located within respective seg-
ments. The anisotropy is also kept unvaried with increase in
the filter width of a top-hat filter, which is applied to θ and
v before calculating the turbulent fluxes as spatial averages
over the computational box at a certain time. Magnitude of
respective components of the turbulent flux decreases with
increase in the filter width, but it is possible to evaluate the
turbulent flux by extrapolation, as mentioned in the previous
section.

We have so far examined the turbulent flux as a spatial
average over the computational box for DNS. We can em-
ploy the relation between the turbulent flux and the filter
width in global simulations when it holds at respective grid
points, (xi , y j , zk), where xi = i Lx/Nx (i = 0, · · · , Nx ),
y j = j L y/Ny ( j = 0, · · · , Ny), and zk = kLz/Nz (k =
0, · · · , Nz). Nx , Ny and Nz are the number of grid points
in the x-, y- and z-directions, respectively. We show, in
Fig. 8, dependence of the x-component of turbulent heat flux,
Ĩx = θ̃vx , on the filter width at eight adjacent grid points for
λ = π/3, Ra = 240, 
 = 10, εν = 10−3, εη = 10−2,
and Pq = 10−1. Clearly, values of Ĩx approach to a mean
value as the filter width becomes large, whereas they dis-
perse for small filter widths even at adjacent grid points. At
seven of eight grid points, Ĩx monotonously varies between
filter width 1 and 5 in units of the grid spacing. Only at one
grid point, specifically at (x2, y1, z2), we have Ĩ 〈1〉

x > Ĩ 〈3〉
x

and Ĩ 〈3〉
x < Ĩ 〈5〉

x . The same was found at about one third of
whole grid points. However, the results, as shown in Figs. 6
and 7, demonstrate that the relation between the turbulent
fluxes, averaged over the computational box for DNS, and

the filter width can be extended to zero filter width. It is
therefore natural to presume that the extrapolation is avail-
able at respective grid points. That is, the turbulent flux, or
the subgrid-scale flux, at every grid point would be evaluated
in the same manner as in the previous section.

In the present method of estimating the turbulent flux,
the constants CI and Cτ , in (10) and (11), respectively, are
not determined, but θ̂v and v̂iv j are directly evaluated. On
the other hand, Buffett (2003) compared amplitudes of the
SGS fluxes in the similarity model with those in results of
DNS, and found that CI and Cτ are of the order of unity.
He therefore proposed to use models with CI = Cτ = 1.
However, he also mentioned that the SGS fluxes of heat and
momentum are underestimated in the similarity model; that
is, CI ≤ 1 and Cτ ≤ 1. There is a possibility that this point is
improved by using the method proposed in this paper. At the
next step, it is required to adopt it in numerical simulations
and to confirm it by comparing results.

5. Conclusions
We have investigated the scale similarity of MHD turbu-

lence in a rapidly rotating system by using results of direct
numerical simulations carried out by Matsushima (2001).
The main objective is to find an alternative method of es-
timating the turbulent flux as subgrid-scale processes. The
results are summarized as follows:

1. The direction of turbulent fluxes, averaged both over
the computational box after taking average over its seg-
ments and over the time, does not depend on the relative
grid scale of segments. This suggests that the scale sim-
ilarity substantially holds good and that the anisotropy
of turbulent fluxes remains unchanged for spatial filter-
ing as applied in this paper.

2. Dependence of turbulent fluxes, averaged over the com-
putational box after filtering, on the width of spatial fil-
ters indicates that their variations can be approximated
to straight lines for small filter width. This implies that
SGS turbulent fluxes can be evaluated through simple
extrapolation.

3. SGS turbulent fluxes at respective grid points can be
evaluated in the same manner as the previous one. They
approach to their means over the computational box as
the width of spatial filters becomes large.

We need to demonstrate the validity of the method, pro-
posed in the present study, of estimating the SGS fluxes;
that is, further investigation is necessary. Nevertheless, the
present method would be useful in performing global geody-
namo simulations incorporating the SGS physical processes.
It can also be applied to numerical simulations of rotat-
ing magneto-convective turbulence, as performed by Mat-
sushima et al. (1999) and Matsushima (2001), for much
smaller diffusivities.
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